Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A guide for diagnostic evaluations


Accurate diagnostic tests have a key role in patient management and the control of most infectious diseases. Unfortunately, in many developing countries, clinical care is often critically compromised by the lack of regulatory controls on the quality of these tests. The information available on the performance of a diagnostic test can be biased or flawed because of failings in the design of the studies which assessed the performance characteristics of the test. As a result, diagnostic tests are sold and used in much of the developing world without evidence of effectiveness. Misdiagnosis leading to failure to treat a serious infection or wasting expensive treatment on people who are not infected remains a serious obstacle to health.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Childhood deaths from infectious diseases.
Figure 2: The bench-to-bedside pathway of diagnostics development and evaluation.
Figure 3: Regulation of diagnostics.
Figure 4: Proportion of diagnostic evaluations meeting accepted standards.


  1. 1

    WHO. The Use of Malaria Rapid Diagnostic Tests [online], (WHO Regional Office for the Western Pacific, Manila, Philippines, 2004).

  2. 2

    WHO. New Perspectives: Malaria Diagnosis. Report of a joint WHO/USAID Informal Consultation 25–27 October 1999 [online], (WHO, Geneva, 2000).

  3. 3

    WHO. Malaria Rapid Diagnosis: Making it Work. Meeting Report 20–23 January 2003 [online] WHO, Manila, Philippines, 2003).

  4. 4

    Humar, A. et al. Parasight F test compared with the polymerase chain reaction and microscopy for the diagnosis of Plasmodium falciparum malaria in travelers. Am. J. Trop. Med. Hyg. 56, 44– 48 (1997).

    CAS  Article  Google Scholar 

  5. 5

    Pieroni, P. et al. Comparison of the ParaSight-F test and the ICT Malaria Pf test with the polymerase chain reaction for the diagnosis of Plasmodium falciparum malaria in travellers. Trans. R. Soc. Trop. Med. Hyg. 92, 166– 169 (1998)

    CAS  Article  Google Scholar 

  6. 6

    Quintana, M. et al. Malaria diagnosis by dipstick assay in a Honduran population with coendemic Plasmodium falciparum and Plasmodium vivax. Am. J. Trop. Med. Hyg. 59, 868– 871 (1998).

    CAS  Article  Google Scholar 

  7. 7

    Lee, M. A. et al. A comparison of antigen dipstick assays with polymerase chain reaction (PCR) technique and blood film examination in the rapid diagnosis of malaria. Ann. Acad. Med. Singapore 28, 498– 501 (1999).

    CAS  PubMed  Google Scholar 

  8. 8

    Carrasquilla, G. et al. Epidemiologic tools for malaria surveillance in an urban setting of low endemicity along the Colombian Pacific coast. Am. J. Trop. Med. Hyg. 62, 132– 137 (2000).

    CAS  Article  Google Scholar 

  9. 9

    Parkes, R. et al. Comparison of a nested polymerase chain reaction–restriction fragment length polymorphism method, the PATH antigen detection method, and microscopy for the detection and identification of malaria parasites. Can. J. Microbiol. 47, 903– 907 (2001).

    CAS  PubMed  Google Scholar 

  10. 10

    Zakeri, S. et al. Detection of malaria parasites by nested PCR in south-eastern Iran: evidence of highly mixed infections in Chahbahar district. Malaria J. 1, 2 (2002).

    Article  Google Scholar 

  11. 11

    Bell, D. R. et al. False-positive results of a Plasmodium falciparum histidine-rich protein 2 — detecting malaria rapid diagnostic test due to high sensitivity in a community with fluctuating low parasite density. Am. J. Trop. Med. Hyg. 73, 1 (2005).

    Article  Google Scholar 

  12. 12

    Oduola, A. M. et al. Plasmodium falciparum: evaluation of lactate dehydrogenase in monitoring therapeutic responses to standard antimalarial drugs in Nigeria. Exp. Parasitol. 87, 283– 289 (1997).

    CAS  Article  Google Scholar 

  13. 13

    Moody, A. et al. Performance of the OptiMAL malaria antigen capture dipstick for malaria diagnosis and treatment monitoring at the Hospital for Tropical Diseases, London. Br. J. Haematol. 109, 891– 894 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Srinivasan, S. et al. Comparison of blood-film microscopy, the OptiMAL dipstick, Rhodamine-123 fluorescence staining and PCR, for monitoring antimalarial treatment. Ann. Trop. Med. Parasitol. 94, 227– 232 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Miller, R. S. et al. Following the course of malaria treatment by detecting parasite lactate dehydrogenase enzyme. Br. J. Haematol. 113, 558– 559 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Huong, N. M. et al. Comparison of three antigen detection methods for diagnosis and therapeutic monitoring of malaria: a field study from southern Vietnam. Trop. Med. Int. Health 7, 304– 308 (2002).

    Article  Google Scholar 

  17. 17

    Moody, A. H. & Chiodini, P. L. Non-microscopic method for malaria diagnosis using OptiMAL IT, a second-generation dipstick for malaria pLDH antigen detection. Br. J. Biomed. Sci. 59, 228– 231 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Singh, N. et al. The hospital- and field-based performances of the OptiMAL test, for malaria diagnosis and treatment monitoring in central India. Ann. Trop. Med. Parasitol. 97, 5– 13 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Craig, M. H. & Sharp, B. L. Comparative evaluation of four techniques for the diagnosis of Plasmodium falciparum infections. Trans. R. Soc. Trop. Med. Hyg. 91, 279– 282 (1997).

    CAS  Article  Google Scholar 

  20. 20

    Kilian, A. H. et al. Reliability of malaria microscopy in epidemiological studies: results of quality control. Trop. Med. Int. Health 5, 3– 8 (2000).

    CAS  Article  Google Scholar 

  21. 21

    Kettelhut, M. M. et al. External quality assessment schemes raise standards: evidence from the UKNEQAS parasitology subschemes. J. Clin. Pathol. 56, 927– 932 (2003).

    CAS  Article  Google Scholar 

  22. 22

    Wongsrichanalai, C. et al. Comparison of a rapid field immunochromatographic test to expert microscopy for the detection of Plasmodium falciparum asexual parasitemia in Thailand. Acta Trop. 73, 263– 273 (1999).

    CAS  Article  Google Scholar 

  23. 23

    Mayxay, M. et al. Persistence of Plasmodium falciparum HRP-2 in successfully treated acute falciparum malaria. Trans. R. Soc. Trop. Med. Hyg. 95, 179– 182 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Mharakurwa, S. et al. Trial of the ParaSight-F test for malaria diagnosis in the primary health care system, Zimbabwe. Trop. Med. Int. Health 2, 544– 550 (1997).

    CAS  Article  Google Scholar 

  25. 25

    Funk, M. et al. MalaQuick versus ParaSight F as a diagnostic aid in travellers' malaria. Trans. R. Soc. Trop. Med. Hyg. 93, 268– 272 (1999).

    CAS  Article  Google Scholar 

  26. 26

    Kilian, A. H. et al. Application of the ParaSight-F dipstick test for malaria diagnosis in a district control program. Acta Trop. 72, 281– 293 (1999).

    CAS  Article  Google Scholar 

  27. 27

    Trachsler, M. et al. Feasibility of a rapid dipstick antigen-capture assay for self-testing of travellers' malaria. Trop. Med. Int. Health 4, 442– 447 (1999).

    CAS  Article  Google Scholar 

  28. 28

    Fryauff, D. et al. Performance of the OptiMAL assay for detection and identification of malaria infections in asymptomatic residents of Irian Jaya, Indonesia. Am. J. Trop. Med. Hyg. 63, 139– 145 (2000).

    CAS  Article  Google Scholar 

  29. 29

    Jelinek, T. et al. Use of dipstick tests for the rapid diagnosis of malaria in nonimmune travelers. J. Travel Med. 7, 175– 179 (2000).

    CAS  Article  Google Scholar 

  30. 30

    Tavrow, P. et al. Using Quality Design to Improve Malaria Rapid Diagnostic Tests in Malawi. Quality Assurance Project (QAP) for the United States Agency for International Development. [online], (Bethesda, MD, USA, 2000).

    Google Scholar 

  31. 31

    Whitty, C. J. M. et al. Self-testing for falciparum malaria with antigen-capture cards by travelers with symptoms of malaria. Am. J. Trop. Med. Hyg. 63, 295– 297 (2000).

    Article  Google Scholar 

  32. 32

    Bell, D. et al. Diagnosis of malaria in a remote area of the Philippines: comparison of techniques and their acceptance by health workers and the community. Bull. WHO 79, 933– 941 (2001).

    CAS  PubMed  Google Scholar 

  33. 33

    Mayxay, M. et al. Short communication: an assessment of the use of malaria rapid tests by village health volunteers in rural Laos. Trop. Med. Int. Health 9, 325– 329 (2004).

    Article  Google Scholar 

  34. 34

    Tjitra, E. et al. Persistent ICT malaria P.f/P.v panmalarial and HRP2 antigen reactivity after treatment of Plasmodium falciparum malaria is associated with gametocytemia and results in false-positive diagnoses of Plasmodium vivax in convalescence. J. Clin. Microbiol. 39, 1025– 1031 (2001).

    CAS  Article  Google Scholar 

  35. 35

    Hunt Cooke, A. et al. Comparison of a parasite lactate dehydrogenase-based immunochromatographic antigen detection assay (OptiMAL) with microscopy for the detection of malaria parasites in human blood samples. Am. J. Trop. Med. Hyg. 60, 173– 176 (1999).

    Article  Google Scholar 

  36. 36

    Eisen, D. P. & Saul, A. Disappearance of pan-malarial antigen reactivity using the ICT Malaria P.f/P.v kit parallels decline of patent parasitaemia as shown by microscopy. Trans. R. Soc. Trop. Med. Hyg. 94, 169– 170 (2000).

    CAS  Article  Google Scholar 

  37. 37

    WHO. Rapid Diagnostic Tests for Malaria: Methods Manual for Laboratory Quality Control Testing. Version 4. (World Health Organization, Manila, Philippines, in the press).

  38. 38

    Desakorn, V. et al. Stage-dependent production and release of histidine-rich protein 2 by Plasmodium falciparum. Trans. R. Soc. Trop. Med. Hyg. 99, 517– 524 (2005).

    CAS  Article  Google Scholar 

  39. 39

    Bechem, N. N. et al. Evaluation of a rapid test for histidine-rich protein 2 for diagnosis of Plasmodium falciparum infection in Cameroonian children. Trans. R. Soc. Trop. Med. Hyg. 93, 46 (1999).

    CAS  Article  Google Scholar 

  40. 40

    Leke, R. F. et al. Detection of the Plasmodium falciparum antigen histidine-rish protein 2 in blood of pregnant women: implications for diagnosing placental malaria. J. Clin. Microbiol. 37, 2992– 2996 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Singer, L. M. et al. Evaluation of a malaria rapid diagnostic test for assessing the burden of malaria during pregnancy. Am. J. Trop. Med. Hyg. 70, 481– 485 (2004).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Rosanna W. Peeling.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peeling, R., Smith, P. & Bossuyt, P. A guide for diagnostic evaluations. Nat Rev Microbiol 4, S2–S6 (2006).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing