Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial structuring of marine ecosystems

An Erratum to this article was published on 01 December 2007

A Corrigendum to this article was published on 01 December 2007

Key Points

  • In this Review, Azam and Malfatti make a case for the need to elucidate in situ microbiology as a unifying basis for understanding and modelling the influence of microorganisms on marine ecosystems.

  • Bacteria dominate the ocean in abundance, diversity and metabolic activity. The uptake of organic matter by bacteria is a major carbon-flow pathway, and its variability can change the overall flux of carbon in the ocean and, therefore, globally.

  • Organic matter in seawater is present as transparent gels that are composed of colloids, mucus sheets and bundles. It is important to consider how microorganisms interact with organic matter that is present in this form. Growth rates of bacteria in the ocean are important, but estimates based on the bulk phase could be inaccurate. It is feasible that hot spots of nutrients allow bursts of fast growth in a boom-and-bust cycle.

  • Marine snow is an important component of the organic carbon in the ocean on which bacteria can reach high cell densities. Understanding the biochemical bases of the interactions of bacteria with marine snow will enable us to begin to link carbon storage and carbon biochemistry with gene expression in the bacteria that are present on these aggregates.

  • Microbial oceanography is a field that is caught between scales — microbial processes must be understood at the scale of the individual microorganism, but yet we want to understand the cumulative influence of microbial processes on how the ocean works as a biogeochemical system. We argue that understanding how bacteria interact with the ocean system at the nanometre to millimetre scales provides insights into biogeochemical processes of global significance.

Abstract

Despite the impressive advances that have been made in assessing the diversity of marine microorganisms, the mechanisms that underlie the participation of microorganisms in marine food webs and biogeochemical cycles are poorly understood. Here, we stress the need to examine the biochemical interactions of microorganisms with ocean systems at the nanometre to millimetre scale — a scale that is relevant to microbial activities. The local impact of microorganisms on biogeochemical cycles must then be scaled up to make useful predictions of how marine ecosystems in the whole ocean might respond to global change. This approach to microbial oceanography is not only helpful, but is in fact indispensable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microbial structuring of a marine ecosystem.
Figure 2: The size range of organic matter and microbial interactions in the ocean.
Figure 3: Adaptive strategies of bacteria in the ocean.
Figure 4: Microbial cycling of carbon in marine snow.

Similar content being viewed by others

References

  1. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).

    Article  CAS  Google Scholar 

  4. Ocean Biogeochemistry: a Synthesis of the Joint Global Ocean Flux Study (JGOFS) (ed. Fashsam, M. J. R. ) (Springer, New York, 2003). This book describes results from a long-term research program on the role of the ocean carbon cycle in global change.

    Book  Google Scholar 

  5. Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Pauly, D. et al. The future for fisheries. Science 302, 1359–1361 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Pomeroy, L. R. Oceans food web, a changing paradigm. Bioscience 24, 499–504 (1974). An influential paper that proposed that a major fraction of primary production is used by bacteria and other microorganisms.

    Article  Google Scholar 

  8. Williams, P. J. L. Microbial contribution to overall marine plankton metabolism: direct measurements of respiration. Oceanol. Acta 4, 359–364 (1981).

    Google Scholar 

  9. Azam, F. & Ammerman, J. W. in Flows of Energy and Materials in Marine Ecosystem (ed. Fasham, M. J. R.) 345–360 (1984).

    Book  Google Scholar 

  10. Steele, J. The Structure of Marine Ecosystems. (Harvard Univ. Press, Massachusetts, 1974).

    Book  Google Scholar 

  11. Hobbie, J. E., Daley, R. J. & Jasper, S. Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33, 1225–1228 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fuhrman, J. A. & Azam, F. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Canada, Antarctica, and California, USA. Appl. Environ. Microbiol. 39, 1085–1095 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hagström, Å., Larsson, U., Horstedt, P. & Normark, S. Frequency of dividing cells: a new approach to the determination of bacterial growth rates in aquatic environments. Appl. Environ. Microbiol. 37, 805–812 (1979).

    PubMed  PubMed Central  Google Scholar 

  14. Giovannoni, S. J. & Stingl, U. Molecular diversity and ecology of microbial plankton. Nature 437, 343–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. DeLong, E. F. & Karl, D. M. Genomic perspectives in microbial oceanography. Nature 437, 336–342 (2005). An excellent review on the role of microorganisms in marine ecosystems that combined molecular and ecological perspectives.

    Article  CAS  PubMed  Google Scholar 

  16. Pomeroy, L. R., Williams, P. J., Azam, F. & Hobbie, E. A. The microbial loop. Oceanography 20, 28–33 (2007). A concise account of the functioning of the microbial loop in the marine ecosystem.

    Article  Google Scholar 

  17. Williams, P. J. l. Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kiel. Meeresforsch 5, 1–28 (1981).

    Google Scholar 

  18. Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).

    Article  Google Scholar 

  19. Ducklow, H. W. & Carlson, C. A. Oceanic bacterial production. Adv. Microb. Ecol. 12, 113–181 (1992).

    Article  Google Scholar 

  20. Williams, P. J. l. B. The balance of plankton respiration and photosynthesis in the open oceans. Nature 394, 55–57 (1998).

    Article  CAS  Google Scholar 

  21. Azam, F. Microbial control of oceanic carbon flux: the plot thickens. Science 280, 694–696 (1998).

    Article  CAS  Google Scholar 

  22. Hollibaugh, J. T. & Azam, F. Microbial-degradation of dissolved proteins in seawater. Limnol. Oceanogr. 28, 1104–1116 (1983).

    Article  CAS  Google Scholar 

  23. Ducklow, H. W. The bacterial component of the oceanic euphotic zone. FEMS Microbiol. Ecol. 30, 1–10 (1999).

    Article  CAS  Google Scholar 

  24. Karl, D. M. Nutrient dynamics in the deep blue sea. Trends Microbiol. 10, 410–418 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Ducklow, H. W. Production and fate of bacteria in the oceans. Bioscience 33, 494–501 (1983).

    Article  Google Scholar 

  26. Ducklow, H. W. Modeling the microbial food-web. Microb. Ecol. 28, 303–319 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Cole, J. J., Findlay, S. & Pace, M. L. Bacterial production in fresh and saltwater ecosystems — a cross-system overview. Mar. Ecol. Prog. Ser. 43, 1–10 (1988).

    Article  Google Scholar 

  28. Turley, C. M. et al. Relationship between primary producers and bacteria in an oligotrophic sea — the Mediterranean and biogeochemical implications. Mar. Ecol. Prog. Ser. 193, 11–18 (2000).

    Article  CAS  Google Scholar 

  29. Hoppe, H. G., Gocke, K., Koppe, R. & Begler, C. Bacterial growth and primary production along a north–south transect in the Atlantic Ocean. Nature 416, 168–171 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Williams, P. J. l. B. & Bower, D. G. Regional carbon imbalances in the oceans. Science 284, 1735 (1999).

    Article  Google Scholar 

  31. Karl, D. M., Laws, E. A., Morris, P., Williams, P. J. l. & Emerson, S. Global carbon cycle (communication arising): metabolic balance of the open sea. Nature 426, 32 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Azam, F., Smith, D. C. & Hollibaugh, J. T. The role of the microbial loop in Antarctic pelagic ecosystems. Polar Res. 10, 239–243 (1991).

    Article  Google Scholar 

  33. Pomeroy, L. R., Wiebe, W. J., Deibel, D., Thompson, R. J. & Rowe, G. T. Bacterial responses to temperature and substrate concentration during the Newfoundland spring bloom. Mar. Ecol. Prog. Ser. 75, 143–159 (1991).

    Article  Google Scholar 

  34. Pomeroy, L. R. & Wiebe, W. J. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat. Microb. Ecol. 23, 187–204 (2001).

    Article  Google Scholar 

  35. Kline, D., Kuntz, N., Brietbart, M., Knowlton, N. & Rohwer, F. The unexpected and critical role of elevated organic carbon in coral mortality. Mar. Ecol. Prog. Ser. 314, 119–125 (2006).

    Article  CAS  Google Scholar 

  36. Smith, J. E. et al. Effects of algae on coral: algal-mediated, microbe-induced coral mortality. Ecol. Lett. 9, 835–845 (2006).

    Article  PubMed  Google Scholar 

  37. Venter, J. C. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. DeLong, E. F. et al. Community genomics among stratified microbial assemblages in the ocean's interior. Science 311, 496–503 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Yooseph, S. et al. The Sorcerer II Global Ocean Sampling Expedition: expanding the universe of protein families. PLoS Biol. 5, e16 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rusch, D. B. et al. The Sorcerer II Global Ocean Sampling Expedition: northwest Atlantic through eastern Tropical Pacific. PLoS Biol. 5, e77 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Béjà, O. et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289, 1902–1906 (2000).

    Article  PubMed  Google Scholar 

  42. de la Torre, J. R. et al. Proteorhodopsin genes are distributed among divergent marine bacterial taxa. Proc. Natl Acad. Sci. USA 100, 12830–12835 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Azam, F. & Worden, A. Z. Microbes, molecules, and marine ecosystems. Science 303, 1622–1624 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Gray, J. S. et al. in Flows of Energy and Materials in Marine Ecosystems (ed. Fasham, M. R. J.) 706–723 (Plenum, New York,1984).

    Google Scholar 

  45. Riemann, L. & Middelboe, M. Viral lysis of marine bacterioplankton: implications for organic matter cycling and bacterial clonal composition. Ophelia 56, 57–68 (2002).

    Article  Google Scholar 

  46. Barbeau, K., Moffett, J. W., Caron, D. A., Croot, P. L. & Erdner, D. L. Role of protozoan grazing in relieving iron limitation of phytoplankton. Nature 380, 61–64 (1996).

    Article  CAS  Google Scholar 

  47. Barbeau, K., Kujawinski, E. B. & Moffett, J. W. Remineralization and recycling of iron, thorium and organic carbon by heterotrophic marine protists in culture. Aquat. Microb. Ecol. 24, 69–81 (2001).

    Article  Google Scholar 

  48. Grossart, H. P., Riemann, L. & Azam, F. Bacterial motility in the sea and its ecological implications. Aquat. Microb. Ecol. 25, 247–258 (2001).

    Article  Google Scholar 

  49. Mitchell, J. G., Pearson, L., Dillon, S. & Kantalis, K. Natural assemblages of marine-bacteria exhibiting high-speed motility and large accelerations. Appl. Environ. Microbiol. 61, 4436–4440 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mitchell, J. G. et al. Long lag times and high velocities in the motility of natural assemblages of marine-bacteria. Appl. Environ. Microbiol. 61, 877–882 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Blackburn, N., Fenchel, T. & Mitchell, J. Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282, 2254–2256 (1998). An experimental demonstration of the response of marine bacteria to organic matter hot spots and a simulation by numerical modelling.

    Article  CAS  PubMed  Google Scholar 

  52. Barbara, G. M. & Mitchell, J. G. Bacterial tracking of motile algae. FEMS Microbiol. Ecol. 44, 79–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Martinez, J., Smith, D. C., Steward, G. F. & Azam, F. Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquat. Microb. Ecol. 10, 223–230 (1996).

    Article  Google Scholar 

  54. Arrieta, J. M. & Herndl, G. J. Assessing the diversity of marine bacterial β-glucosidases by capillary electrophoresis zymography. Appl. Environ. Microbiol. 67, 4896–4900 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kirchman, D. L. & White, J. Hydrolysis and mineralization of chitin in the Delaware Estuary. Aquat. Microb. Ecol. 18, 187–196 (1999).

    Article  Google Scholar 

  56. Nagata, T., Meon, B. & Kirchman, D. L. Microbial degradation of peptidoglycan in seawater. Limnol. Oceanogr. 48, 745–754 (2003).

    Article  CAS  Google Scholar 

  57. Arnosti, C., Durkin, A. S. & Jeffrey, W. H. Patterns of extracellular enzyme activities among pelagic marine microbial communities: implication for cycling of dissolved organic carbon. Aquat. Microb. Ecol. 38, 135–145 (2005).

    Article  Google Scholar 

  58. Obayashi, Y. & Suzuki, S. Proteolytic enzymes in coastal surface seawater: significant activity of endopeptidases and exopeptidases. Limnol. Oceangr. 50, 722–726 (2005).

    Article  Google Scholar 

  59. Cottrell, M. T., Yu, L. Y. & Kirchman, D. L. Sequence and expression analyses of Cytophaga-like hydrolases in a western Arctic metagenomic library and the Sargasso Sea. Appl. Environ. Microbiol. 71, 8506–8513 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Williams, P. J. in Microbial Production and the Decomposition of Organic Material Ch. 3 (eds. Kaiser, M., Attrill, M., Jennings, S., Thomas, D. N. & Williams, P. J. le B) (Oxford Univ. Press, 2005).

    Google Scholar 

  61. Azam, F. & Hodson, R. E. Multiphasic kinetics for D-glucose uptake by assemblages of natural marine-bacteria. Mar. Ecol. Prog. Ser. 6, 213–222 (1981).

    Article  CAS  Google Scholar 

  62. Nissen, H., Nissen, P. & Azam, F. Multiphasic uptake of D-glucose by an oligotrophic marine bacterium. Mar. Ecol. Prog. Ser. 16, 155–160 (1984).

    Article  CAS  Google Scholar 

  63. Riemann, L. & Azam, F. Widespread N-acetyl-D-glucosamine uptake among pelagic marine bacteria and its ecological implications. Appl. Environ. Microbiol. 68, 5554–5562 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Alonso, C. & Pernthaler, J. Concentration-dependent patterns of leucine incorporation by coastal picoplankton. Appl. Environ. Microbiol. 72, 2141–2147 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Giovannoni, S. J. et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309, 1242–1245 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Morris, R. M. et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420, 806–810 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Moran, M. A. Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432, 910–913 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Moran, M. A. et al. Ecological genomics of marine Roseobacters. Appl. Environ. Microbiol. 73, 4559–4569 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Blackburn, N., Azam, F. & Hagstrom, A. Spatially explicit simulations of a microbial food web. Limnol. Oceanogr. 42, 613–622 (1997).

    Article  Google Scholar 

  70. Koike, I., Hara, S. I., Terauchi, K. & Kogure, K. Role of sub-micrometre particles in the ocean. Nature 345, 242–244 (1990). A fundamental discovery that showed the existence of highly abundant sub-micrometre organic particles in the ocean.

    Article  Google Scholar 

  71. Wells, M. L. & Goldberg, E. Occurrence of small colloids in seawater. Nature 353, 342–344 (1992).

    Article  Google Scholar 

  72. Verdugo, P. et al. The oceanic gel phase: a bridge in the DOM–POM continuum. Mar. Chem. 92, 67–85 (2004). An excellent synthesis that showed that organic matter in the sea consists of a gel phase that forms a size continuum. This framework is crucial for understanding the ecology of bacteria and their biogeochemical activities.

    Article  CAS  Google Scholar 

  73. Chin, W. C., Orellana, M. V. & Verdugo, P. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391, 568–572 (1988).

    Article  CAS  Google Scholar 

  74. Chin, W. C., Orellana, M. V., Quesada, I. & Verdugo, P. Secretion in unicellular marine phytoplankton: demonstration of regulated exocytosis in Phaeocystis globosa. Plant Cell Physiol. 45, 535–542 (2004). This paper describes how phytoplankton might contribute to the gel phase of sea water by exocytosis.

    Article  CAS  PubMed  Google Scholar 

  75. Ogawa, H., Amagai, Y., Koike, I., Kaiser, K. & Benner, R. Production of refractory dissolved organic matter by bacteria. Science 292, 917–920 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Long, R. A. & Azam, F. Abundant protein-containing particles in the sea. Aquat. Microb. Ecol. 10, 213–221 (1996).

    Article  Google Scholar 

  77. Alldredge, A. L., Passow, U. & Haddock, S. H. D. The characteristics and transparent exopolymer particle (TEP) content of marine snow formed from thecate dinoflagellates. J. Plankton Res. 20, 393–406 (1998).

    Article  Google Scholar 

  78. Smith, D. C., Simon, M., Alldredge, A. L. & Azam, F. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359, 139–142 (1992).

    Article  CAS  Google Scholar 

  79. Santschi, P. H. et al. Fibrillar polysaccharides in marine macromolecular organic matter, as imaged by atomic force microscopy and transmission electron microscopy. Limnol. Oceanogr. 43, 896–908 (1998).

    Article  CAS  Google Scholar 

  80. Dupres, V. et al. Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nature Methods 2, 515–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Dufrêne, Y. F. Nanoscale exploration of microbial surfaces using the atomic force microscope. Future Microbiol. 1, 387–396 (2006).

    Article  PubMed  Google Scholar 

  82. Neu, T. R., Walczysko, P. & Lawrence, J. R. Two-photon imaging for studying the microbial ecology of biofilm systems. Microb. Environ. 19, 1–6 (2004).

    Article  Google Scholar 

  83. Decho, A. W. & Kawaguchi, T. Confocal imaging of in situ natural microbial communities and their extracellular polymeric secretions (EPS) using nanoplast resin. BioTechniques 27, 1246–1251 (1999).

    CAS  PubMed  Google Scholar 

  84. Belas, R., Simon, M. & Silverman, M. Regulation of lateral flagella gene transcription in Vibrio parahaemolyticus. J. Bacteriol. 167, 210–218 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bowen, J. D., Stolzenbach, K. D. & Chisholm, S. W. Simulating bacterial clustering around phytoplankton cells in a turbulent ocean. Limnol. Oceangr. 38, 36–51 (1993).

    Article  CAS  Google Scholar 

  86. Fenchel, T. & Blackburn, N. Motile chemosensory behaviour of phagotrophic protists: mechanisms for and efficiency in congregating at food patches. Protist 150, 325–336 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Seymour, J. R., Mitchell, J. G. & Seuront, L. Microscale heterogeneity in the activity of coastal bacterioplankton communities. Aquat. Microb. Ecol. 35, 1–16 (2004).

    Article  Google Scholar 

  88. Rocap, G., Distel, D. L., Waterbury, J. B. & Chisholm, S. W. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16s–23s ribosomal DNA internal transcribed spacer sequences. Appl. Environ. Microbiol. 68, 1180–1191 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Johnson, Z. I. et al. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Acinas, S. G. Fine-scale phylogenetic architecture of a complex bacterial community. Nature 430, 551–554 (2004). This study shows the existence of microscale phylogenetic clusters among marine bacteria assemblages, which has significance for gene diversity and the interaction with ocean systems.

    Article  CAS  PubMed  Google Scholar 

  91. Kolber, Z. S., Van Dover, C. L., Niederman, R. A. & Falkowski, P. G. Bacterial photosynthesis in surface waters of the open ocean. Nature 407, 177–179 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Aluwihare, L. I., Repeta, D. J. & Chen, R. F. A major biopolymeric component to dissolved organic carbon in surface sea water. Nature 387, 166–169 (1997).

    Article  CAS  Google Scholar 

  93. Teira, E., Reinthaler, T., Pernthaler, A., Pernthaler, J. & Herndl, G. J. Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and archaea in the deep ocean. Appl. Environ. Microbiol. 70, 4411–4414 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cottrell, M. T. & Kirchman, D. L. Single-cell analysis of bacterial growth, cell size, and community structure in the Delaware estuary. Aquat. Microb. Ecol. 34, 139–149 (2004). Presents a method for the simultaneous phylogenetical and physiological interrogation of individual cells in natural marine assemblages.

    Article  Google Scholar 

  95. Rappe, M. S., Connon, S. A., Vergin, K. L. & Giovannoni, S. J. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630–633 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Mourino-Perez, R. R., Worden, A. Z. & Azam, F. Growth of Vibrio cholerae O1 in red tide waters off California. Appl. Environ. Microbiol. 69, 6923–6931 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Worden, A. Z. et al. Trophic regulation of Vibrio cholerae in coastal marine waters. Environ. Microbiol. 8, 21–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Hamasaki, K., Long, R. A. & Azam, F. Individual cell growth rates of marine bacteria, measured by bromodeoxyuridine incorporation. Aquat. Microb. Ecol. 35, 217–227 (2004).

    Article  Google Scholar 

  99. Fandino, L. B., Riemann, L., Steward, G. F., Long, R. A. & Azam, F. Variations in bacterial community structure during a dinoflagellate bloom analyzed by DGGE and 16s rDNA sequencing. Aquat. Microb. Ecol. 23, 119–130 (2001).

    Article  Google Scholar 

  100. Riemann, L., Steward, G. F. & Azam, F. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl. Environ. Microbiol. 66, 578–587 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rodriguez, G. G., Phipps, D., Ishiguro, K. & Ridgway, H. F. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl. Environ. Microbiol. 58, 1801–1808 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Lebaron, P., Servais, P., Agogue, H., Courties, C. & Joux, F. Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems? Appl. Environ. Microbiol. 67, 1775–1782 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gasol, J. M., Zweifel, U. L., Peters, F., Fuhrman, J. A. & Hagstrom, A. Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl. Environ. Microbiol. 65, 4475–4483 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Reinthaler, T. & Herndl, G. J. Seasonal dynamics of bacterial growth efficiencies in relation to phytoplankton in the southern North Sea. Aquat. Microb. Ecol. 39, 7–16 (2005).

    Article  Google Scholar 

  105. Reinthaler, T., Winter, C. & Herndl, G. J. Relationship between bacterioplankton richness, respiration, and production in the southern North Sea. Appl. Environ. Microbiol. 71, 2260–2266 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Alonso-Saez, L. et al. Large-scale variability in surface bacterial carbon demand and growth efficiency in the subtropical northeast Atlantic Ocean. Limnol. Oceanog. 52, 533–546 (2007).

    Article  CAS  Google Scholar 

  107. Del Giorgio, P. A. & Cole, J. J. Bacterial growth efficiency in natural aquatic systems. Ann. Rev. Ecol. Syst. 29, 503–541 (1998).

    Article  Google Scholar 

  108. Ouverney, C. C. & Fuhrman, J. A. Combined microautoradiography —16s rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl. Environ. Microbiol. 65, 1746–1752 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Malmstrom, R. R., Cottrell, M. T., Elifantz, H. & Kirchman, D. L. Biomass production and assimilation of dissolved organic matter by SAR11 bacteria in the Northwest Atlantic Ocean. Appl. Environ. Microbiol. 71, 2979–2986 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cottrell, M. T. & Kirchman, D. L. Natural assemblages of marine proteobacteria and members of the Cytophaga–Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl. Environ. Microbiol. 66, 1692–1697 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Alonso, C. & Pernthaler, J. Incorporation of glucose under anoxic conditions by Bacterioplankton from coastal North Sea surface waters. Appl. Environ. Microbiol. 71, 1709–1716 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Selje, N., Simon, M. & Brinkhoff, T. A newly discovered Roseobacter cluster in temperate and polar oceans. Nature 427, 445–448 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Kirchman, D. L. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 39, 91–100 (2002).

    CAS  PubMed  Google Scholar 

  114. Alonso, C., Warnecke, F., Amann, R. & Pernthaler, J. High local and global diversity of Flavobacteria in marine plankton. Environ. Microbiol. 9, 1253–1266 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Mayali, X. & Azam, F. Algicidal bacteria in the sea and their impact on algal blooms. J. Eukaryot. Microbiol. 51, 139–144 (2004).

    Article  PubMed  Google Scholar 

  116. Bidle, K. D. & Azam, F. Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature 397, 508–512 (1999). Reports the surprising finding that marine assemblages that do not require silicon mediate and regulate the dissolution of diatom frustules, by proteolytically removing the proteoglycan that can protect the frustule from dissolving. This has implications for carbon and silicon cycles in the ocean.

    Article  CAS  Google Scholar 

  117. Bell, W. H., Lang, J. M. & Mitchell, R. Selective stimulation of marine bacteria by algal extracellular products. Limnol. Oceanogr. 19, 833–839 (1974).

    Article  Google Scholar 

  118. Rooney-Varga, J. N. et al. Links between phytoplankton and bacterial community dynamics in a coastal marine environment. Microb. Ecol. 49, 163–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Grossart, H. P., Levold, F., Allgaier, M., Simon, M. & Brinkhoff, T. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. 7, 860–873 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Sapp, M. et al. Species-specific bacterial communities in the phycosphere of microalgae? Microb. Ecol. 53, 683–699 (2007).

    Article  PubMed  Google Scholar 

  121. Wild, C. et al. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428, 66–70 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Trick, C. G., Harrison, P. & Anderson, R. J. Extracellular secondary metabolite production by the marine dinoflagellate Prorocentrum minimum in culture. Can. J. Fish. Aquat. Sci. 38, 864–867 (1981).

    Article  CAS  Google Scholar 

  123. Mitchell, J. G., Pearson, L. & Dillon, S. Clustering of marine bacteria in seawater enrichments. Appl. Environ. Microbiol. 62, 3716–3721 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Smith, D. C., Steward, G. F., Long, R. A. & Azam, F. Bacterial mediation of carbon fluxes during a diatom bloom in a mesocosm. Deep-Sea Res. II 42, 75–97 (1995).

    Article  CAS  Google Scholar 

  125. Alldredge, A. L., Passow, U. & Logan, B. E. The abundance and significance of a class of large, transparent organic particles in the Ocean. Deep-Sea Res. I 40, 1131–1140 (1993). Reports the finding of abundant mucopolysaccharide particles from 2 to 200 μm in length. These particles provide large surface areas for bacterial interactions and activities.

    Article  CAS  Google Scholar 

  126. Malmstrom, R. R., Kiene, R. P. & Kirchman, D. L. Identification and enumeration of bacteria assimilating dimethylsulfoniopropionate (DMSP) in the North Atlantic and Gulf of Mexico. Limnol. Oceanogr. 49, 597–606 (2004).

    Article  CAS  Google Scholar 

  127. Gonzalez, J. M. et al. Silicibacter pomeroyi sp nov and Roseovarius nubinhibens sp nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int. J. Syst. Evol. Microbiol. 53, 1261–1269 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Miller, T. R., Hnilicka, K., Dziedzic, A., Desplats, P. & Belas, R. Chemotaxis of Silicibacter sp. strain TM1040 toward dinoflagellate products. Appl. Environ. Microbiol. 70, 4692–4701 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yoch, D. C., Ansede, J. H. & Rabinowitz, K. S. Evidence for intracellular and extracellular dimethylsulfoniopropionate (DMSP) lyase and DMSP uptake sites in two species of marine bacteria. Appl. Environ. Microbiol. 63, 3182–3188 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Howard, E. C. et al. Bacterial taxa that limit sulfur flux from the ocean. Science 314, 649–652 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Moran, M. A., González, J. M. & Kiene, R. P. Linking a bacterial taxon to organic sulfur cycling in the sea: studies of the marine Roseobacter group. Geomicrobiol. J. 20, 375–388 (2003).

    Article  CAS  Google Scholar 

  132. Lovelock, J. E., Maggs, R. J. & Rasmussen, R. A. Atmospheric dimethyl sulphide and the natural sulphur cycle. Nature 237, 452–453 (1972).

    Article  CAS  Google Scholar 

  133. Azam, F. & Smith, D. C. in Particle Analysis in Oceanography (ed. Demers, S.) 213–235 (Springer-Verlag, Berlin, 1991).

    Book  Google Scholar 

  134. Richardson, T. L. & Jackson, G. A. Small phytoplankton and carbon export from the surface ocean. Science 315, 838–840 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Landry, M. R. & Calbet, A. Microzooplankton production in the oceans. ICES J. Mar. Sci. 61, 501–507 (2004).

    Article  Google Scholar 

  136. Hagstrom, A., Azam, F., Andersson, A., Wikner, J. & Rassoulzadegan, F. Microbial loop in an oligotrophic pelagic marine ecosystem — possible roles of cyanobacteria and nanoflagellates in the organic fluxes. Mar. Ecol. Prog. Ser. 49, 171–178 (1988).

    Article  Google Scholar 

  137. Biddanda, B. A. & Pomeroy, L. R. Microbial aggregation and degradation of phytoplankton-derived detritus in seawater.1. Microbial succession. Mar. Ecol. Prog. Ser. 42, 79–88 (1988).

    Article  Google Scholar 

  138. Mueller, R. S. et al. Vibrio cholerae strains possess multiple strategies for abiotic and biotic surface colonization. J. Bacteriol. 189, 5348–5360 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kroger, N., Lorenz, S., Brunner, E. & Sumper, M. Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298, 584–586 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Hedges, J. I. et al. Evidence for non-selective preservation of organic matter in sinking marine particles. Nature 409, 801–804 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Turley, C. M. & Stutt, E. D. Depth-related cell-specific bacterial leucine incorporation rates on particles and its biogeochemical significance in the Northwest Mediterranean. Limnol. Oceanogr. 45, 419–425 (2000).

    Article  CAS  Google Scholar 

  142. Alldredge, A. L., Cole, J. J. & Caron, D. A. Production of heterotrophic bacteria inhabiting macroscopic organic aggregates (marine snow) from surface waters. Limnol. Oceanogr. 31, 68–78 (1986).

    Article  Google Scholar 

  143. Cho, B. C. & Azam, F. Major role of bacteria in biogeochemical fluxes in the ocean's interior. Nature 332, 441–443 (1988).

    Article  CAS  Google Scholar 

  144. Kiorboe, T. & Jackson, G. A. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria. Limnol. Oceanogr. 46, 1309–1318 (2001). This paper presents a model of marine snow colonized by bacteria that solubilize organic matter, and shows that an extended plume of DOM persists behind the sinking marine snow, which attracts bacteria from surrounding seawater. It predicts that half of the organic matter that is used in the sea by bacteria is from these microenvironments.

    Article  CAS  Google Scholar 

  145. Azam, F. & Long, R. A. Oceanography — sea snow microcosms. Nature 414, 495–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Helmstetter, C. E. & Cummings, D. J. An improved method for the selection of bacterial cells at division. Biochim. Biophys. Acta 82, 608–610 (1964).

    Article  CAS  PubMed  Google Scholar 

  147. Lochte, K. & Turley, C. Bacteria and cyanobacteria associated with phytodetritus in the deep-sea. Nature 333, 67–69 (1988).

    Article  Google Scholar 

  148. Oliver, J. L., Barber, R. T., Smith, W. O. & Ducklow, H. W. The heterotrophic bacterial response during the Southern Ocean iron experiment (SOFeX). Limnol. Oceanogr. 49, 2129–2140 (2004).

    Article  CAS  Google Scholar 

  149. Bauer, M. et al. Whole genome analysis of the marine Bacteroidetes 'Gramella forseti' reveals adaptations to degradation of polymeric organic matter. Environ. Microbiol. 8, 2201–2213 (2006). This paper presents whole-genome analyses of a marine Bacteroidetes spp. and makes a prediction about its adaptive biology that is important for the solubilization and degradation of particulate organic matter in the ocean.

    Article  CAS  PubMed  Google Scholar 

  150. Azam, F., Smith, D. C., Steward, G. F. & Hagström, Å. Bacteria-organic matter coupling and its significance for oceanic carbon cycling. Microb. Ecol. 28, 167–179 (1994).

    Article  CAS  PubMed  Google Scholar 

  151. Allen, T. Scale in microscopic algal ecology: a neglected dimension. Phycologia 16, 253–257 (1977).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Hollibaugh, G. Steward, D. Smith and J. Fuhrman for insightful comments on the manuscript. This work was supported by the Gordon and Betty Moore Foundation and grants to F.A. from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farooq Azam.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Candidatus Pelagibacter ubique

Emiliania huxleyi

Pavlova lutheri

Pseudoalteromonas haloplanktis

Shewanella putrefaciens

TM1040

Glossary

Primary production

The original source of organic material in an ecosystem that is due to carbon dioxide fixation by photosynthetic bacteria, plants or algae, or chemosynthetic microorganisms.

Heterotrophic

The acquisition of carbon and metabolic energy by the consumption of living or dead organic matter.

Autotrophic

An organism that synthesizes organic carbon from the fixation of inorganic carbon, for example, by photo- or chemosynthesis.

Pelagic

Relating to or occurring in the oceanic water column.

Oligotrophic

An aquatic environment that has low levels of nutrients and primary production (for example, high mountain lakes or the open ocean).

Eutrophic

A marine or lake environment with a high nutrient concentration and high levels of primary production.

Phytoplankton

Composed of microscopic plants and photosynthetic cyanobacteria. These are the main primary producers in marine food webs, ranging in size from 1 μm to approximately 100 μm.

Chemotaxis

The sensing by bacteria of chemical gradients, and movement up or down a gradient towards or away from a chemical source.

Dimethyl sulphide

(DMS). A sulphur-containing organic chemical compound that is a breakdown product of dimethylsulphoniopropionate (DMSP). It is also produced by the metabolism of methanethiol by marine bacteria that are associated with phytoplankton.

Marine snow

Composed of organic aggregates more than 0.5 mm in diameter. These macroscopic particles are enriched in organic matter and are inhabited by a rich and diverse community of phytoplankton, protozoans and bacteria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azam, F., Malfatti, F. Microbial structuring of marine ecosystems. Nat Rev Microbiol 5, 782–791 (2007). https://doi.org/10.1038/nrmicro1747

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1747

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing