Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The disease triangle: pathogens, the environment and society

Abstract

The primary means to define any disease is by naming a pathogen or agent that negatively affects the health of the host organism. Another assumed, but often overlooked, determinant of disease is the environment, which includes deleterious physical and social effects on mankind. The disease triangle is a conceptual model that shows the interactions between the environment, the host and an infectious (or abiotic) agent. This model can be used to predict epidemiological outcomes in plant health and public health, both in local and global communities. Here, the Irish potato famine of the mid-nineteenth century is used as an example to show how the disease triangle, originally devised to interpret plant disease outcomes, can be applied to public health. In parallel, malaria is used to discuss the role of the environment in disease transmission and control. In both examples, the disease triangle is used as a tool to discuss parameters that influence socioeconomic outcomes as a result of host–pathogen interactions involving plants and humans.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The triangle of factors that limit an epidemic.

References

  1. Large, E. C. The Advance of the Fungi (APS Press, St. Paul, USA, 2003).

    Google Scholar 

  2. Reiter, P. From Shakespeare to Defoe: malaria in England in the Little Ice Age. Emerg. Infect. Dis. 6, (2000).

  3. Dubos, R. Mirage of Health: Utopias, Progress, and Biological Change (Harper & Row, New York, 1959).

    Google Scholar 

  4. Kelman, A. & Peterson, P. D. Contributions of plant scientists to the development of the germ theory of disease. Microbes Infect. 4, 257–260 (2002).

    Article  Google Scholar 

  5. Patz, J. A., Campbell-Lendrum, D., Holloway, T. & Foley, J. A. Impact of regional climate change on human health. Nature 438, 310–317 (2005).

    Article  CAS  Google Scholar 

  6. Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    Article  CAS  Google Scholar 

  7. Sanchez, P. A. & Swaminathan, M. S. Hunger in Africa: the link between unhealthy people and unhealthy soil. Lancet 365, 442–444 (2005).

    Article  Google Scholar 

  8. Wilson, M. E., Levins, R. & Spielman, A. (eds) Disease in Evolution: Global Changes and Emergence of Infectious Diseases (New York Academy of Sciences, 1994).

    Google Scholar 

  9. Castro, A. & Farmer, P. Understanding and addressing AIDS-related stigma: from anthropological theory to clinical practice in Haiti. Am. J. Public Health 95, 53–59 (2005).

    Article  Google Scholar 

  10. Farmer, P. Infections and Inequalities (University of California Press, Berkeley, 1999).

    Google Scholar 

  11. Farmer, P. Pathologies of power: rethinking health and human rights. Am. J. Public Health 89, 1486–1496 (1999).

    Article  CAS  Google Scholar 

  12. Sachs, J. D. & Hotez, P. J. Fighting tropical diseases. Science 311, 1521 (2006).

    Article  CAS  Google Scholar 

  13. McNew, G. L. The nature, origin, and evolution of parasitism. In Plant Pathology: An Advanced Treatise (eds Horsfall, J. G. & Dimond, A. E.) 19–69 (Academic Press, New York, 1960).

    Google Scholar 

  14. Agrios, G. N. Plant Pathology (Academic Press, New York, 2005).

    Google Scholar 

  15. Schumann, G. L. Plant Diseases: Their Biology and Social Impact (APS Press, St. Paul, 1993).

    Google Scholar 

  16. de Wit, R. & Bouvier, T. 'Everything is everywhere, but, the environment selects'; what did Baas Becking and Beijerinck really say? Environ. Microbiol. 8, 755–758 (2006).

    Article  Google Scholar 

  17. Andrade-Piedra, J. L., Hijmans, R., Forbes, G. A., Fry, W. E. & Nelson, R. J. Simulation of potato late blight in the Andes. I: Modification and parameterization of the LATEBLIGHT model. Phytopathology 95, 1191–1199 (2005).

    Article  Google Scholar 

  18. Andrade-Piedra, J. L., Hijmans, R., Forbes, G. A., Fry, W. E. & Nelson, R. J. Simulation of potato late blight in the Andes. II: Validation of the LATEBLIGHT model. Phytopathology 95, 1200–1208 (2005).

    Article  Google Scholar 

  19. Campbell, C. L. & Madden, L. V. Introduction to Plant Disease Epidemiology (John Wiley & Sons, New York, 1990).

    Google Scholar 

  20. Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N. & Travers, S. E. Climate change effects on plant disease: genomes to ecosystems. Annu. Rev. Phytopath. 44, 489–509 (2006).

    Article  CAS  Google Scholar 

  21. Madden, L. V. Botanical epidemiology: some key advances and its continuing role in disease management. Eur. J. Plant Pathol. 115, 3–23 (2006).

    Article  Google Scholar 

  22. Scherm, H., Ngugi, H. K. & Ojiambo, P. S. Trends in theoretical plant epidemiology. Eur. J. Plant Pathol. 115, 61–73 (2006).

    Article  Google Scholar 

  23. Peterson, P. D., Campbell, C. L. & Griffith, C. S. James E. Teschemacher and the cause and management of potato blight in the United States. Plant Dis. 76, 754–756 (1992).

    Google Scholar 

  24. O'Grada, C. Black '47 and Beyond: The Great Irish Famine in History, Economy, and Memory (Princeton University Press, Princeton, 1999).

    Google Scholar 

  25. Mullins, E., Milbourne, D., Petti, C., Doyle-Prestwich, B. M. & Meade, C. Potato in the age of biotechnology. Trends Plant Sci. 11, 254–260 (2006).

    Article  CAS  Google Scholar 

  26. Salaman, R. N. The History and Social Influence of the Potato (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  27. Spooner, D. M., McLean, K., Ramsay, G., Waugh, R. & Bryan, G. J. A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc. Natl Acad. Sci. USA 11, 14694–14699 (2005).

    Article  Google Scholar 

  28. Fernández-Pavía, S. P., Grünwald, N. J., Díaz-Valasis, M., Cadena-Hinojosa, M. & Fry, W. E. Soilborne oospores of Phytophthora infestans in central Mexico survive winter fallow and infect potato plants in the field. Plant Dis. 88, 29–33 (2004).

    Article  Google Scholar 

  29. Grünwald, N. J. et al. Potato cultivars from the Mexican National Program: sources and durability of resistance against late blight. Phytopathology 92, 688–693 (2002).

    Article  Google Scholar 

  30. Grünwald, N. J. & Flier, W. G. The biology of Phytophthora infestans at its center of origin. Annu. Rev. Phytopath. 43, 171–190 (2005).

    Article  Google Scholar 

  31. Niederhauser, J. S. The blight, the blighter, and the blighted. Trans. N. Y. Acad. Sci. 19, 55–63 (1956).

    Article  Google Scholar 

  32. Niederhauser, J. S. & Mills, W. R. Resistance of Solanum species to Phytophthora infestans in Mexico. Phytopathology 43, 456–457 (1953).

    Google Scholar 

  33. Avila-Adame, C. et al. Mitochondrial genome sequences and molecular evolution of the Irish potato famine pathogen, Phytophthora infestans. Curr. Genet. 49, 39–46 (2006).

    Article  CAS  Google Scholar 

  34. Andrivon, D. The origin of Phytophthora infestans populations present in Europe in the 1840s: a critical review of historical and scientific evidence. Plant Pathol. 45, 1027–1035 (1996).

    Article  Google Scholar 

  35. Ristaino, J. B. Tracking historic migrations of the Irish potato famine pathogen, Phytophthora infestans. Microbes Infect. 4, 1369–1377 (2002).

    Article  Google Scholar 

  36. Ristaino, J. B., Groves, C. T. & Parra, G. R. PCR amplification of the Irish potato famine pathogen from historic specimens. Nature 411, 695–697 (2001).

    Article  CAS  Google Scholar 

  37. Fry, W. E. & Goodwin, S. B. Re-emergence of potato and tomato late blight in the United States. Plant Dis. 81, 1349–1357 (1997).

    Article  Google Scholar 

  38. Fry, W. E. & Goodwin, S. B. Resurgence of the Irish potato famine fungus. BioScience 47, 363–371 (1997).

    Article  Google Scholar 

  39. Goodwin, S. B., Cohen, B. A. & Fry, W. E. Panglobal distribution of a single clonal lineage of the Irish potato famine fungus. Proc. Natl Acad. Sci. USA 91, 11591–11595 (1994).

    Article  CAS  Google Scholar 

  40. Judelson, H. S. & Blanco, F. A. The spores of Phytophthora: weapons of the plant destroyer. Nature Rev. Micriobiol. 3, 47–58 (2005).

    Article  CAS  Google Scholar 

  41. Kamoun, S. Molecular genetics of pathogenic Oomycetes. Eukaryotic Cell 2, 191–199 (2003).

    Article  CAS  Google Scholar 

  42. Kamoun, S. & Smart, C. D. Late blight of potato and tomato in the genomics era. Plant Dis. 89, 692–699 (2005).

    Article  CAS  Google Scholar 

  43. Garelik, G. Taking the bite out of potato blight. Science 298, 1702–1704 (2002).

    Article  CAS  Google Scholar 

  44. Whetzel, H. H. The relation of plant pathology to human affairs. In Mayo Foundation Lectures, 1926–1927. 151–178 (W. B. Saunders Co., Philadelphia, 1928).

    Google Scholar 

  45. Bourke, P. M. A. Emergence of potato blight, 1843–1846. Nature 203, 805–808 (1964).

    Article  Google Scholar 

  46. Salter, T. B. Home Correspondence. Potato Blight. The Gardeners' Chronicle 33, 561 (1845).

    Google Scholar 

  47. Lindley, J. The Gardeners' Chronicle 34, 575 (1845).

    Google Scholar 

  48. Anonymous. Ireland. New Englander 6, 457–473 (1848).

  49. Center for International Earth Science Information Network. Where the Poor Are: an Atlas of Poverty (Columbia University, Palisades USA, 2006).

  50. Farmer, P. E., Nizeye, B., Stulac, S. & Keshavjee, S. Structural violence and clinical medicine. PLoS Med. 3, e449 (2006).

    Article  Google Scholar 

  51. Solar, P. M. The great famine was no ordinary subsistence crisis. In Famine: The Irish Experience, 900–1900 (ed. Crawford, E. M.) 112–133 (John Donald Publishers, Inc., Edinburgh, 1989).

    Google Scholar 

  52. Schumann, G. L. & D'Arcy, C. J. Late blight of potato and tomato. The Plant Health Instructor [online], (2000).

    Google Scholar 

  53. Large, E. C. Measuring plant disease. Annu. Rev. Phytopath. 4, 9–26 (1966).

    Article  Google Scholar 

  54. Crawford, E. M. Dearth, diet, and disease in Ireland, 1850: a case study of nutritional deficiency. Med. Hist. 28, 151–161 (1984).

    Article  CAS  Google Scholar 

  55. Goodwin, S. B. et al. Genetic change within populations of Phytophthora infestans in the United States and Canada during 1994 to 1996: Role of migration and recombination. Phytopathology 88, 939–949 (1998).

    Article  CAS  Google Scholar 

  56. Greenwood, B. M., Bojang, K., Whitty, C. J. M. & Targett, G. A. T. Malaria. Lancet 365, 1487–1498 (2005).

    Article  CAS  Google Scholar 

  57. Thomson, M. C. et al. Malaria early warnings based on seasonal climate forecasts from multimodel ensembles. Nature 577, 576–579 (2006).

    Article  Google Scholar 

  58. Thomson, M. C., Mason, S. J., Phindela, T. & Connor, S. J. Use of rainfall and sea surface temperature monitoring for malaria early warning in Botswana. Am. J. Trop. Med. Hyg. 73, 214–221 (2005).

    Article  Google Scholar 

  59. Cane, M. A., Eshel, G. & Buckland, R. W. Forecasting Zimbabwean maize yield using eastern equatorial Pacific sea surface temperature. Nature 370, 204–205 (1994).

    Article  Google Scholar 

  60. Yasuoka, J., Levins, R., Mangione, T. W. & Spielman, A. Community-based rice ecosystem management for suppressing vector anophelines in Sri Lanka. Trans. R. Soc. Trop. Med. Hyg. 100, 995–1006 (2006).

    Article  Google Scholar 

  61. Yasuoka, J., Mangione, T. W., Spielman, A. & Levins, R. Impact of education on knowledge, agricultural practices, and community actions for mosquito control and mosquito-borne disease prevention in rice ecosystems in Sri Lanka. Am. J. Trop. Med. Hyg. 76, 1034–1042 (2006).

    Article  Google Scholar 

  62. van der Hoek, W. How can better farming methods reduce malaria? Acta Tropica 89, 95–97 (2004).

    Article  Google Scholar 

  63. Deming, A. H. The Edges of the Civilized World (Picador, New York, 1998).

    Google Scholar 

  64. Myers, N. & Kent, J. (eds) The New Atlas of Plant Management (University of California Press, Berkeley, 2005).

    Google Scholar 

Download references

Acknowledgements

I greatly appreciate the helpful comments and encouragement that were generously provided by A. Brandt, C. Rosenberg, H. Scholthof and undergraduate students in my course 'Pathogens, the Environment and Society'. The Aaron Morris & Anne E. Goldberg Memorial Fund helped to support travel and research associated with this project.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scholthof, KB. The disease triangle: pathogens, the environment and society. Nat Rev Microbiol 5, 152–156 (2007). https://doi.org/10.1038/nrmicro1596

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1596

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing