Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Replication of hepatitis C virus

Key Points

  • Hepatitis C virus (HCV) infection is a major cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma worldwide.

  • HCV is classified in the Hepacivirus genus within the Flaviviridae family. These enveloped positive-strand RNA viruses express their structural and non-structural proteins by the translation of a single long open reading frame.

  • HCV cell entry is a complex multistep process involving numerous cellular factors, including scavenger receptor class B type I, CD81 and claudin-1.

  • HCV structural proteins include the core protein and the envelope glycoproteins E1 and E2. The non-structural proteins include the p7 ion channel, the NS2–3 protease, the NS3 serine protease and RNA helicase, the NS4A polypeptide, the NS4B and NS5A proteins, and the NS5B RNA-dependent RNA polymerase.

  • HCV RNA replication takes place in a membrane-associated replication complex.

  • The recent development of complete cell-culture systems now allows the systematic dissection of the entire viral lifecycle.

Abstract

Exciting progress has recently been made in understanding the replication of hepatitis C virus, a major cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma worldwide. The development of complete cell-culture systems should now enable the systematic dissection of the entire viral lifecycle, providing insights into the hitherto difficult-to-study early and late steps. These efforts have already translated into the identification of novel antiviral targets and the development of new therapeutic strategies, some of which are currently undergoing clinical evaluation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lifecycle of hepatitis C virus (HCV).
Figure 2: Current model for hepatitis C virus (HCV) entry.
Figure 3: Genetic organization and polyprotein processing of hepatitis C virus (HCV).
Figure 4: Structures and membrane association of hepatitis C virus (HCV) proteins.
Figure 5: Hepatitis C virus (HCV) replication complex.

Similar content being viewed by others

References

  1. Williams, R. Global challenges in liver disease. Hepatology 44, 521–526 (2006).

    PubMed  Google Scholar 

  2. Choo, Q.-L. et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359–362 (1989).

    CAS  PubMed  Google Scholar 

  3. Grakoui, A., McCourt, D. W., Wychowski, C., Feinstone, S. M. & Rice, C. M. Characterization of the hepatitis C virus-encoded serine proteinase: determination of proteinase-dependent polyprotein cleavage sites. J. Virol. 67, 2832–2843 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bartenschlager, R., Ahlborn-Laake, L., Yasargil, K., Mous, J. & Jacobsen, H. Kinetic and structural analyses of hepatitis C virus polyprotein processing. J. Virol. 68, 5045–5055 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kolykhalov, A. A. et al. Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science 277, 570–574 (1997).

    CAS  PubMed  Google Scholar 

  6. Lohmann, V. et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113 (1999).

    CAS  PubMed  Google Scholar 

  7. Blight, K. J., Kolykhalov, A. A. & Rice, C. M. Efficient initiation of HCV RNA replication in cell culture. Science 290, 1972–1974 (2000).

    CAS  PubMed  Google Scholar 

  8. Bartosch, B., Dubuisson, J. & Cosset, F. L. Infectious hepatitis C virus pseudo-particles containing functional E1–E2 envelope protein complexes. J. Exp. Med. 197, 633–642 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hsu, M. et al. Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc. Natl Acad. Sci. USA 100, 7271–7276 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lindenbach, B. D. et al. Complete replication of hepatitis C virus in cell culture. Science 309, 623–626 (2005).

    CAS  PubMed  Google Scholar 

  11. Wakita, T. et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nature Med. 11, 791–796 (2005).

    CAS  PubMed  Google Scholar 

  12. Zhong, J. et al. Robust hepatitis C virus infection in vitro. Proc. Natl Acad. Sci. USA 102, 9294–9299 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lindenbach, B. D. et al. Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro. Proc. Natl Acad. Sci. USA 103, 3805–3809 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pietschmann, T. et al. Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc. Natl Acad. Sci. USA 103, 7408–7413 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Penin, F., Dubuisson, J., Rey, F. A., Moradpour, D. & Pawlotsky, J. M. Structural biology of hepatitis C virus. Hepatology 39, 5–19 (2004).

    CAS  PubMed  Google Scholar 

  16. Lindenbach, B. D. & Rice, C. M. Unravelling hepatitis C virus replication from genome to function. Nature 436, 933–938 (2005).

    CAS  PubMed  Google Scholar 

  17. Appel, N., Schaller, T., Penin, F. & Bartenschlager, R. From structure to function: new insights into hepatitis C virus RNA replication. J. Biol. Chem. 281, 9833–9836 (2006).

    CAS  PubMed  Google Scholar 

  18. Moradpour, D. & Rice, C. M. in Hepatology. A textbook of liver disease (eds Boyer, T. D., Wright, T. L. & Manns, M. P.) 125–147 (Elsevier Science, 2006).

    Google Scholar 

  19. Thiel, H. J. et al. in Virus taxonomy. VIIIth Report of the International Committee on Taxonomy of Viruses (eds Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U. & Ball, L. A.) 979–996 (Academic Press, 2005).

    Google Scholar 

  20. Neumann, A. U. et al. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-α therapy. Science 282, 103–107 (1998).

    CAS  PubMed  Google Scholar 

  21. Simmonds, P. et al. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology 42, 962–973 (2005).

    CAS  PubMed  Google Scholar 

  22. Kuiken, C. et al. Hepatitis C databases, principles and utility to researchers. Hepatology 43, 1157–1165 (2006).

    CAS  PubMed  Google Scholar 

  23. Moradpour, D. et al. Insertion of green fluorescent protein into nonstructural protein 5A allows direct visualization of functional hepatitis C virus replication complexes. J. Virol. 78, 7400–7409 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lohmann, V., Körner, F., Dobierzewska, A. & Bartenschlager, R. Mutations in hepatitis C virus RNAs conferring cell culture adaptation. J. Virol. 75, 1437–1449 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Blight, K. J., McKeating, J. A. & Rice, C. M. Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J. Virol. 76, 13001–13014 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lohmann, V., Hoffmann, S., Herian, U., Penin, F. & Bartenschlager, R. Viral and cellular determinants of hepatitis C virus RNA replication in cell culture. J. Virol. 77, 3007–3019 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bukh, J. et al. Mutations that permit efficient replication of hepatitis C virus RNA in Huh-7 cells prevent productive replication in chimpanzees. Proc. Natl Acad. Sci. USA 99, 14416–14421 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kato, T. et al. Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. Gastroenterology 125, 1808–1817 (2003).

    CAS  PubMed  Google Scholar 

  29. Yi, M., Villanueva, R. A., Thomas, D. L., Wakita, T. & Lemon, S. M. Production of infectious genotype 1a hepatitis C virus (Hutchinson strain) in cultured human hepatoma cells. Proc. Natl Acad. Sci. USA 103, 2310–2315 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuhn, R. J. et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717–725 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. André, P., Perlemuter, G., Budkowska, A., Bréchot, C. & Lotteau, V. Hepatitis C virus particles and lipoprotein metabolism. Semin. Liver Dis. 25, 93–104 (2005).

    PubMed  Google Scholar 

  32. Pileri, P. et al. Binding of hepatitis C virus to CD81. Science 282, 938–941 (1998).

    CAS  PubMed  Google Scholar 

  33. Agnello, V., Abel, G., Elfahal, M., Knight, G. B. & Zhang, Q. X. Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc. Natl Acad. Sci. USA 96, 12766–12771 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Scarselli, E. et al. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J. 21, 5017–5025 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Evans, M. J. et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446, 801–805 (2007).

    CAS  PubMed  Google Scholar 

  36. Bartosch, B. & Cosset, F. L. Cell entry of hepatitis C virus. Virology 348, 1–12 (2006).

    CAS  PubMed  Google Scholar 

  37. Cocquerel, L., Voisset, C. & Dubuisson, J. Hepatitis C virus entry: potential receptors and their biological functions. J. Gen. Virol. 87, 1075–1084 (2006).

    CAS  PubMed  Google Scholar 

  38. Coyne, C. B. & Bergelson, J. M. Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 124, 119–131 (2006).

    CAS  PubMed  Google Scholar 

  39. Blanchard, E. et al. Hepatitis C virus entry depends on clathrin-mediated endocytosis. J. Virol. 80, 6964–6972 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Koutsoudakis, G. et al. Characterization of the early steps of hepatitis C virus infection by using luciferase reporter viruses. J. Virol. 80, 5308–5320 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tscherne, D. M. et al. Time- and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry. J. Virol. 80, 1734–1741 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313–319 (2004).

    CAS  PubMed  Google Scholar 

  43. Gibbons, D. L. et al. Conformational change and protein–protein interactions of the fusion protein of Semliki Forest virus. Nature 427, 320–325 (2004).

    CAS  PubMed  Google Scholar 

  44. Friebe, P., Lohmann, V., Krieger, N. & Bartenschlager, R. Sequences in the 5′ nontranslated region of hepatitis C virus required for RNA replication. J. Virol. 75, 12047–12057 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577–1581 (2005).

    CAS  PubMed  Google Scholar 

  46. Kolykhalov, A. A., Feinstone, S. M. & Rice, C. M. Identification of a highly conserved sequence element at the 3′ terminus of hepatitis C virus genome RNA. J. Virol. 70, 3363–3371 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tanaka, T., Kato, N., Cho, M.-J., Sugiyama, K. & Shimotohno, K. Structure of the 3′ terminus of the hepatitis C virus genome. J. Virol. 70, 3307–3312 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Friebe, P. & Bartenschlager, R. Genetic analysis of sequences in the 3′ nontranslated region of hepatitis C virus that are important for RNA replication. J. Virol. 76, 5326–5338 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yi, M. & Lemon, S. M. 3′ nontranslated RNA signals required for replication of hepatitis C virus RNA. J. Virol. 77, 3557–3568 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yanagi, M., St Claire, M., Emerson, S. U., Purcell, R. H. & Bukh, J. In vivo analysis of the 3′ untranslated region of the hepatitis C virus after in vitro mutagenesis of an infectious cDNA clone. Proc. Natl Acad. Sci. USA 96, 2291–2295 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kolykhalov, A. A., Mihalik, K., Feinstone, S. M. & Rice, C. M. Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3′ nontranslated region are essential for virus replication in vivo. J. Virol. 74, 2046–2051 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. You, S., Stump, D. D., Branch, A. D. & Rice, C. M. A cis-acting replication element in the sequence encoding the NS5B RNA-dependent RNA polymerase is required for hepatitis C virus RNA replication. J. Virol. 78, 1352–1366 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Friebe, P., Boudet, J., Simorre, J.-P. & Bartenschlager, R. A kissing loop interaction in the 3′ end of the hepatitis C virus genome essential for RNA replication. J. Virol. 79, 380–392 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Otto, G. A. & Puglisi, J. D. The pathway of HCV IRES-mediated translation initiation. Cell 119, 369–380 (2004).

    CAS  PubMed  Google Scholar 

  55. Kieft, J. S., Zhou, K., Grech, A., Jubin, R. & Doudna, J. A. Crystal structure of an RNA tertiary domain essential to HCV IRES-mediated translation initiation. Nature Struct. Biol. 9, 370–374 (2002).

    CAS  PubMed  Google Scholar 

  56. Lukavsky, P. J., Kim, I., Otto, G. A. & Puglisi, J. D. Structure of HCV IRES domain II determined by NMR. Nature Struct. Biol. 10, 1033–1038 (2003).

    CAS  PubMed  Google Scholar 

  57. Spahn, C. M. et al. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40S ribosomal subunit. Science 291, 1959–1962 (2001).

    CAS  PubMed  Google Scholar 

  58. Siridechadilok, B., Fraser, C. S., Hall, R. J., Doudna, J. A. & Nogales, E. Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science 310, 1513–1515 (2005).

    CAS  PubMed  Google Scholar 

  59. McLauchlan, J., Lemberg, M. K., Hope, G. & Martoglio, B. Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J. 21, 3980–3988 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Boulant, S. et al. Structural determinants that target the hepatitis C virus core protein to lipid droplets. J. Biol. Chem. 281, 22236–22247 (2006).

    CAS  PubMed  Google Scholar 

  61. Asselah, T., Rubbia-Brandt, L., Marcellin, P. & Negro, F. Steatosis in chronic hepatitis C: why does it really matter? Gut 55, 123–130 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Dubuisson, J., Penin, F. & Moradpour, D. Interaction of hepatitis C virus proteins with host cell membranes and lipids. Trends Cell Biol. 12, 517–523 (2002).

    CAS  PubMed  Google Scholar 

  63. Carrère-Kremer, S. et al. Subcellular localization and topology of the p7 polypeptide of hepatitis C virus. J. Virol. 76, 3720–3730 (2002).

    PubMed  PubMed Central  Google Scholar 

  64. Sakai, A. et al. The p7 polypeptide of hepatitis C virus is critical for infectivity and contains functionally important genotype-specific sequences. Proc. Natl Acad. Sci. USA 100, 11646–11651 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Griffin, S. D. et al. The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Lett. 535, 34–38 (2003).

    CAS  PubMed  Google Scholar 

  66. Pavlovic, D. et al. The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc. Natl Acad. Sci. USA 100, 6104–6108 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Grakoui, A., McCourt, D. W., Wychowski, C., Feinstone, S. M. & Rice, C. M. A second hepatitis C virus-encoded proteinase. Proc. Natl Acad. Sci. USA 90, 10583–10587 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hijikata, M. et al. Two distinct proteinase activities required for the processing of a putative nonstructural precursor protein of hepatitis C virus. J. Virol. 67, 4665–4675 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Pallaoro, M. et al. Characterization of the hepatitis C virus NS2/3 processing reaction by using a purified precursor protein. J. Virol. 75, 9939–9946 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Thibeault, D., Maurice, R., Pilote, L., Lamarre, D. & Pause, A. In vitro characterization of a purified NS2/3 protease variant of hepatitis C virus. J. Biol. Chem. 276, 46678–46684 (2001).

    CAS  PubMed  Google Scholar 

  71. Lorenz, I. C., Marcotrigiano, J., Dentzer, T. G. & Rice, C. M. Structure of the catalytic domain of the hepatitis C virus NS2–3 protease. Nature 442, 831–835 (2006).

    CAS  PubMed  Google Scholar 

  72. Kalinina, O., Norder, H., Mukomolov, S. & Magnius, L. O. A natural intergenotypic recombinant of hepatitis C virus identified in St. Petersburg. J. Virol. 76, 4034–4043 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Noppornpanth, S. et al. Identification of a naturally occurring recombinant genotype 2/6 hepatitis C virus. J. Virol. 80, 7569–7577 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yao, N., Reichert, P., Taremi, S. S., Prosise, W. W. & Weber, P. C. Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease-helicase. Structure Fold. Des. 7, 1353–1363 (1999).

    CAS  PubMed  Google Scholar 

  75. Wölk, B. et al. Subcellular localization, stability and trans-cleavage competence of the hepatitis C virus NS3–NS4A complex expressed in tetracycline-regulated cell lines. J. Virol. 74, 2293–2304 (2000).

    PubMed  PubMed Central  Google Scholar 

  76. Lamarre, D. et al. An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature 426, 186–189 (2003).

    CAS  PubMed  Google Scholar 

  77. Li, K. et al. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc. Natl Acad. Sci. USA 102, 2992–2997 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Meylan, E. et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167–1172 (2005).

    CAS  PubMed  Google Scholar 

  79. Seth, R. B., Sun, L., Ea, C. K. & Chen, Z. J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3. Cell 122, 669–682 (2005).

    CAS  PubMed  Google Scholar 

  80. Kawai, T. et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nature Immunol. 6, 981–988 (2005).

    CAS  Google Scholar 

  81. Xu, L. G. et al. VISA is an adapter protein required for virus-triggered IFN-β signaling. Mol. Cell 19, 727–740 (2005).

    CAS  PubMed  Google Scholar 

  82. Johnson, C. L. & Gale, M., Jr. CARD games between virus and host get a new player. Trends Immunol. 27, 1–4 (2006).

    CAS  PubMed  Google Scholar 

  83. Serebrov, V. & Pyle, A. M. Periodic cycles of RNA unwinding and pausing by hepatitis C virus NS3 helicase. Nature 430, 476–480 (2004).

    CAS  PubMed  Google Scholar 

  84. Levin, M. K., Gurjar, M. & Patel, S. S. A Brownian motor mechanism of translocation and strand separation by hepatitis C virus helicase. Nature Struct. Mol. Biol. 12, 429–435 (2005).

    CAS  Google Scholar 

  85. Dumont, S. et al. RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature 439, 105–108 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kwong, A. D., Rao, B. G. & Jeang, K. T. Viral and cellular RNA helicases as antiviral targets. Nature Rev. Drug Discov. 4, 845–853 (2005).

    CAS  Google Scholar 

  87. Frick, D. N., Rypma, R. S., Lam, A. M. & Gu, B. The nonstructural protein 3 protease/helicase requires an intact protease domain to unwind duplex RNA efficiently. J. Biol. Chem. 279, 1269–1280 (2004).

    CAS  PubMed  Google Scholar 

  88. Egger, D. et al. Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J. Virol. 76, 5974–5984 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yu, G. Y., Lee, K. J., Gao, L. & Lai, M. M. Palmitoylation and polymerization of hepatitis C virus NS4B protein. J. Virol. 80, 6013–6023 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Quintavalle, M., Sambucini, S., Di Pietro, C., De Francesco, R. & Neddermann, P. The α-isoform of protein kinase CKI is responsible for hepatitis C virus NS5A hyperphosphorylation. J. Virol. 80, 11305–11312 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Reed, K. E., Gorbalenya, A. E. & Rice, C. M. The NS5A/NS5 proteins of viruses from three genera of the family flaviviridae are phosphorylated by associated serine/threonine kinases. J. Virol. 72, 6199–6206 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Evans, M. J., Rice, C. M. & Goff, S. P. Phosphorylation of hepatitis C virus nonstructural protein 5A modulates its protein interactions and viral RNA replication. Proc. Natl Acad. Sci. USA 101, 13038–13043 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Neddermann, P. et al. Reduction of hepatitis C virus NS5A hyperphosphorylation by selective inhibition of cellular kinases activates viral RNA replication in cell culture. J. Virol. 78, 13306–13314 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Appel, N., Pietschmann, T. & Bartenschlager, R. Mutational analysis of hepatitis C virus nonstructural protein 5A: potential role of differential phosphorylation in RNA replication and identification of a genetically flexible domain. J. Virol. 79, 3187–3194 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Gao, L., Aizaki, H., He, J. W. & Lai, M. M. Interactions between viral nonstructural proteins and host protein hVAP-33 mediate the formation of hepatitis C virus RNA replication complex on lipid raft. J. Virol. 78, 3480–3488 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Penin, F. et al. Structure and function of the membrane anchor domain of hepatitis C virus nonstructural protein 5A. J. Biol. Chem. 279, 40835–40843 (2004).

    CAS  PubMed  Google Scholar 

  97. Tellinghuisen, T. L., Marcotrigiano, J., Gorbalenya, A. E. & Rice, C. M. The NS5A protein of hepatitis C virus is a zinc metalloprotein. J. Biol. Chem. 279, 48576–48587 (2004).

    CAS  PubMed  Google Scholar 

  98. Tellinghuisen, T. L., Marcotrigiano, J. & Rice, C. M. Structure of the zinc-binding domain of an essential replicase component of hepatitis C virus reveals a novel fold. Nature 435, 375–379 (2005).

    Google Scholar 

  99. Huang, L. et al. Hepatitis C virus nonstructural protein 5A (NS5A) is an RNA-binding protein. J. Biol. Chem. 280, 36417–36428 (2005).

    CAS  PubMed  Google Scholar 

  100. Miyanari, Y. et al. Hepatitis C virus non-structural proteins in the probable membranous compartment function in viral RNA replication. J. Biol. Chem. 278, 50301–50308 (2003).

    CAS  PubMed  Google Scholar 

  101. Quinkert, D., Bartenschlager, R. & Lohmann, V. Quantitative analysis of the hepatitis C virus replication complex. J. Virol. 79, 13594–13605 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ago, H. et al. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Struct. Fold. Des. 7, 1417–1426 (1999).

    CAS  Google Scholar 

  103. Lesburg, C. A. et al. Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nature Struct. Biol. 6, 937–943 (1999).

    CAS  PubMed  Google Scholar 

  104. Bressanelli, S., Tomei, L., Rey, F. A. & De Francesco, R. Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. J. Virol. 76, 3482–3492 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Butcher, S. J., Grimes, J. M., Makeyev, E. V., Bamford, D. H. & Stuart, D. I. A mechanism for initiating RNA-dependent RNA polymerization. Nature 410, 235–240 (2001).

    CAS  PubMed  Google Scholar 

  106. Lyle, J. M., Bullitt, E., Bienz, K. & Kirkegaard, K. Visualization and functional analysis of RNA-dependent RNA polymerase lattices. Science 296, 2218–2222 (2002).

    CAS  PubMed  Google Scholar 

  107. Wang, Q. M. et al. Oligomerization and cooperative RNA synthesis activity of hepatitis C virus RNA-dependent RNA polymerase. J. Virol. 76, 3865–3872 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Moradpour, D. et al. Membrane association of the RNA-dependent RNA polymerase is essential for hepatitis C virus RNA replication. J. Virol. 78, 13278–13284 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Branch, A. D., Stump, D. D., Gutierrez, J. A., Eng, F. & Walewski, J. L. The hepatitis C virus alternate reading frame (ARF) and its family of novel products: the alternate reading frame protein/F-protein, the double-frameshift protein, and others. Semin. Liver Dis. 25, 105–117 (2005).

    CAS  PubMed  Google Scholar 

  110. McMullan, L. K. et al. Evidence for a functional RNA element in the hepatitis C virus core gene. Proc. Natl Acad. Sci. USA 104, 2879–2884 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Salonen, A., Ahola, T. & Kääriäinen, L. Viral RNA replication in association with cellular membranes. Curr. Top. Microbiol. Immunol. 285, 139–173 (2004).

    Google Scholar 

  112. Mackenzie, J. Wrapping things up about virus RNA replication. Traffic 6, 967–977 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Schwartz, M. et al. A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Mol. Cell 9, 505–514 (2002).

    CAS  PubMed  Google Scholar 

  114. Gosert, R. et al. Identification of the hepatitis C virus RNA replication complex in Huh-7 cells harboring subgenomic replicons. J. Virol. 77, 5487–5492 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Ye, J. et al. Disruption of hepatitis C virus RNA replication through inhibition of host protein geranylgeranylation. Proc. Natl Acad. Sci. USA 100, 15865–15870 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kapadia, S. B. & Chisari, F. V. Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc. Natl Acad. Sci. USA 102, 2561–2566 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang, C. et al. Identification of FBL2 as a geranylgeranylated cellular protein required for hepatitis C virus RNA replication. Mol. Cell 18, 425–434 (2005).

    CAS  PubMed  Google Scholar 

  118. Sakamoto, H. et al. Host sphingolipid biosynthesis as a target for hepatitis C virus therapy. Nature Chem. Biol. 1, 333–337 (2005).

    CAS  Google Scholar 

  119. Watashi, K. et al. Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase. Mol. Cell 19, 111–122 (2005).

    CAS  PubMed  Google Scholar 

  120. Paeshuyse, J. et al. The non-immunosuppressive cyclosporin DEBIO-025 is a potent inhibitor of hepatitis C virus replication in vitro. Hepatology 43, 761–770 (2006).

    CAS  PubMed  Google Scholar 

  121. Okamoto, T. et al. Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90. EMBO J. 25, 5015–5025 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. De Francesco, R. & Migliaccio, G. Challenges and successes in developing new therapies for hepatitis C. Nature 436, 953–960 (2005).

    CAS  PubMed  Google Scholar 

  123. Trozzi, C. et al. In vitro selection and characterization of hepatitis C virus serine protease variants resistant to an active-site peptide inhibitor. J. Virol. 77, 3669–3679 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Yi, M. et al. Mutations conferring resistance to SCH6, a novel hepatitis C virus NS3/4A protease inhibitor. Reduced RNA replication fitness and partial rescue by second-site mutations. J. Biol. Chem. 281, 8205–8215 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the authors' laboratories is supported by the Swiss National Science Foundation, the Swiss Cancer League/Oncosuisse, the Leenaards Foundation, the European Commission, the French Centre National de la Recherche Scientifique, the Agence Nationale de Recherche sur le SIDA et les Hépatites Virales, the US Public Health Service, the Greenberg Medical Research Institute, the Starr Foundation and the Ellison Medical Foundation. We dedicate this Review to the memory of Glovanni Migliaccio, a wonderful scientist and friend, who made many contributions to the HCV field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darius Moradpour.

Ethics declarations

Competing interests

C.M.R. declares an equity interest in Apath, LLC, which holds commercial rights to the Huh-7.5 cells and other HCV-related technology.

Related links

Related links

DATABASES

Entrez Genome

Dengue

GBV-A

GBV-B

GBV-C

HCV

Tick-borne encephalitis

Yellow fever

Protein Data Bank

1CU1

1GX6

1R7E

1ZH1

2HD0

FURTHER INFORMATION

François Penin's homepage

Charles M. Rice's homepage

Charles M. Rice's homepage

Darius Moradpour's homepage

Darius Moradpour's homepage

D.P. Tieleman

POV-Ray

The European HCV Database

The Japanese Hepatitis Virus Database

The Los Alamos National Laboratory HCV Database

Visual Molecular Dynamics

Glossary

Viral half-life

The time taken for half of the viruses to be cleared.

Permissive cell

A cell that can be infected by, or supports the replication of, a virus.

Fulminant hepatitis C

Fulminant hepatic failure refers to the rapid development of severe acute liver injury, with impaired synthetic function and encephalopathy, in a person who previously had a normal liver or had well-compensated liver disease.

Pseudoknot

A pseudoknot is an RNA secondary structure containing two stem-loop structures in which the first stem's loop forms part of the second stem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moradpour, D., Penin, F. & Rice, C. Replication of hepatitis C virus. Nat Rev Microbiol 5, 453–463 (2007). https://doi.org/10.1038/nrmicro1645

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1645

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing