Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The biosynthesis and regulation of bacterial prodiginines

Key Points

  • Prodiginines are a family of tripyrrole, red pigments which are attracting increasing interest because of their immunosuppressive and anticancer activities. Currently prodigiosin and a synthetic derivative are in pre-clinical and phase I/II clinical trails, respectively, as treatments for different types of cancer.

  • Prodiginines are produced by Serratia spp., actinomycetes (for example, Streptomyces coelicolor A3(2)) and various marine bacteria, including Hahella chejuensis KCTC 2396 and Pseudoalteromonas denitrificans. Examples of prodiginines include prodigiosin, undecylprodigiosin and cyclic derivatives such as butyl-meta-cycloheptylprodiginine produced by Streptomyces coelicolor.

  • As with many secondary metabolites, the true physiological role of prodiginines in the producer organisms is still debated. Suggested roles have included antibacterial, antifungal or trypanolytic agents, aiding surface adherence, enhancing bacterial dispersal and functioning as a metabolic sink.

  • Biosynthesis of prodiginines proceeds by a bifurcated pathway culminating in the PigC/RedH catalysed condensation of the terminal products of the two pathways, a monopyrrole (2-methyl-3-n-amyl-pyrrole (Serratia) or 2-undecylpyrrole (Streptomyces) and 4-methoxy-2,2′-bipyrrole-5-carbaldehyde (MBC) to form prodigiosin.

  • A common pathway to the biosynthesis of MBC exists, requiring PigA, PigF, PigG, PigH, PigI, PigJ, PigL, PigM and PigN and their respective S. coelicolor A3(2) homologues. The biosynthesis of the monopyrrroles proceeds by completely different pathways, catalysed by different sets of enzymes.

  • The first steps in the biosynthesis of MBC have been shown biochemically to involve the incorporation of L-proline to form the pyrrole ring through a pyrrolyl-2-carboxyl-S-PCP intermediate catalysed by RedM, RedO and RedW. This mechanism for the incorporation of proline into a pyrrole is common to many pyrrole-containing compounds, including undecylprodigiosin, prodigiosin, pyoluteorin, coumermycin A1, novobiocin and chlorobiocin.

  • The production of prodiginines is exquisitely sensitive to numerous environmental and physiological cues, including temperature and carbon source. For example, inorganic phosphate limitation, by the Pho regulon, activates prodiginine synthesis in both Serratia 39006 and S. coelicolor A3(2).

  • Cell–cell communication by extracellular signalling (quorum sensing) regulates prodiginine biosynthesis by γ-butyrolactones in S. coelicolor A3(2) and N-AHLs, and furanosyl borate diesters or related molecules in Serratia spp. Multiple membrane-associated signalling proteins, including two-component systems, also regulate the production of prodiginines in Serratia 39006 and S. coelicolor A3(2), in response to external signals.

  • The small, highly phosphorylated nucleotide ppGpp interacts with RNA polymerase to control undecylprodigiosin production in S. coelicolor A3(2) in response to nitrogen starvation. In addition, transcription of the undecylprodigiosin biosynthetic cluster requires two linked pathway-specific activators, RedD and RedZ.

  • In S. marcescens the modular nature of the prodigiosin biosynthetic loci and the quorum-sensing genes enabled the horizontal transfer of biosynthetic and regulatory loci. This resulted in certain strains immediately acquiring the ability to produce and/or regulate the biosynthesis of this secondary metabolite.

  • The horizontally mobile nature of prodigiosin production, coupled with the understanding of the substrate flexibility of some of the biosynthetic enzymes, highlights the adaptive plasticity of bacterial secondary metabolism and might enable the evolution and engineering of strains capable of producing a range of prodiginine derivatives with biotechnological uses.

Abstract

The red-pigmented prodiginines are bioactive secondary metabolites produced by both Gram-negative and Gram-positive bacteria. Recently, these tripyrrole molecules have received renewed attention owing to reported immunosuppressive and anticancer properties. The enzymes involved in the biosynthetic pathways for the production of two of these molecules, prodigiosin and undecylprodigiosin, are now known. However, the biochemistry of some of the reactions is still poorly understood. The physiology and regulation of prodiginine production in Serratia and Streptomyces are now well understood, although the biological role of these pigments in the producer organisms remains unclear. However, research into the biology of pigment production will stimulate interest in the bioengineering of strains to synthesize useful prodiginine derivatives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of prodiginine biosynthetic gene clusters.
Figure 2: Examples of cross-feeding.
Figure 3: The bifurcated biosynthetic pathway of the prodiginines.
Figure 4: Summary of the genetic regulation of prodigiosin production in Serratia species.
Figure 5: Summary of the genetic regulation of undecylprodigiosin production in Streptomyces coelicolor A3(2).

Similar content being viewed by others

References

  1. Demain, A. L. in Fifty Years of Antimicrobials: Past Perspectives and Future Trends (eds Hunter, P. A., Darby, G. K. & Russell, N. J.) 205–228 (Society for General Microbiology, Cambridge, 1995).

    Google Scholar 

  2. Williams, R. P. & Quadri, S. M. in The Genus Serratia (eds Von Graevenitz, A. & Rubin, S. J.) 31–75 (Boca Raron: CRC Press Inc, 1980).

    Google Scholar 

  3. Kawauchi, K. et al. A possible immunosuppressant, cycloprodigiosin hydrochloride, obtained from Pseudoalteromonas denitrificans. Biochem. Biophys. Res. Commun. 237, 543–547 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Jeong, H. et al. Genomic blueprint of Hahella chejuensis, a marine microbe producing an algicidal agent. Nucleic Acids Res. 33, 7066–7073 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bennett, J. W. & Bentley, R. Seeing red: the story of prodigiosin. Adv. Appl. Microbiol. 47, 1–32 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Wasserman, H. H., McKeon, J. E. & Smith, L. Prodigiosin. Structure and partial synthesis. J. Am. Chem. Soc. 82, 506–507 (1960).

    Article  CAS  Google Scholar 

  7. Rapoport, H. & Holden, H. G. The synthesis of prodigiosin. J. Am. Chem. Soc. 84, 635–642 (1962).

    Article  Google Scholar 

  8. Williams, R. P. Biosynthesis of prodigiosin, a secondary metabolite of Serratia marcescens. Appl. Microbiol. 25, 396–402 (1973). This paper demonstrated that prodigiosin was a secondary metabolite and was one of many important papers on the biosynthesis of prodigiosin by this author.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gerber, N. N. Prodigiosin-like pigments. CRC Crit. Rev. Microbiol. 3, 469–485 (1975).

    Article  CAS  PubMed  Google Scholar 

  10. Tsao, S. W., Rudd, B. A., He, X. G., Chang, C. J. & Floss, H. G. Identification of a red pigment from Streptomyces coelicolor A3(2) as a mixture of prodigiosin derivatives. J. Antibiot. (Tokyo) 38, 128–131 (1985).

    Article  CAS  Google Scholar 

  11. Williamson, N. R. et al. Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Mol. Microbiol. 56, 971–989 (2005). This paper described a detailed genetic investigation into the biosynthesis of prodigiosin. Based on LC-MS analyses and cross-feeding of the accumulating intermediates, revised pathways for the biosynthesis of prodigiosin and undecylprodigiosin were proposed.

    Article  CAS  PubMed  Google Scholar 

  12. Purkayastha, M. & Williams, R. P. Association of pigment with the cell envelope of Serratia marcescens (Chromobacterium prodigiosum). Nature 187, 349–350 (1960).

    Article  CAS  PubMed  Google Scholar 

  13. Kobayashi, N. & Ichikawa, Y. A protein associated with prodigiosin formation in Serratia marcescens. Microbiol. Immunol. 33, 257–263 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Syzdek, L. D. Influence of Serratia marcescens pigmentation on cell concentrations in aerosols produced by bursting bubbles. Appl. Environ. Microbiol. 49, 173–178 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Burger, S. R. & Bennett, J. W. Droplet enrichment factors of pigmented and nonpigmented Serratia marcescens: possible selective function for prodigiosin. Appl. Environ. Microbiol. 50, 487–490 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Azambuja, P., Feder, D. & Garcia, E. S. Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: impact on the establishment of the parasite Trypanosoma cruzi in the vector. Exp. Parasitol. 107, 89–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Trutko, S. & Akimenko, V. The role of prodigiosin biosynthesis in the regulation of oxidative metabolism of the producer Serratia marcescens. Mikrobiologiia 58, 723–729 (1989).

    CAS  Google Scholar 

  18. Hood, D. W., Heidstra, R., Swoboda, U. K. & Hodgson, D. A. Molecular genetic analysis of proline and tryptophan biosynthesis in Streptomyces coelicolor A3(2): interaction between primary and secondary metabolism — a review. Gene 115, 5–12 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Williams, R. P., Goldschmidt, M. E. & Gott, C. L. Inhibition by temperature of the terminal step in biosynthesis of prodigiosin. Biochem. Biophys. Res. Commun. 19, 177–181 (1965).

    Article  CAS  PubMed  Google Scholar 

  20. Morrison, D. A. Prodigiosin synthesis in mutants of Serratia marcesens. J. Bacteriol. 91, 1599–1604 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Goldschmidt, M. C. & Williams, R. P. Thiamine-induced formation of the monopyrrole moiety of prodigiosin. J. Bacteriol. 96, 609–616 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Feitelson, J. S., Sinha, A. M. & Coco, E. A. Molecular genetics of Red biosynthesis in Streptomyces. J. Nat. Prod. 49, 988–994 (1986).

    Article  CAS  PubMed  Google Scholar 

  23. Feitelson, J. S., Malpartida, F. & Hopwood, D. A. Genetic and biochemical characterization of the red gene cluster of Streptomyces coelicolor A3(2). J. Gen. Microbiol. 131, 2431–2441 (1985).

    CAS  PubMed  Google Scholar 

  24. Feitelson, J. S. & Hopwood, D. A. Cloning of a Streptomyces gene for an O-methyltransferase involved in antibiotic biosynthesis. Mol. Gen. Genet. 190, 394–398 (1983).

    Article  CAS  PubMed  Google Scholar 

  25. Rudd, B. A. & Hopwood, D. A. A pigmented mycelial antibiotic in Streptomyces coelicolor: control by a chromosomal gene cluster. J. Gen. Microbiol. 119, 333–340 (1980).

    CAS  PubMed  Google Scholar 

  26. Malpartida, F., Niemi, J., Navarrete, R. & Hopwood, D. A. Cloning and expression in a heterologous host of the complete set of genes for biosynthesis of the Streptomyces coelicolor antibiotic undecylprodigiosin. Gene 93, 91–99 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Coco, E. A., Narva, K. E. & Feitelson, J. S. New classes of Streptomyces coelicolor A3(2) mutants blocked in undecylprodigiosin (Red) biosynthesis. Mol. Gen. Genet. 227, 28–32 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Thomson, N. R., Crow, M. A., McGowan, S. J., Cox, A. & Salmond, G. P. Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol. Microbiol. 36, 539–556 (2000). This paper reported the cloning and heterologous expression of the Serratia 39006 prodigiosin biosynthetic genes and revealed their regulation by an N -AHL quorum sensing system.

    Article  CAS  PubMed  Google Scholar 

  29. Harris, A. K. et al. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology 150, 3547–3560 (2004). This paper described the sequencing of two Serratia prodigiosin biosynthetic gene clusters.

    Article  CAS  PubMed  Google Scholar 

  30. Cerdeño, A. M., Bibb, M. J. & Challis, G. L. Analysis of the prodiginine biosynthesis gene cluster of Streptomyces coelicolor A3(2): new mechanisms for chain initiation and termination in modular multienzymes. Chem. Biol. 8, 817–829 (2001). This paper described a detailed sequence analysis of the undecylprodigiosin ( red ) biosynthetic gene cluster.

    Article  PubMed  Google Scholar 

  31. Fürstner, A. Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2500 years. Angew. Chem. Int. Ed. Engl. 42, 3582–3603 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. Slater, H., Crow, M., Everson, L. & Salmond, G. P. Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol. Microbiol. 47, 303–320 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Dauenhauer, S. A., Hull, R. A. & Williams, R. P. Cloning and expression in Escherichia coli of Serratia marcescens genes encoding prodigiosin biosynthesis. J. Bacteriol. 158, 1128–1132 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wasserman, H. H. et al. Biosynthesis of prodigiosin. Incorporation patterns of C-labeled alanine, proline, glycine, and serine elucidated by fourier transform nuclear magnetic resonance. J. Am. Chem. Soc. 95, 6874–6875 (1973).

    Article  CAS  PubMed  Google Scholar 

  35. Qadri, S. M. & Williams, R. P. Role of methionine in biosynthesis of prodigiosin by Serratia marcescens. J. Bacteriol. 116, 1191–1198 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Thomas, M. G., Burkart, M. D. & Walsh, C. T. Conversion of L-proline to pyrrolyl-2-carboxyl-S-PCP during undecylprodigiosin and pyoluteorin biosynthesis. Chem. Biol. 9, 171–184 (2002). This paper proved biochemically that the incorporation of L -proline to pyrrolyl-2-carboxyl- S -PCP requires 3 Red proteins (RedO, RedM & RedW). Therefore, this paper described a novel mechanism in pyrrole biosynthesis for the incorporation of L -proline.

    Article  CAS  PubMed  Google Scholar 

  37. Xu, H., Wang, Z. X., Schmidt, J., Heide, L. & Li, S. M. Genetic analysis of the biosynthesis of the pyrrole and carbamoyl moieties of coumermycin A1 and novobiocin. Mol. Genet. Genomics 268, 387–396 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Walsh, C. T., Garneau-Tsodikova, S. & Howard-Jones, A. R. Biological formation of pyrroles: Nature's logic and enzymatic machinery. Nat. Prod. Rep. 23, 517–531 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Sunaga, S., Li, H., Sato, Y., Nakagawa, Y. & Matsuyama, T. Identification and characterization of the pswP gene required for the parallel production of prodigiosin and serrawettin W1 in Serratia marcescens. Microbiol. Immunol. 48, 723–728 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Stanley, A. E., Walton, L. J., Kourdi Zerikly, M., Corre, C. & Challis, G. L. Elucidation of the Streptomyces coelicolor pathway to 4-methoxy-2, 2-bipyrrole-5-carboxaldehyde, an intermediate in prodiginine biosynthesis. Chem. Commun. 3981–3983 (2006). This paper demonstrated the involvement of RedM, RedW, RedX and RedN in the biosynthesis of MBC in S. coelicolor confirming the previously proposed MBC biosynthesis pathway.

  41. Garneau-Tsodikova, S., Dorrestein, P. C., Kelleher, N. L. & Walsh, C. T. Protein assembly line components in prodigiosin biosynthesis: Characterization of PigA, G, H, I, J. J. Am. Chem. Soc. 128, 12600–12601 (2006). In vitro characterization of PigA, PigG, PigH, PigI and PigJ confirming their proposed roles in the biosynthesis of MBC in Serratia.

    Article  CAS  PubMed  Google Scholar 

  42. Mo, S., Kim, B. S. & Reynolds, K. A. Production of branched-chain alkylprodiginines in S. coelicolor by replacement of the 3-ketoacyl ACP synthase III initiation enzyme, RedP. Chem. Biol. 12, 191–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Whitehead, N. A., Barnard, A. M., Slater, H., Simpson, N. J. & Salmond, G. P. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25, 365–404 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Fineran, P. C., Slater, H., Everson, L., Hughes, K. & Salmond, G. P. Biosynthesis of tripyrrole and β-lactam secondary metabolites in Serratia: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Mol. Microbiol. 56, 1495–1517 (2005). This paper described a complex regulatory network, including quorum sensing, involved in the control of prodigiosin biosynthesis in Serratia 39006.

    Article  CAS  PubMed  Google Scholar 

  45. Horng, Y. T. et al. The LuxR family protein SpnR functions as a negative regulator of N-acylhomoserine lactone-dependent quorum sensing in Serratia marcescens. Mol. Microbiol. 45, 1655–1671 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Vendeville, A., Winzer, K., Heurlier, K., Tang, C. M. & Hardie, K. R. Making 'sense' of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nature Rev. Microbiol. 3, 383–396 (2005).

    Article  CAS  Google Scholar 

  47. Coulthurst, S. J., Kurz, C. L. & Salmond, G. P. luxS mutants of Serratia defective in autoinducer-2-dependent 'quorum sensing' show strain-dependent impacts on virulence and production of carbapenem and prodigiosin. Microbiology 150, 1901–1910 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Horinouchi, S. & Beppu, T. A-factor as a microbial hormone that controls cellular differentiation and secondary metabolism in Streptomyces griseus. Mol. Microbiol. 12, 859–864 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Takano, E. et al. Purification and structural determination of SCB1, a γ-butyrolactone that elicits antibiotic production in Streptomyces coelicolor A3(2). J. Biol. Chem. 275, 11010–11016 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Takano, E., Chakraburtty, R., Nihira, T., Yamada, Y. & Bibb, M. J. A complex role for the γ-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Mol. Microbiol. 41, 1015–1028 (2001). This paper reported a γ-butyrolactone signalling system required for the production of undecylprodigiosin in S. coelicolor A3(2).

    Article  CAS  PubMed  Google Scholar 

  51. Onaka, H., Nakagawa, T. & Horinouchi, S. Involvement of two A-factor receptor homologues in Streptomyces coelicolor A3(2) in the regulation of secondary metabolism and morphogenesis. Mol. Microbiol. 28, 743–753 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Chakraburtty, R. & Bibb, M. The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation. J. Bacteriol. 179, 5854–5861 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Martinez-Costa, O. H. et al. A relA/spoT homologous gene from Streptomyces coelicolor A3(2) controls antibiotic biosynthetic genes. J. Biol. Chem. 271, 10627–10634 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Sun, J., Hesketh, A. & Bibb, M. Functional analysis of relA and rshA, two relA/spoT homologues of Streptomyces coelicolor A3(2). J. Bacteriol. 183, 3488–3498 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ochi, K., Zhang, D., Kawamoto, S. & Hesketh, A. Molecular and functional analysis of the ribosomal L11 and S12 protein genes (rplK and rpsL) of Streptomyces coelicolor A3(2). Mol. Gen. Genet. 256, 488–498 (1997).

    CAS  PubMed  Google Scholar 

  56. Ochi, K. A relaxed (rel) mutant of Streptomyces coelicolor A3(2) with a missing ribosomal protein lacks the ability to accumulate ppGpp, A-factor and prodigiosin. J. Gen. Microbiol. 136, 2405–2412 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. Shima, J., Hesketh, A., Okamoto, S., Kawamoto, S. & Ochi, K. Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J. Bacteriol. 178, 7276–7284 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Magnusson, L. U., Farewell, A. & Nystrom, T. ppGpp: a global regulator in Escherichia coli. Trends Microbiol. 13, 236–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Aigle, B., Wietzorrek, A., Takano, E. & Bibb, M. J. A single amino acid substitution in region 1.2 of the principal sigma factor of Streptomyces coelicolor A3(2) results in pleiotropic loss of antibiotic production. Mol. Microbiol. 37, 995–1004 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Hu, H., Zhang, Q. & Ochi, K. Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding the RNA polymerase beta subunit) of Streptomyces lividans. J. Bacteriol. 184, 3984–3991 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bibb, M. J. Regulation of secondary metabolism in streptomycetes. Curr. Opin. Microbiol. 8, 208–215 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Takano, E. et al. Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol. Microbiol. 6, 2797–2804 (1992).

    Article  CAS  PubMed  Google Scholar 

  63. Narva, K. E. & Feitelson, J. S. Nucleotide sequence and transcriptional analysis of the redD locus of Streptomyces coelicolor A3(2). J. Bacteriol. 172, 326–333 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. White, J. & Bibb, M. bldA dependence of undecylprodigiosin production in Streptomyces coelicolor A3(2) involves a pathway-specific regulatory cascade. J. Bacteriol. 179, 627–633 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guthrie, E. P. et al. A response-regulator-like activator of antibiotic synthesis from Streptomyces coelicolor A3(2) with an amino-terminal domain that lacks a phosphorylation pocket. Microbiology 144, 727–738 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Guthrie, E. P. & Chater, K. F. The level of a transcript required for production of a Streptomyces coelicolor antibiotic is conditionally dependent on a tRNA gene. J. Bacteriol. 172, 6189–6193 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ellison, D. W. & Miller, V. L. Regulation of virulence by members of the MarR/SlyA family. Curr. Opin. Microbiol. 9, 153–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Botsford, J. L. & Harman, J. G. Cyclic AMP in prokaryotes. Microbiol. Rev. 56, 100–122 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Fineran, P. C., Everson, L., Slater, H. & Salmond, G. P. A GntR family transcriptional regulator (PigT) controls gluconate-mediated repression and defines a new, independent pathway for regulation of the tripyrrole antibiotic, prodigiosin, in Serratia. Microbiology 151, 3833–3845 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Romling, U., Gomelsky, M. & Galperin, M. Y. C-di-GMP: the dawning of a novel bacterial signalling system. Mol. Microbiol. 57, 629–639 (2005).

    Article  PubMed  CAS  Google Scholar 

  71. Harris, S. J., Shih, Y. L., Bentley, S. D. & Salmond, G. P. The hexA gene of Erwinia carotovora encodes a LysR homologue and regulates motility and the expression of multiple virulence determinants. Mol. Microbiol. 28, 705–717 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Tanikawa, T., Nakagawa, Y. & Matsuyama, T. Transcriptional downregulator HexS controlling prodigiosin and serrawettin W1 biosynthesis in Serratia marcescens. Microbiol. Immunol. 50, 587–596 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Heeb, S. & Haas, D. Regulatory roles of the GacS/GacA two-component system in plant- associated and other Gram-negative bacteria. Mol. Plant Microbe Interact. 14, 1351–1363 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Suzuki, K. et al. Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J. Bacteriol. 184, 5130–5140 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Romeo, T. Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol. Microbiol. 29, 1321–1330 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Ang, S. et al. The role of RsmA in the regulation of swarming motility in Serratia marcescens. J. Biomed. Sci. 8, 160–169 (2001).

    CAS  PubMed  Google Scholar 

  77. Ishizuka, H., Horinouchi, S., Kieser, H. M., Hopwood, D. A. & Beppu, T. A putative two-component regulatory system involved in secondary metabolism in Streptomyces spp. J. Bacteriol. 174, 7585–7594 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li, Y. Q., Chen, P. L., Chen, S. F., Wu, D. & Zheng, J. A pair of two-component regulatory genes ecrA1/A2 in S. coelicolor. J. Zhejiang. Univ. Sci. 5, 173–179 (2004).

    Article  PubMed  Google Scholar 

  79. Huang, J., Lih, C. J., Pan, K. H. & Cohen, S. N. Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays. Genes Dev. 15, 3183–3192 (2001). This paper discusses the global transcriptomic analysis of antibiotic biosynthesis in S. coelicolor . Biosynthetic loci were confirmed by cluster analysis and both previously characterized and novel undecylprodigiosin regulators were identified.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Anderson, T. B., Brian, P. & Champness, W. C. Genetic and transcriptional analysis of absA, an antibiotic gene cluster-linked two-component system that regulates multiple antibiotics in Streptomyces coelicolor. Mol. Microbiol. 39, 553–566 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Sheeler, N. L., MacMillan, S. V. & Nodwell, J. R. Biochemical activities of the absA two-component system of Streptomyces coelicolor. J. Bacteriol. 187, 687–696 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Aceti, D. J. & Champness, W. C. Transcriptional regulation of Streptomyces coelicolor pathway-specific antibiotic regulators by the absA and absB loci. J. Bacteriol. 180, 3100–3106 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Adamidis, T., Riggle, P. & Champness, W. Mutations in a new Streptomyces coelicolor locus which globally block antibiotic biosynthesis but not sporulation. J. Bacteriol. 172, 2962–2969 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Horinouchi, S. AfsR as an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). J. Ind. Microbiol. Biotechnol. 30, 462–467 (2003). This review summarized research on the S. coelicolor AfsR undecylprodigiosin regulator. This system was the first example of serine/threonine kinases in bacteria.

    Article  CAS  PubMed  Google Scholar 

  85. Sawai, R., Suzuki, A., Takano, Y., Lee, P. C. & Horinouchi, S. Phosphorylation of AfsR by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). Gene 334, 53–61 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Sola-Landa, A., Moura, R. S. & Martin, J. F. The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc. Natl Acad. Sci. USA 100, 6133–6138 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Martin, J. F. Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system: an unfinished story. J. Bacteriol. 186, 5197–5201 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chouayekh, H. & Virolle, M. J. The polyphosphate kinase plays a negative role in the control of antibiotic production in Streptomyces lividans. Mol. Microbiol. 43, 919–930 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Sevcikova, B. & Kormanec, J. Differential production of two antibiotics of Streptomyces coelicolor A3(2), actinorhodin and undecylprodigiosin, upon salt stress conditions. Arch. Microbiol. 181, 384–389 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Stoyanov, J. V., Hobman, J. L. & Brown, N. L. CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol. Microbiol. 39, 502–511 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Williamson, N. R., Simonsen, H. T., Harris, A. K., Leeper, F. J. & Salmond, G. P. Disruption of the copper efflux pump (CopA) of Serratia marcescens ATCC 274 pleiotropically affects copper sensitivity and production of the tripyrrole secondary metabolite, prodigiosin. J. Ind. Microbiol. Biotechnol. 33, 151–158 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Coulthurst, S. J., Williamson, N. R., Harris, A. K., Spring, D. R. & Salmond, G. P. Metabolic and regulatory engineering of Serratia marcescens: mimicking phage-mediated horizontal acquisition of antibiotic biosynthesis and quorum-sensing capacities. Microbiology 152, 1899–1911 (2006). The horizontally mobile modular nature of the prodigiosin biosynthetic loci and their quorum sensing regulators was demonstrated in S. marcescens , highlighting the adaptive flexibility of bacterial secondary metabolism.

    Article  CAS  PubMed  Google Scholar 

  93. Wei, J. R. et al. A mobile quorum-sensing system in Serratia marcescens. J. Bacteriol. 188, 1518–1525 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Firn, R. D. & Jones, C. G. The evolution of secondary metabolism — a unifying model. Mol. Microbiol. 37, 989–994 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Demain, A. L. Pharmaceutically active secondary metabolites of microorganisms. Appl. Microbiol. Biotechnol. 52, 455–463 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Pérez-Tomás, R., Montaner, B., Llagostera, E. & Soto-Cerrato, V. The prodigiosins, proapoptotic drugs with anticancer properties. Biochem. Pharmacol. 66, 1447–1452 (2003). This review provided an overview of a large body of research on the pro-apoptotic and anticancer properties of prodigiosins.

    Article  PubMed  CAS  Google Scholar 

  97. Mortellaro, A. et al. New immunosuppressive drug PNU156804 blocks IL-2-dependent proliferation and NF-kappa B and AP-1 activation. J. Immunol. 162, 7102–7109 (1999).

    CAS  PubMed  Google Scholar 

  98. Han, S. B. et al. Prodigiosin blocks T cell activation by inhibiting interleukin-2Ralpha expression and delays progression of autoimmune diabetes and collagen- induced arthritis. J. Pharmacol. Exp. Ther. 299, 415–425 (2001).

    CAS  PubMed  Google Scholar 

  99. D'Alessio, R. et al. Synthesis and immunosuppressive activity of novel prodigiosin derivatives. J. Med. Chem. 43, 2557–2565 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Han, S. B. et al. T-cell specific immunosuppression by prodigiosin isolated from Serratia marcescens. Int. J. Immunopharmacol. 20, 1–13 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Han, S. B. et al. Effective prevention of lethal acute graft-versus-host disease by combined immunosuppressive therapy with prodigiosin and cyclosporine A. Biochem. Pharmacol. 70, 1518–1526 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Stepkowski, S. M. et al. Selective inhibitor of Janus tyrosine kinase 3, PNU156804, prolongs allograft survival and acts synergistically with cyclosporine but additively with rapamycin. Blood 99, 680–689 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Llagostera, E., Soto-Cerrato, V., Montaner, B. & Pérez-Tomás, R. Prodigiosin induces apoptosis by acting on mitochondria in human lung cancer cells. Ann. NY Acad. Sci. 1010, 178–181 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Soto-Cerrato, V., Llagostera, E., Montaner, B., Scheffer, G. L. & Pérez-Tomás, R. Mitochondria-mediated apoptosis operating irrespective of multidrug resistance in breast cancer cells by the anticancer agent prodigiosin. Biochem. Pharmacol. 68, 1345–1352 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Zhang, J., Shen, Y., Liu, J. & Wei, D. Antimetastatic effect of prodigiosin through inhibition of tumor invasion. Biochem. Pharmacol. 69, 407–414 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Manderville, R. A. Synthesis, proton-affinity and anti-cancer properties of the prodigiosin-group natural products. Curr. Med. Chem. Anti-Canc. Agents. 1, 195–218 (2001).

    Article  CAS  Google Scholar 

  107. Montaner, B. et al. DNA interaction and dual topoisomerase I and II inhibition properties of the anti-tumor drug prodigiosin. Toxicol. Sci. 85, 870–879 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Fürstner, A., Reinecke, K., Prinz, H. & Waldmann, H. The core structures of roseophilin and the prodigiosin alkaloids define a new class of protein tyrosine phosphatase inhibitors. Chembiochem. 5, 1575–1579 (2004).

    Article  PubMed  CAS  Google Scholar 

  109. Berg, G. Diversity of antifungal and plant-associated Serratia plymuthica strains. J. Appl. Microbiol. 88, 952–960 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Liu, R., Cui, C. B., Duan, L., Gu, Q. Q. & Zhu, W. M. Potent in vitro anticancer activity of metacycloprodigiosin and undecylprodigiosin from a sponge-derived actinomycete Saccharopolyspora sp. nov. Arch. Pharm. Res. 28, 1341–1344 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Adamidis, T. & Champness, W. Genetic analysis of absB, a Streptomyces coelicolor locus involved in global antibiotic regulation. J. Bacteriol. 174, 4622–4628 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Champness, W., Riggle, P., Adamidis, T. & Vandervere, P. Identification of Streptomyces coelicolor genes involved in regulation of antibiotic synthesis. Gene 115, 55–60 (1992).

    Article  CAS  PubMed  Google Scholar 

  113. Hunt, A. C., Servin-Gonzalez, L., Kelemen, G. H. & Buttner, M. J. The bldC developmental locus of Streptomyces coelicolor encodes a member of a family of small DNA-binding proteins related to the DNA-binding domains of the MerR family. J. Bacteriol. 187, 716–728 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cho, Y. H., Lee, E. J., Ahn, B. E. & Roe, J. H. SigB, an RNA polymerase sigma factor required for osmoprotection and proper differentiation of Streptomyces coelicolor. Mol. Microbiol. 42, 205–214 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Schneider, D., Bruton, C. J. & Chater, K. F. Characterization of spaA, a Streptomyces coelicolor gene homologous to a gene involved in sensing starvation in Escherichia coli. Gene 177, 243–251 (1996).

    Article  CAS  PubMed  Google Scholar 

  116. Yonekawa, T., Ohnishi, Y. & Horinouchi, S. Involvement of amfC in physiological and morphological development in Streptomyces coelicolor A3(2). Microbiology 145, 2273–2280 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Shima, J., Penyige, A. & Ochi, K. Changes in patterns of ADP-ribosylated proteins during differentiation of Streptomyces coelicolor A3(2) and its development mutants. J. Bacteriol. 178, 3785–3790 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fernandez-Moreno, M. A. et al. abaA, a new pleiotropic regulatory locus for antibiotic production in Streptomyces coelicolor. J. Bacteriol. 174, 2958–2967 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Scheu, A. K., Martinez, E., Soliveri, J. & Malpartida, F. abaB, a putative regulator for secondary metabolism in Streptomyces. FEMS Microbiol. Lett. 147, 29–36 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Umeyama, T., Tanabe, Y., Aigle, B. D. & Horinouchi, S. Expression of the Streptomyces coelicolor A3(2) ptpA gene encoding a phosphotyrosine protein phosphatase leads to overproduction of secondary metabolites in S. lividans. FEMS Microbiol. Lett. 144, 177–184 (1996).

    Article  CAS  PubMed  Google Scholar 

  121. Süsstrunk, U., Pidoux, J., Taubert, S., Ullmann, A. & Thompson, C. J. Pleiotropic effects of cAMP on germination, antibiotic biosynthesis and morphological development in Streptomyces coelicolor. Mol. Microbiol. 30, 33–46 (1998).

    Article  PubMed  Google Scholar 

  122. Yu, V. L. Serratia marcescens: historical perspective and clinical review. N. Engl. J. Med. 300, 887–893 (1979).

    Article  CAS  PubMed  Google Scholar 

  123. Cullen, J. C. in ASM News 187–191 (1994).

    Google Scholar 

  124. Hubbard, R. & Rimington, C. The biosynthesis of prodigiosin, the tripyrrylmethene pigment fromBacillus prodigiosus (Serratia marcescens). Biochem. J. 46, 220–225 (1950).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dairi, K., Tripathy, S., Attardo, G. & Lavallee, J. F. Two-step synthesis of the bipyrrole precursor of prodigiosins. Tetrahedron Lett. 47, 2605–2606 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratories is generously funded by the Biotechnology and Biological Sciences Research Council, UK. P.F.'s Ph.D. research on prodigiosin was supported by a Bright Futures Top Achiever Doctoral Scholarship from the tertiary education commission of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George P. C. Salmond.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Escherichia coli

Hahella chejuensisKCTC 2396

Serratia marcescens

Streptomyces coelicolorA3(2)

FURTHER INFORMATION

George P. C. Salmond's homepage

Aida pharmaceuticals

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, N., Fineran, P., Leeper, F. et al. The biosynthesis and regulation of bacterial prodiginines. Nat Rev Microbiol 4, 887–899 (2006). https://doi.org/10.1038/nrmicro1531

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1531

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing