Key Points
-
Carbon monoxide (CO) supports the growth and metabolism of a phylogenetically diverse group of aerobic proteobacteria. The terms carboxydotroph and carboxydovore refer to bacteria that grow or are unable to grow in environments with elevated CO concentrations (>1%), respectively.
-
Aerobic CO oxidizers use a molybdenum hydroxylase, CO dehydrogenase (CODH), to oxidize CO. CODH differs distinctly from an enzyme used by anaerobes to oxidize CO.
-
Form I (also known as OMP) CODH actively oxidizes CO and has been extensively characterized. A putative CODH, referred to as form II (also known as BMS), shares many characteristics with form I CODH, but seems to oxidize CO slowly, and might do so incidentally.
-
Genes for the form I CODH large subunit (coxL) can be readily distinguished from form II putative coxL genes by the presence of an AYXCSFR active-site motif in form I, and an AYXGAGR motif in form II. Although genomic databases for bacteria and metagenomic databases for environmental samples have helped to identify many new CO oxidizers, many genes identified as aerobic CODH genes have also been misannotated.
-
Aerobic CO oxidizers occur commonly in soils and aquatic habitats; many of these bacteria probably function as mixotrophs, using both CO and various organic substrates simultaneously. Results from organic-poor environments, such as recent volcanic deposits, indicate that CO oxidizers are important pioneering colonists and that atmospheric CO provides a significant source of energy.
-
Aerobic CO oxidizers include important human and animal pathogens, for example, Mycobacterium bovis and Mycobacterium tuberculosis, as well as important plant symbionts, for example, Bradyrhizobium japonicum and numerous other rhizobia. Both pathogens and plant symbionts might use host-derived CO as an energy source for enhanced survival.
Abstract
Numerous studies indicate that carbon monoxide (CO) participates in a broader range of processes than any other single molecule, ranging from subcellular to planetary scales. Despite its toxicity to many organisms, a diverse group of bacteria that span multiple phylogenetic lineages metabolize CO. These bacteria are globally distributed and include pathogens, plant symbionts and biogeochemically important lineages in soils and the oceans. New molecular and isolation techniques, as well as genome sequencing, have greatly expanded our knowledge of the diversity of CO oxidizers. Here, we present a newly emerging picture of the distribution, diversity and ecology of aerobic CO-oxidizing bacteria.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Cody, G. D. et al. Primordial carbonylated iron–sulfur compounds and the synthesis of pyruvate. Science 289, 1337–1340 (2000).
Aylward, N. & Bofinger, N. The reactions of methanimine and cyanogen with carbon monoxide in prebiotic molecular evolution on earth. Orig. Life Evol. Biosph. 31, 481–500 (2001).
Miyakawa, S., Yamanashi, H., Kobayashi, K., Cleaves, H. J. & Miller, S. L. Prebiotic synthesis from CO atmospheres: implications for the origins of life. Proc. Natl Acad. Sci. USA 99, 14628–14631 (2002). References 1–3 provide insights into the possible roles of CO in primordial organic syntheses.
Lellouch, E. et al. Carbon monoxide in Jupiter after the impact of comet Shoemaker-Levy 9. Planet. Space Sci. 45, 1203–1212 (1997).
Spyromilio, J., Leibundgut, B. & Gilmozzi, R. Carbon monoxide in type II Supernovae. Astron. Astrophys. 376, 188–193 (2001).
Khalil, M. A. K. & Rasmussen, R. A. Carbon monoxide in the Earth's atmosphere: indications of a global increase. Nature 332, 242–245 (1988).
Zhang, R., Wang, M. & Ren, L. Long-term trends of carbon monoxide inferred using a two-dimensional model. Chemosphere 3, 123–132 (2001).
Meyer, O. & Schlegel, H. G. Biology of aerobic carbon monoxide-oxidizing bacteria. Ann. Rev. Microbiol. 37, 277–310 (1983).
Cypionka, H., van Verseveld, H. W. & Stouthamer, A. H. Proton translocation coupled to carbon monoxide-insensitive and sensitive electron transport in Pseudomonas carboxydovorans. FEMS Microbiol. Lett. 22, 209–213 (1984).
Yoshida, T., Noguchi, M. & Kikuchi, G. The step of carbon monoxide liberation in the sequence of heme degradation catalyzed by the reconstituted microsomal heme oxygenase system. J. Biol. Chem. 257, 9345–9348 (1982).
Sato, K. et al. Carbon monoxide generated by heme-oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. J. Immunol. 166, 185–194 (2001).
Verma, A., Hirsch, D. J., Glatt, C. E., Ronnett, G. V. & Snyder, S. H. Carbon monoxide: a putative neural messanger. Science 259, 381–384 (1993).
Zakhary, R. et al. Targeted gene deletion of heme oxygenase 2 reveals neural role for carbon monoxide. Proc. Natl Acad. Sci. USA 94, 14848–14853 (1997).
Mancuso, C., Tringali, G., Grossman, A., Preziosi, P. & Navarra, P. The generation of nitric oxide and carbon monoxide produces opposite effects on the release of immunoreactive interleukin-1 b from the rat hypothalamus in vitro: evidence for the involvement of different signaling pathways. Endocrinol. 139, 1031–1037 (1998).
Xue, L. et al. Carbon monoxide and nitric oxide as co-neurotransmitters in the enteric nervous system: evidence from genomic deletion of biosynthetic enzymes. Proc. Natl Acad. Sci. USA 97, 1851–1855 (2000). References 10–15 document the importance of CO production by haem oxygenase-1 and CO-based signalling in animals, and summarize a potential application for reducing rejection of transplanted organs.
Svetlichny, V. et al. Carboxydothermus hydrogenoformans gen. nov., sp. nov., a CO-utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir Island. Syst. Appl. Microbiol. 14, 254–260 (1991).
Klenk, H.-P. et al. The complete genome sequence of the hyperthermophilic sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364–370 (1997).
Sokolova, T. G. et al. The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Extremophiles 8, 317–323 (2004). This reference describes an anaerobic CO oxidizer that might be representative of an early mode of metabolism at hydrothermal vents.
Wu, M. et al. Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PLOS Genetics 1, 563–574 (2005).
Lilley, M. D., de Angelis, M. A. & Gordon, L. I. CH4, H2, CO and N2O in submarine hydrothermal vent waters. Nature 300, 48–49 (1982).
Crutzen, P. J. & Gidel, L. T. A two-dimensional photochemical model of the atmosphere: the tropospheric budgets of the anthropogenic chlorocarbons, CO, CH4, CH3Cl and the effect of various NOx sources on tropospheric ozone. J. Geophys. Res. 88, 6641–6661 (1983).
Hendrickson, O. Q. & Kubiseski, T. Soil microbial activity at high levels of carbon monoxide. J. Environ. Qual. 20, 675–678 (1991).
Bender, M. & Conrad, R. Microbial oxidation of methane, ammonium and carbon monoxide, and turnover of nitrous oxide and nitric oxide in soils. Biogeochem. 27, 97–112 (1994).
Conrad, R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, OCS, N2O and NO). Microbiol. Rev. 60, 609–640 (1996). This reference provides a thorough review of CO and other gases produced and consumed in soils.
Kuhlbusch, T. A. J., Zepp, R. G., Miller, W. L. & Burke, R. A. Jr. Carbon monoxide fluxes of different soil layers in upland Canadian boreal forests. Tellus 50, 353–365 (1998).
Moxley, J. M. & Smith, K. A. Factors affecting utilization of CO by soils. Soil Biol. Biochem. 30, 65–79 (1997).
Sanhueza, E., Dong, Y., Scharffe, D., Lobert, J. M. & Crutzen, P. J. Carbon monoxide. Tellus 50, 51–58 (1998).
King, G. M. Attributes of atmospheric carbon monoxide oxidation by Maine forest soils. Appl. Environ. Microbiol. 65, 5257–5264 (1999).
Whalen, S. C. & Reeburgh, W. S. Carbon monoxide consumption in upland boreal forest soils. Soil Biol. Biochem. 33, 1329–1338 (2001).
Khalil, M. A. K. Atmospheric carbon monoxide. Chemosphere 1, 9–11 (1999). This paper presents a consensus budget for atmospheric CO sources and sinks.
Hino, S. & Tauchi, H. Production of carbon monoxide from aromatic amino acids by Morganella morganii. Arch. Microbiol. 148, 167–171 (1987).
Conrad, R., Schütz, H. & Seiler, W. Emission of carbon monoxide from submerged rice fields into the atmosphere. Atmos. Environ. 22, 821–823 (1988).
Wray, J. W. & Abeles, R. H. A bacterial enzyme that catalyzes formation of carbon monoxide. J. Biol. Chem. 268, 21466–21469 (1993).
Tarr, M. A., Miller, W. L. & Zepp, R. G. Direct carbon monoxide production from plant matter. J. Geophys. Res. 100, 11403–11413 (1995).
Schade, G. W. & Crutzen, P. J. CO emissions from degrading plant matter. (II). Estimate of a global source strength. Tellus 51, 909–918 (1999).
King, G. M. Aspects of carbon monoxide production and oxidation by marine macroalgae. Mar. Ecol. Prog. Ser. 224, 69–75 (2001).
King, G. M. & Crosby, H. Impacts of plant roots on soil CO cycling and soil-atmosphere exchange. Global Change Biol. 8, 1–9 (2002). This study documents the production of CO by plant roots and associated oxidation by rhizosphere bacteria.
Kieber, D. J., McDaniel, J. & Mopper, K. Photochemical source of biological substrates in sea water: implications for carbon cycling. Nature 341, 637–639 (1989).
Valentine, R. L. & Zepp, R. G. Formation of carbon monoxide from the photodegradation of terrestrial dissolved organic carbon in natural waters. Environ. Sci. Technol. 27, 409–412 (1993). This study describes the mechanisms and significance of photochemical CO production in aquatic systems.
Bates, T. S., Kelly, K. C., Johnson, J. E. & Gammon, R. H. Regional and seasonal variations in the flux of oceanic carbon monoxide to the atmosphere. J. Geophys. Res. 100, 23093–23101 (1995).
Miller, W. L. & Zepp, R. G. Photochemical production of dissolved inorganic carbon from terrestrial organic matter: significance to the oceanic organic carbon cycle. Geophys. Res. Lett. 22, 417–420 (1995).
Zuo, Y. & Jones, R. D. Formation of carbon monoxide by photolysis of dissolved marine organic material and its significance in the carbon cycling of the oceans. Naturwissenschaften 82, 472–474 (1995).
Haan, D., Zuo, Y., Gros, V. & Brenninkmeijer, C. A. M. Photochemical production of carbon monoxide in snow. J. Atmos. Chem. 40, 217–230 (2001).
Zafiriou, O. C., Andrews, S. S. & Wang, W. Concordant estimates of oceanic carbon monoxide source and sink processes in the Pacific yield a balanced global 'blue-water' CO budget. Global Biogeochem. Cyc. 17, 1–13 (2003). This study provides the best current estimates of CO dynamics in the marine water column.
Conrad, R. & Seiler, W. Role of microorganisms in the consumption and production of atmospheric carbon monoxide by soil. Appl. Environ. Microbiol. 40, 437–445 (1980).
Conrad, R. & Seiler, W. Characteristics of abiological carbon monoxide formation from soil organic matter, humic acids, and phenolic compounds. Environ. Sci. Technol. 19, 1165–1169 (1985).
Moxley, J. M. & Smith, K. A. Carbon monoxide production and emission by some Scottish soil. Tellus 50, 151–162 (1998).
King, G. M. Microbial CO consumption in salt marsh sediments. FEMS Microbiol. Ecol. (in the press).
Lu, Y. & Khalil, M. A. K. Methane and carbon monoxide in OH chemistry: the effects of feedbacks and reservoirs generated by the reactive products. Chemosphere 26, 641–655 (1993). This paper describes interactions between CO, methane and hydroxyl radicals and their impacts on atmospheric chemistry.
Bergamaschi, P., Hein, R., Heimann, M. & Crutzen, P. J. Inverse modeling of the global CO cycle. J. Geophys. Res. 105, 1909–1927 (2000).
Daniel, J. S. & Solomon, S. On the climate forcing of carbon monoxide. J. Geophys. Res. 103, 13249–13260 (1998). This study identifies the indirect climate forcing or greenhouse effects of atmospheric CO.
King, G. M. Characteristics and significance of atmospheric carbon monoxide consumption by soils. Chemosphere 1, 53–63 (1999).
Conrad, R., Meyer, O. & Seiler, W. Role of carboxydobacteria in consumption of atmospheric carbon monoxide by soil. Appl. Environ. Microbiol. 42, 211–215 (1981).
Hardy, K. R. & King, G. M. Enrichment of high-affinity CO oxidizers in Maine forest soil. Appl. Environ. Microbiol. 67, 3671–3676 (2001). This study describes the first isolation of a CO oxidizer with uptake kinetics consistent with those of soil.
del Moral, R. & Clampitt, C. A. Growth of native plant species on recent volcanic substrates from Mount St. Helens. Am. Midl. Nat. 114, 374–383 (1985).
Lorite, M. J., Tachil, J., Sanjuan, J., Meyer, O. & Bedmar, E. J. Carbon monoxide dehydrogenase activity in Bradyrhizobium japonicum. Appl. Environ. Microbiol. 68, 1871–1876 (2000). This paper documents CO use by B. japonicum USDA 110, which possesses a form II putative CODH, but not a form I CODH.
King, G. M. Molecular and culture based analyses of aerobic carbon monoxide oxidizer diversity. Appl. Environ. Microbiol. 69, 7257–7265 (2003). This study provides the first description of carboxydovores and PCR-based approaches for analysis of coxL genes.
Davidova, M. N., Tarasova, N. B., Mukhitova, F. K. & Karpilova, I. U. Carbon monoxide in metabolism of anaerobic bacteria. Can. J. Microbiol. 40, 417–425 (1993).
Roberts, G. P., Thorsteinsson, M. V., Kerby, R. L., Lanzilotta, W. N. & Poulos, T. CooA: a heme-containing regulatory protein that serves as a specific sensor of both carbon monoxide and redox state. Prog. Nucleic Acid Res. 67, 35–63 (2001).
Voordouw, G. Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 184, 5903–5911 (2002).
Ragsdale, S. W. Life with carbon monoxide. Crit. Rev. Biochem. Mol. Biol. 39, 165–195 (2004). This paper thoroughly reviews anaerobic CO metabolism.
Roberts, G. P. CO-sensing mechanisms. Microbiol. Mol. Biol. Rev. 68, 453–473 (2004).
Krueger, B. & Meyer, O. Thermophilic bacilli growing with carbon monoxide. Arch. Microbiol. 139, 402–408 (1984).
Lyons, C. M., Colby, J. P. & Williams, E. Isolation and characterization and autotrophic metabolism of a moderately thermophilic caboxydobacterium, Pseudomonas thermocarboxydovorans sp. nov. J. Gen. Microbiol. 130, 1097–1105 (1984).
Meyer, O. & Krueger, B. Biochemistry and physiology of aerobic carbon monoxide-utilizing bacteria. FEMS Microbiol. Lett. 39, 161–179 (1986).
Auling, G. et al. Phylogenetic heterogeneity and chemotaxonomic properties of certain gram-negative aerobic carboxydobacteria. System. Appl. Microbiol. 10, 264–272 (1988).
Gadkari, D., Schricker, K., Acker, G., Kroppensetdt, R. M. & Meyer, O. Streptomyces thermoautotrophicus sp. nov., a thermophilic CO- and H2-oxidizing obligate chemolithotroph. Appl. Environ. Microbiol. 56, 3727–3734 (1990). This paper describes the only known obligate CO oxidizer, a thermophilic streptomycete isolated from a smouldering coal pile.
Weber, C. F. & King, G. M. Physiological, ecological and phylogenetic characterization of Stappia, a marine CO-oxidizing bacterial genus. Appl. Environ. Microbiol. (in the press).
Park, S. W. et al. Growth of mycobacteria on carbon monoxide and methanol. J. Bacteriol. 185, 142–147 (2003).
Moran, M. A. et al. Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432, 910–913 (2004).
Tolli, J. D., Sievert, S. M. & Taylor, C. D. Unexpected diversity of bacteria capable of carbon monoxide oxidation in a coastal marine environment, and contribution of the Roseobacter-associated clade to total CO oxidation. Appl. Environ. Microbiol. 72, 1966–1973 (2006).
Kiessling, M. & Meyer, O. Profitable oxidation of carbon monoxide or hydrogen during heterotrophic growth of Pseudomonas carboxydoflava. FEMS Microbiol. Lett. 13, 333–338 (1982).
Kim, Y. J. & Kim, Y. M. Induction of carbon monoxide dehydrogenase during heterotrophic growth of Acinetobacter sp. strain JC1 DSM 3803 in the presence of carbon monoxide. FEMS Microbiol. Lett. 59, 207–210 (1989).
Oremland, R. S. et al. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl. Environ. Microbiol. 68, 4795–4802 (2002).
Hoeft, S. E. et al. Alkalilimnicola ehrlechei sp. nov., a novel, arsenite-oxidizing haloalkaliphilic- proteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int. J. Syst. Evol. Microbiol. (in the press).
Meyer, O. & Rajagopalan, K. V. Molybdopterin in carbon monoxide oxidase from carboxydotrophic bacteria. J. Bacteriol. 157, 643–648 (1984).
Kraut, M. & Meyer, O. Plasmids in carboxydotrophic bacteria: physical and restriction analysis. Arch. Microbiol. 149, 540–546 (1988).
Mörsdorf, G., Frunzke, K., Gadkari, D. & Meyer, O. Microbial growth on carbon monoxide. Biodegradation 3, 61–82 (1992). This paper provides a review of aerobic CO oxidation, including aspects of physiology and biochemistry.
Schübel, U., Kraut, M., Mörsdorf, G. & Meyer, O. Molecular characterization of the gene cluster coxMSL encoding the molybdenum-containing carbon monoxide dehydrogenase of Oligotropha carboxidovorans. J. Bacteriol. 177, 2197–2203 (1995).
Hänzelmann, P. & Meyer, O. Effect of molybdate and tungstate on the biosynthesis of CO dehydrogenase and the molybdopterin cytosine-dinucleotide-type of molybdenum cofactor in Hydrogenaphaga pseudoflava. Eur. J. Biochem. 255, 755–765 (1998).
Hänzelmann, P., Hofmann, B., Meisen, S. & Meyer, O. The redox centers in the molybdo iron–sulfur flavoprotein CO dehydrogenase form the thermophilic carboxidotrophic bacterium Pseudomonas thermocarboxydovorans. FEMS Microbiol. Lett. 176, 139–145 (1999).
Dobbek, H., Gremer, L., Meyer, O. & Huber, R. Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selenylcysteine. Proc. Natl Acad. Sci. USA 96, 8884–8889 (1999).
Santiago, B., Schuebel, U., Egelseer, C. & Meyer, O. Sequence analysis, characterization and CO-specific transcription of the cox gene cluster on the megaplasmid pHCG3 of Oligotropha carboxidovorans. Gene 236, 115–124 (1999). This important paper summarizes the cox operon structure of O.carboxidovorans and other CO oxidizers, including the identification of structural and accessory genes and their roles.
Fuhrmann, S. et al. Complete nucleotide sequence of the circular megaplasmid pHCG3 of Oligotropha carboxidovorans: function in the chemolithoautotrophic utilization of CO, H2 and CO2 . Gene 322, 67–75 (2003).
Gnida, M., Ferner, R. Gremer, L., Meyer O. & Meyer-Klauke, W. A novel binuclear [CuSMo] cluster at the active site of carbon monoxide dehydrogenase: characterization by X-ray absorption spectroscopy. Biochem. 42, 222–230 (2003). This study identifies the nature of the CODH active site and, with reference 81, provides a comprehensive analysis of the structure of aerobic CODH.
Bell, J. M., Colby, J. & Williams, E. CO oxidoreductase from Streptomyces strain G26 is a molybdenum hydroxylase. Biochem. J. 250, 605–612 (1988).
Hille, R. Molybdenum-containing hydroxylases. Arch. Biochem. Biophys. 433, 107–116 (2005).
Pearson, D. M., O'Reilly, C., Colby, J. & Black, G. W. DNA sequence of the cut A, B and C genes, encoding the molybdenum containing hydroxylase carbon monoxide dehydrogenase from Pseudomonas thermocarboxydovorans strain C2. Biochim. Biophys. Acta 1188, 432–438 (1994).
Kang, B. S. & Kim, Y. M. Cloning and molecular characterization of the genes for carbon monoxide dehydrogenase and localization of molybdopterin, flavin adenine dinucleotide, and iron–sulfur centers in the enzyme of Hydrogenophaga pseudoflava. J. Bacteriol. 181, 5581–5590 (1999).
Kaneko, T. et al. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res. 9, 189–197 (2002).
Aono, S., Nakajima, H., Saito, K. & Okada, M. A novel heme protein that acts as a carbon monoxide-dependent transcriptional activator in Rhodospirillum rubrum. Biochem. Biophys. Res. Comm. 228, 752–756 (1996).
Heo, J., Halbleib, C. M. & Ludden, P. W. Redox-dependent activation of CO dehydrogenase from Rhodospirillum rubrum. Proc. Natl Acad. Sci. USA 98, 7690–7693 (2001).
Coyle, C. M. et al. Activation mechanism of the CO sensor CooA. J. Biol. Chem. 278, 35384–35393 (2003).
King, G. M. Uptake of carbon monoxide and hydrogen at environmentally relevant concentrations by mycobacteria. Appl. Environ. Microbiol. 69, 7266–7272 (2003).
Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 1–7 (2004).
Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).
Scharffe, D., Hao, W. M., Donoso, L., Crutzen, P. J. & Sanhueza, E. Soil fluxes and atmospheric concentrations of CO and CH4 in the northern part of the Guyana Shield, Venezuela. J. Geophys. Res. 95, 22475–22480 (1990).
Schmidt, U. & Conrad, R. Hydrogen, carbon monoxide and methane dynamics in Lake Constance. Limnol. Oceanogr. 38, 1214–1226 (1993).
Rich, J. J. & King, G. M. Carbon monoxide oxidation by bacteria associated with the roots of freshwater macrophytes. Appl. Environ. Microbiol. 64, 4939–4943 (1998).
King, G. M. & Hungria, M. Soil-atmosphere CO exchanges and microbial biogeochemistry of CO transformations in a Brazilian agriculture ecosystem. Appl. Environ. Microbiol. 68, 4480–4485 (2002).
Tolli, J. D. & Taylor, C. D. Biological CO oxidation in the Sargasso Sea and in Vineyard Sound, Massachusetts. Limnol. Oceanogr. 50, 1205–1212 (2005).
Holloway, T., Levy II, H. & Kasibhatla, P. Global distribution of carbon monoxide. J. Geophys. Res. 105, 12123–12147 (2000).
Dunfield, K. E. & King, G. M. Molecular analysis of carbon monoxide-oxidizing bacteria associated with recent Hawaiian volcanic deposits. Appl. Environ. Microbiol. 70, 4242–4248 (2004). This study describes the first culture-independent or molecular analyses of CO oxidizers in terrestrial systems.
Denton, M. D., Reeve, W. G., Howieson, J. G. & Coventry, D. R. Competitive abilities of common field isolates and a commercial strain of Rhizobium leguminosarum bv. trifolii for clover nodule occupancy. Soil Biol. Biochem. 35, 1039–1048 (2003).
Dong, Y., Iniguez, A. L., Ahmer, B. M. M. & Triplett, E. W. Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago truncatula. Appl. Environ. Microbiol. 69, 1783–1790 (2003).
Gage, D. J. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Molec. Biol. Rev. 68, 280–300 (2004).
Miethling, R., Wieland, H., Backhaus, H. & Tebbe, C. C. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microb. Ecol. 40, 43–56 (2000).
Moulin, L., Munive, A., Dreyfus, B. & Bolvin-Masson, C. Nodulation of legumes by members of the γ-subclass of Proteobacteria. Nature 411, 948–950 (2001).
Phillips, D. A. & Streit, W. in Plant Microbe Interactions (eds Stacey, G. & Keen, N. T.) 236–271 (Chapman Hall, 1995).
Schweiger, F. & Tebbe, C. C. Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album) — linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Appl. Environ. Microbiol. 66, 3556–3565 (2000).
Thorne, S. H. & Williams, H. D. Adaptation to nutrient starvation in Rhizobium leguminosarum bv. phaseoli: analysis of survival, stress resistance and changes in macromolecular synthesis during entry to and exit from stationary phase. J. Bacteriol. 179, 6894–6901 (1997).
Zahran, H. H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Molec. Biol. Rev. 63, 968–989 (1999).
Dowling, D. N. & Broughton, W. J. Competition for nodulation of legumes. Ann. Rev. Microbiol. 40, 131–151 (1986).
Bromfield, E. S. P. & Barran, L. R. Is frequency of occurrence of indigenous Rhizobium melilot i in nodules of field grown plants related to intrinsic competitiveness. Soil Biol. Biochem. 21, 608–609 (1989).
Laguerre, G., Louvrier, P., Allard, M.-R. & Amarger, N. Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum biovar viciae for nodulation of host legumes. Appl. Environ. Microbiol. 69, 2276–2283 (2003).
George, S. J., Ashby, G. A., Wharton, C. W. & Thorneley, R. N. F. Time-resolved binding of carbon monoxide to nitrogenase monitored by stopped-flow infared spectroscopy. J. Am. Chem. Soc. 119, 6450–6451 (1997).
Wittenberg, J. B., Appleby, C. A. & Wittenberg, B. A. The kinetics of the reaction of Parasponia andersonii leghemoglobin with oxygen and carbon monoxide. J. Biol. Chem. 247, 527–531 (1971).
Martin, K. D. et al. Kinetics and thermodynamics of oxygen, CO and azide binding by the subcomponents of soybean leghemoglobin. J. Biol. Chem. 265, 19588–19593 (1990).
Albrecht, S. L. et al. Hydrogenase in Rhizobium japonicum increases nitrogen fixation by nodulated soybeans. Science 203, 1255–1257 (1979).
Conrad, R. & Seiler, W. Field measurements of hydrogen evolution by nitrogen-fixing legumes. Soil Biol. Biochem. 11, 689–690 (1979).
La Favre, J. S. & Focht, D. D. Conservation in soil of H2 liberated from N2 fixation by Hup- nodules. Appl. Environ. Microbiol. 46, 304–311 (1983).
Popelier, F., Liessens, J. & Verstraete, W. Soil H2- uptake in relation to soil properities and rhizobial H2 production. Plant Soil 85, 85–96 (1985).
Cunningham, S. D., Kapulink, Y. & Phillips, D. A. Distribution of hydrogen-metabolizing bacteria in alfalfa field soil. Appl. Environ. Microbiol. 52, 1091–1095 (1986).
Evans, H. J., Russell, S. A., Hanus, F. J. & Ruiz-Argüeso, T. in World Crops: Cool Season Food Legumes (ed. Summerfield, R. J.) 777–792 (Kluwer Academic Publishers, Boston USA, 1988).
Murillo, J., Villa, A., Chamber, M. & Ruiz-Argüeso, T. Occurrence of H2-uptake hydrogenases in Bradyrhizobium sp. (Lupinus) and their expression in nodules of Lupinus spp. and Ornithopus compressus. Plant Physiol. 89, 78–85 (1989).
Rasche, M. E. & Arp, D. J. Hydrogen inhibition of nitrogen reduction by nitrogenase in isolated soybean nodule bacteroids. Plant Physiol. 91, 663–668 (1989).
Navarro, R. B., Vargas, A. A. T., Schroder, E. C. & van Berkum, P. Uptake hydrogenase (Hup) in common bean (Phaseolus vulgaris) symbioses. Appl. Environ. Microbiol. 59, 4161–4165 (1993). References 119–127 show parallels between hydrogen and CO dynamics and significance in rhizobia–legume symbioses.
Jones, R. D. & Morita, R. Y. Effects of various parameters on carbon monoxide oxidation by ammonium oxidizers. Can. J. Microbiol. 30, 894–899 (1983).
Jones, R. D., Morita, R. Y. & Griffiths, R. P. Method for estimating in situ chemolithotrophic ammonium oxidation using carbon monoxide oxidation. Mar. Ecol. Prog. Ser. 17, 259–269 (1984).
King, G. M. Uptake of carbon monoxide and hydrogen at environmentally relevant concentrations by mycobacteria. Appl. Environ. Microbiol. 69, 7266–7272 (2003). This study indicates that atmospheric CO and hydrogen can contribute to the dynamics of microbial succession on carbon poor volcanic materials.
Rodwell, T. C., Whyte, I. J. & Boyce, W. M. Evaluation of population effects of bovine tuberculosis in free-ranging African buffalo (Syncerus caffer). J. Mammal. 82, 231–238 (2001).
Ayele, W. Y., Neill, S. D., Zinsstag, J., Weiss, M. G. & Pavlik, I. Bovine tuberculosis: an old disease but new threat to Africa. Int. J. Tuberc. Lung. Dis. 8, 924–937 (2004).
Brewer, T. F. & Heymann, S. J. To control and beyond: moving towards eliminating the global tuberculosis threat. J. Epidemiol. Community Health 58, 822–825 (2006).
King, G. M. Land use impacts on atmospheric carbon monoxide consumption by soils. Global Biogeochem. Cyc. 14, 1161–1172 (2000). This study summarizes relationships between land use and soil–atmosphere CO fluxes.
Thompson, J. D., Gibson, T. J., Pleuniak, F., Jeanmougin, F. & Higgins, D. G. The Clustal X-Windows interface: flexible strategies for multiple sequence alignment aided by quality tools. Nucleic Acids Res. 25, 4876–4882 (1997).
Swofford, D. L. PAUP: phylogenetic analysis using parsimony, Ver. 4. (Sinauer Associates, Sunderland USA, 2003).
Acknowledgements
The authors were supported in part by the National Science Foundation. We thank O. Meyer, University of Bayreuth, for helpful discussions about form I and form II CODHs.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Related links
DATABASES
Entrez Genome Project
Acidobacterium bacterium Ellin345
Alkalilimnicola ehrlichei MLHE-1
Bradyrhizobium japonicum USDA 110
Carboxydothermus hydrogenoformans
FURTHER INFORMATION
Glossary
- Cosmochemical reaction
-
A chemical reaction that takes place external to the surfaces of stars and planets.
- Troposphere
-
The lower region of Earth's atmosphere, extending to an altitude of about 15 km.
- Organic substrate
-
A molecule that consists of carbon in a reduced state, which is used as a source of energy and cell mass by heterotrophs.
- Mixotrophic metabolism
-
The simultaneous use of reduced inorganic and organic substrates for cellular activity.
- Gas chromatographic analysis
-
A procedure for determining the components of mixtures of volatile substances based on separation in a column and detection by one or more methods.
- Moderate thermophile
-
An organism with growth optima between 45–80 °C.
- Phyllosphere
-
The external surfaces of above-ground plant tissues that support epiphytic microbial growth.
- Moderate alkaliphile
-
An organism with growth optima in alkaline media with a pH between 8–10.
- Extreme halophile
-
An organism with growth optima in salt solutions with a concentration >1 M.
- Psychrophile
-
An organism with growth optima <10 °C.
- Hyperthermophile
-
An organism with growth optima >80–85 °C.
- Rhizosphere
-
The soil zone immediately surrounding a plant root system.
- Aquatic macrophyte
-
A rooted, vascular plant that grows preferentially in permanently or ephemerally flooded sediments or soils.
- Rhizobia
-
A group of α-proteobacteria composed of nitrogen-fixing plant symbionts in the genera Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium.
- Bacteroid
-
The rod-like, nitrogen-fixing symbionts (rhizobia) that occur within legume root nodules.
- STAR-FISH
-
Substrate-tracking autoradiography-fluorescent in situ hybridization. A method for visualizing which members of a specific microbial assemblage use a specific substrate.
Rights and permissions
About this article
Cite this article
King, G., Weber, C. Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nat Rev Microbiol 5, 107–118 (2007). https://doi.org/10.1038/nrmicro1595
Issue Date:
DOI: https://doi.org/10.1038/nrmicro1595
This article is cited by
-
Temperate tree microbiomes: divergent soil and phyllosphere microbial communities share few but dominant taxa
Plant and Soil (2024)
-
Metagenome-assembled genomes reveal greatly expanded taxonomic and functional diversification of the abundant marine Roseobacter RCA cluster
Microbiome (2023)
-
Current status of carbon monoxide dehydrogenases (CODH) and their potential for electrochemical applications
Bioresources and Bioprocessing (2023)
-
Genomic potential for inorganic carbon sequestration and xenobiotic degradation in marine bacterium Youngimonas vesicularis CC-AMW-ET affiliated to family Paracoccaceae
Antonie van Leeuwenhoek (2023)
-
Bacterial communities in surface and basal ice of a glacier terminus in the headwaters of Yangtze River on the Qinghai–Tibet Plateau
Environmental Microbiome (2022)