Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


Microbial landscapes: new paths to biofilm research


It is the best of times for biofilm research. Systems biology approaches are providing new insights into the genetic regulation of microbial functions, and sophisticated modelling techniques are enabling the prediction of microbial community structures. Yet it is also clear that there is a need for ecological theory to contribute to our understanding of biofilms. Here, we suggest a concept for biofilm research that is spatially explicit and solidly rooted in ecological theory, which might serve as a universal approach to the study of the numerous facets of biofilms.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Biofilms as microbial landscapes.


  1. Kolter, R. Surfacing views of biofilm biology. Trends Microbiol. 13, 1–2 (2005).

    Article  CAS  Google Scholar 

  2. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., Lappin-Scott, H. M. Microbial biofilms. Ann. Rev. Microbiol. 49, 711–745 (1995).

    Article  CAS  Google Scholar 

  3. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nature Rev. Microbiol. 2, 95–108 (2004).

    Article  CAS  Google Scholar 

  4. Davey, M. E. & O' Toole, G. A. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64, 847–867 (2000).

    Article  CAS  Google Scholar 

  5. Watnick, P. & Kolter, R. Biofilm, city of microbes. J. Bacteriol. 182, 2675–2676 (2000).

    Article  CAS  Google Scholar 

  6. Webb, J. S., Givskov, M. & Kjelleberg, S. Bacterial biofilms: prokaryotic adventures in multicellularity. Curr. Opin. Microbiol. 6, 578–585 (2003).

    Article  CAS  Google Scholar 

  7. Kreft, J. U. Conflicts of interest in biofilms. Biofilms 4, 265–276 (2004).

    Article  Google Scholar 

  8. Parsek, M. R. & Fuqua, C. Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. J. Bacteriol. 186, 4427–4440 (2004).

    Article  CAS  Google Scholar 

  9. McFeters, G. A., Stuart, S. A. & Olson, S. B. Growth of heterotrophic bacteria and algal extracellular products in oligotrophic waters. Appl. Environ. Microbiol. 35, 383–391 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lock, M. A., Wallace, R. R., Costerton, J. W., Ventullo, R. M. & Charlton, S. E. River epilithon (biofilm): toward a structural functional model. Oikos 42, 10–22 (1984).

    Article  Google Scholar 

  11. Battin, T. J., Kaplan, L. A., Newbold, J. D. & Hansen, C. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426, 439–442 (2003).

    Article  CAS  Google Scholar 

  12. Leibold, M. A., et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).

    Article  Google Scholar 

  13. Konopka, A. Microbial ecology: Searching for principles. Microbe 1, 175–179 (2006).

    Google Scholar 

  14. Turner, M. Landscape ecology: What is the state of the science? Annu. Rev. Ecol. Evol. Syst. 36, 319–344 (2005).

    Article  Google Scholar 

  15. Reiners, W. A. & Driese, K. L. Transport Processes in Nature (Cambridge University Press, Cambridge, 2004).

    Google Scholar 

  16. Lovett, G. M., Jones, C. G., Turner, M. G. & Weathers, K. C. Ecosystem Function in Heterogeneous Landscapes. (Springer, New York, 2005).

    Book  Google Scholar 

  17. Matz, C. et al. Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. Proc. Natl Acad. Sci. USA 102, 16819–16824 (2005).

    Article  CAS  Google Scholar 

  18. Nathan, R. & Katul, G. G. Foliage shedding in deciduous forests lifts up long-distance seed dispersal by wind. Proc. Natl Acad. Sci. USA 102, 8251–8256 (2005).

    Article  CAS  Google Scholar 

  19. Rice, S. K., Collins, D. & Anderson, A. M. Functional significance of variation in bryophyte canopy structure. Am. J. Bot. 88, 1568–1576 (2001).

    Article  CAS  Google Scholar 

  20. Belnap, J., Hawkes, C. V. & Firestone, M. K. Boundaries in miniature: two examples from soil. BioScience 53, 739–749 (2003).

    Article  Google Scholar 

  21. Picioreanu, C., Xavier, J. B. & van Loosdrecht, M. C. M. Advances in mathematical modeling of biofilm structure. Biofilms 1, 337–349 (2004).

    Article  Google Scholar 

  22. Hughes-Martinez, J. B. et al. Microbial biogeography: putting microorganisms on the map. Nature Rev. Microbiol. 4, 102–112 (2006).

    Article  Google Scholar 

  23. Dolan, J. R. Microbial biogeography? J. Biogeogr. 33, 199–200 (2006).

    Article  Google Scholar 

  24. Hubbell, S. P. The unified neutral theory of biodiversity and biogeography. (Princeton University Press, 2001).

    Google Scholar 

  25. Bell, G. Neutral macroecology. Science 293, 2413–2418 (2001).

    Article  CAS  Google Scholar 

  26. Alonso, D., Etienne, R. S. & McKane, A. J. The merits of neutral ecology. Trends Ecol. Evol. 21, 451–457 (2006).

    Article  Google Scholar 

  27. Green, J. L., et al. Spatial scaling of microbial eukaryote diversity. Nature 432, 747–750 (2004).

    Article  CAS  Google Scholar 

  28. Horner-Devine, M. C., Lage, M., Hughes, J. B. & Bohannan, B. J. M. A taxa-area relationship for bacteria. Nature 432, 750–753 (2004).

    Article  CAS  Google Scholar 

  29. Sloan, W. T. et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 8, 732–740 (2006).

    Article  Google Scholar 

  30. Sloan, W. T., Woodcock, S., Lunn, M., Head, I. M. & Curtis, T. P. Modeling taxa-abundance distributions in microbial communities using environmental sequence data. Microb. Ecol. (in the press).

  31. Curtis, T. P. et al. What is the extent of prokaryotic diversity. Phil. Trans. R. Soc. B 361 2023–2037 (2006).

    Article  Google Scholar 

  32. Houchmandzadeh, B. & Vallade, M. Clustering in neutral ecology. Phys. Rev. E 68, 061912 (2003).

    Article  CAS  Google Scholar 

  33. Chave, J. Neutral theory and community ecology. Ecol. Lett. 7, 241–253 (2004).

    Article  Google Scholar 

  34. Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. & Davies, D. G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184, 1140–1154 (2002).

    Article  CAS  Google Scholar 

  35. Sauer, K. et al. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J. Bacteriol. 186, 7312–7326 (2004).

    Article  CAS  Google Scholar 

  36. Webb, J. S. et al. Cell death in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 185, 4585–4592 (2003).

    Article  CAS  Google Scholar 

  37. Webb, J. S., Lau, M. & Kjelleberg, S. Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 186, 8066–8073 (2004).

    Article  CAS  Google Scholar 

  38. Hall-Stoodley, L. & Stoodley, P. Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol. 13, 7–10 (2005).

    Article  CAS  Google Scholar 

  39. Nathan, R. & Muller-Landau, H. C. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol. Evol. 15, 278–285 (2000).

    Article  CAS  Google Scholar 

  40. With, K. A. The landscape ecology of invasive spread. Conserv. Biol. 16, 1192–1203 (2002).

    Article  Google Scholar 

  41. Volkov, I., Banavar, J. R., He, F., Hubbell, S. P. & Maritan, A. Density dependence explains tree species abundance and diversity in tropical forests. Nature 438, 658–661 (2005).

    Article  CAS  Google Scholar 

  42. Shea, K. & Chesson, P. Community ecology theory as a framework for biological invasions. Trends Ecol. Evol. 17, 170–176 (2002).

    Article  Google Scholar 

  43. Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc Natl Acad. Sci. USA 100, 12765–12770 (2003).

    Article  CAS  Google Scholar 

  44. Tolker-Nielsen, T. & Molin, S. Spatial organization of microbial biofilm communities. Microb. Ecol. 40, 75–84 (2000).

    CAS  PubMed  Google Scholar 

  45. Maixner, F. et al. Nitrite concentration influences the population structure of Nitrospira-like bacteria. Environ. Microbiol. 8, 1487–1495 (2006).

    Article  CAS  Google Scholar 

  46. Rickard, A. H., Gilbert, P., High, N. J., Kolenbrander, P. E. & Handley, P. S. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol. 11, 94–100 (2003).

    Article  CAS  Google Scholar 

  47. Fuqua, C. & Greenberg, E. P. Listening in on bacteria: acyl-homoserine lactone signaling. Nature Rev. Mol. Cell Biol. 3, 685–695 (2002).

    Article  CAS  Google Scholar 

  48. Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell. Dev. Biol. 21, 319–346 (2005).

    Article  CAS  Google Scholar 

  49. Keller, L. & Surette, M. G. Communication in bacteria: an ecological and evolutionary perspective. Nature Rev. Microbiol. 4, 249–258 (2006).

    Article  CAS  Google Scholar 

  50. Ben Jacob, E., Becker, I., Shapira, Y. & Levine, H. Bacterial linguistic communication and social intelligence. Trends Microbiol. 12, 366–372 (2004).

    Article  Google Scholar 

  51. Redfield, R. J. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10, 365–370 (2002).

    Article  CAS  Google Scholar 

  52. Egland, P. G., Palmer, R. J. & Kolenbrander, P. E. Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: Signaling in flow conditions requires juxtaposition. Proc. Natl Acad. Sci. USA 101, 16917–16922 (2004).

    Article  CAS  Google Scholar 

  53. Gantner, S. et al. In situ quantification of the spatial scale of calling distances and population density-independent N-acylhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiol. Ecol. 56, 188–194 (2006).

    Article  CAS  Google Scholar 

  54. Neu, T. R, Swerhone, G. D. W. & Lawrence, J. R. Assessment of lectin-binding analysis for in situ detection of glycoconjugates in biofilm systems. Microbiology 147, 299–313 (2001).

    Article  CAS  Google Scholar 

  55. Davey, M. E., Caiazza, N. C. & O'Toole, G. A. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J. Bacteriol. 185, 1027–1036 (2003).

    Article  CAS  Google Scholar 

  56. Espinosa-Urgel, M. Resident parking only: rhamnolipids maintain fluid channels in biofilms. J. Bacteriol. 185, 699–700 (2003)

    Article  CAS  Google Scholar 

  57. Parsek, M. R. & Greenberg, E. P. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13, 27–33 (2005).

    Article  CAS  Google Scholar 

  58. Lenski, R. E. & Riley, M. A. Chemical warfare from an ecological perspective. Proc. Natl Acad. Sci. USA 99, 556–558 (2002).

    Article  CAS  Google Scholar 

  59. Burmolle, M. et al. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl. Environ. Microbiol. 72, 3916–3923 (2006).

    Article  Google Scholar 

  60. MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography. (Princeton University Press, 1967).

    Google Scholar 

Download references


This article reflects the ideas of COMIX, a Collaborative Research Project of the European Science Foundation (EuroDIVERSITY); support came from a FWF Project. G. Pucher produced the microbial landscape figure; J. Webb, F. Maixner, I. Hödl and B. Houchmandzadeh provided material for the other figures.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Tom J. Battin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links


Entrez Genome Project

Pseudomonas aeruginosa


Tom J. Battin's homepage



Commensalism is an interaction between two organisms in which one organism benefits and the other is neither harmed nor helped.

Dispersal ecology

Dispersal ecology studies the processes by which a species maintains or expands the distribution of its populations. Dispersal implies movement away from an existing population (population expansion) or away from the parent organisms (population maintenance).

Dispersal kernel

The spatial distribution of offspring around a parent can be described as a function of the probability of the abundance of offspring and distance from the parental community. This function is represented by the kernel model.

Extracellular polymeric substance

Extracellular polymeric substances are the key components of the slime matrix of biofilms, and are composed of polysaccharides, proteins, nucleic acids, lipids and other macromolecules.

Landscape ecology

Landscape ecology addresses the causes and consequences of spatial heterogeneity; heterogeneity is a measure of how different parts of a landscape are from each another. This discipline also examines how spatial structure affects organisms.

Mass transfer

The transport of dissolved molecules and particles from the bulk liquid into the biofilm. Diffusion is the process by which molecules move from areas of higher concentration to areas of lower concentration. Advection is the process by which moving liquid actively carries molecules and particles.


A metacommunity is a set of local communities that are linked by the dispersal of multiple, potentially interacting, species.


Mutualism is an interaction between two or more species in which both species derive benefit

Neutral ecology

Neutral ecology aims to explain the diversity and relative abundance of species in ecological communities. It assumes that the differences between members of an ecological community of trophically similar species are 'neutral', or irrelevant to their success.

Niche differentiation

Niche differentiation refers to the process by which natural selection drives competing species into different uses of resources resulting in different niches.


The rhizosphere is the narrow region of soil that is directly influenced by roots and associated soil microorganisms. Abundant microorganisms feed on sloughed-off plant cells, and the proteins and sugars released by roots.


A self-similar object is exactly or approximately similar to a part of itself.

Shear stress

Refers to the tangential force per unit area exerted by a fluid as it moves across a surface. Shear stress causes erosion and sloughing of biofilms, and initiates the formation of the filamentous streamers characteristic of many biofilms.

Stochastic theory

Stochastic theory deals with processes that are non-deterministic in that the next state of the environment is partially but not fully determined by the previous state of the environment; or, stochastic processes are largely governed by chance alone. By contrast, a deterministic process is causally determined by an unbroken chain of prior occurrences.

Tensoactive rhamnolipids

Rhamnolipids are tensoactive glycolipids that contain one or two rhamnose molecules.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Battin, T., Sloan, W., Kjelleberg, S. et al. Microbial landscapes: new paths to biofilm research. Nat Rev Microbiol 5, 76–81 (2007).

Download citation

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing