Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogenesis of prion diseases: current status and future outlook

Key Points

  • Prion diseases are progressive, transmissible neurodegenerative disorders with an invariably fatal outcome. Prions, the infectious agent of prion diseases, accumulate in the central nervous system, in organs of the secondary lymphoid system and in blood.

  • Examples of prion diseases include bovine spongiform encephalopathy (BSE) in cows, scrapie in sheep and goat, chronic wasting disease in deer and elk, and sporadic and variant Creutzfeldt–Jakob disease in humans.

  • Neuronal cytotoxicity of PrPSc depends on the expression of PrPC. Evidence indicates that the conversion of PrPC to PrPSc is deleterious, but the mechanisms of neural degeneration are still unclear.

  • In this article, we describe the role of the immune system in prion diseases and review our current understanding of cellular and molecular mechanisms involved in peripheral prion replication and transport.

  • Several prion diseases are transmitted by peripheral prion uptake (for example, ingestion of prion-contaminated food). After prion uptake, a replication phase occurs in lymphoid tissue before neuroinvasion.

  • In the peripheral regions of the host, the abnormally folded, aggregated PrPSc, is amplified by cells of the immune system (for example, follicular dendritic cells) in the germinal centres, located in B-cell follicles of the spleen or lymph nodes.

  • Depletion of mature follicular dendritic cells delays the development of prion disease following intraperitoneal inoculation. This could form the basis of a post-exposure prophylactic strategy.

  • Recent findings indicate that chronic inflammation can induce the deposition of prion infectivity in organs previously believed to be prion free.

Abstract

The prion, a conformational variant of a host protein, is the infectious particle responsible for transmissible spongiform encephalopathy (TSE), a fatal neurodegenerative disease of humans and animals. The principal target of prion pathology is the brain, yet most TSEs also display prion replication at extra-cerebral locations, including secondary lymphoid organs and sites of chronic inflammation. Despite significant progress in our understanding of this infectious agent, many fundamental questions relating to the nature of the prion, including the mechanism of replication and the molecular events underlying brain damage, remain unanswered. Here we focus on the unresolved issues pertaining to prion pathogenesis, particularly on the role played by the immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human tissues and blood involved in propagation and transport of prions.
Figure 2: Structural features of the cellular prion protein.
Figure 3: PrPSc and prion infectivity in chronically inflamed murine or ovine tissue.
Figure 4: Induction of tertiary follicles and prion replication competence in non-lymphoid tissue.

Similar content being viewed by others

References

  1. Gajdusek, D. C. & Zigas, V. Degenerative disease of the central nervous system in New Guinea; the endemic occurrence of 'kuru' in the native population. N. Engl. J. Med. 257, 974–978 (1957).

    Article  CAS  PubMed  Google Scholar 

  2. Collinge, J. et al. Kuru in the 21st century — an acquired human prion disease with very long incubation periods. Lancet 367, 2068–2074 (2006).

    Article  PubMed  Google Scholar 

  3. Will, R. G. et al. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347, 921–925 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Hill, A. M., Cane, D. E., Mau, C. J. D. & West, C. A. High level expression of Ricinus communis casbene synthase in Escherichia coli and characterization of the recombinant enzyme. Arch. Biochem. Biophys. 336, 283–289 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Collinge, J., Sidle, K. C., Meads, J., Ironside, J. & Hill, A. F. Molecular analysis of prion strain variation and the aetiology of 'new variant' CJD. Nature 383, 685–690 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Aguzzi, A. & Polymenidou, M. Mammalian prion biology. One century of evolving concepts. Cell 116, 313–327 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Llewelyn, C. A. et al. Possible transmission of variant Creutzfeldt-Jakob disease by blood transfusion. Lancet 363, 417–421 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Mead, S. et al. Balancing selection at the prion protein gene consistent with prehistoric kurulike epidemics. Science 300, 640–643 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Sekercioglu, C. H. Prion diseases and a penchant for brains. Science 305, 342–343 (2004).

    Article  PubMed  Google Scholar 

  10. Soldevila, M. et al. The prion protein gene in humans revisited: lessons from a worldwide resequencing study. Genome Res. 16, 231–239 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kreitman, M. & Di Rienzo, A. Balancing claims for balancing selection. Trends Genet. 20, 300–304 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Glatzel, M., Abela, E., Maissen, M. & Aguzzi, A. Extraneural pathologic prion protein in sporadic Creutzfeldt-Jakob disease. N. Engl. J. Med. 349, 1812–1820 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Angers, R. C. et al. Prions in skeletal muscles of deer with chronic wasting disease. Science 311, 1117 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Heikenwalder, M. et al. Chronic lymphocytic inflammation specifies the organ tropism of prions. Science 307, 1107–1110 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Ligios, C. et al. PrPSc in mammary glands of sheep affected by scrapie and mastitis. Nature Med. 11, 1137–1138 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Aguzzi, A. & Heikenwalder, M. Prions, cytokines, and chemokines: a meeting in lymphoid organs. Immunity 22, 145–154 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Kovacs, G. G. et al. Creutzfeldt-Jakob disease and inclusion body myositis: Abundant disease-associated prion protein in muscle. Ann. Neurol. 55, 121–125 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Seeger, H. et al. Coincident scrapie infection and nephritis lead to urinary prion excretion. Science 310, 324–326 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Aguzzi, A. & Sigurdson, C. J. Antiprion immunotherapy: to suppress or to stimulate? Nature Rev. Immunol. 4, 725–736 (2004).

    Article  CAS  Google Scholar 

  20. Ligios, C. et al. PrPSc deposition in nervous tissues without lymphoid tissue involvement is frequently found in ARQ/ARQ Sarda breed sheep preclinically affected with natural scrapie. Arch. Virol. 20 April 2006 (doi:10.1007/s00705-006-0759-2)

  21. Mabbott, N. A. & MacPherson, G. G. Prions and their lethal journey to the brain. Nature Rev, Microbiol, 4, 201–211 (2006).

    Article  CAS  Google Scholar 

  22. Aguzzi, A., Heikenwalder, M. & Miele, G. Progress and problems in the biology, diagnostics, and therapeutics of prion diseases. J. Clin. Invest. 114, 153–160 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Riek, R., Hornemann, S., Wider, G., Glockshuber, R. & Wüthrich, K. NMR characterization of the full-length recombinant murine prion protein, mPrP(23–231). FEBS Lett. 413, 282–288 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Gossert, A. D., Bonjour, S., Lysek, D. A., Fiorito, F. & Wuthrich, K. Prion protein NMR structures of elk and of mouse/elk hybrids. Proc. Natl Acad. Sci. USA 102, 646–650 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Riek, R. et al. NMR structure of the mouse prion protein domain Prp (121–231). Nature 382, 180–182 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Brockes, J. P. Topics in prion cell biology. Curr. Opin. Neurobiol. 9, 571–577 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Simonic, T. et al. cDNA cloning of turtle prion protein. FEBS Lett. 469, 33–38 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Strumbo, B., Ronchi, S., Bolis, L. C. & Simonic, T. Molecular cloning of the cDNA coding for Xenopus laevis prion protein. FEBS Lett . 508, 170–174 (2001).

  29. Miele, G. et al. Embryonic activation and developmental expression of the murine prion protein gene. Gene Expr. 11, 1–12 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Manson, J. et al. The prion protein gene: a role in mouse embryogenesis? Development 115, 117–122 (1992).

    CAS  PubMed  Google Scholar 

  31. Ford, M. J., Burton, L. J., Morris, R. J. & Hall, S. M. Selective expression of prion protein in peripheral tissues of the adult mouse. Neuroscience 113, 177–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Moser, M., Colello, R. J., Pott, U. & Oesch, B. Developmental expression of the prion protein gene in glial cells. Neuron 14, 509–517 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Basler, K. et al. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46, 417–428 (1986).

    Article  CAS  PubMed  Google Scholar 

  34. Büeler, H. R. et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582 (1992).

    Article  PubMed  Google Scholar 

  35. Zhang, C. C., Steele, A. D., Lindquist, S. & Lodish, H. F. Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc. Natl Acad. Sci. USA 103, 2184–2189 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Steele, A. D., Emsley, J. G., Ozdinler, P. H., Lindquist, S. & Macklis, J. D. Prion protein PrPc positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proc. Natl Acad. Sci. USA 103, 3416–3421 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mallucci, G. R. et al. Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J. 21, 202–210 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Solforosi, L. et al. Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science 303, 1514–1516 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Aguzzi, A. & Heikenwalder, M. Prion diseases: cannibals and garbage piles. Nature 423, 127–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Fraser, H. & Dickinson, A. G. Pathogenesis of scrapie in the mouse: the role of the spleen. Nature 226, 462–463 (1970).

    Article  CAS  PubMed  Google Scholar 

  41. Eklund, C. M., Kennedy, R. C. & Hadlow, W. J. Pathogenesis of scrapie virus infection in the mouse. J. Infect. Dis. 117, 15–22 (1967).

    Article  CAS  PubMed  Google Scholar 

  42. Fraser, H. & Dickinson, A. G. Studies of the lymphoreticular system in the pathogenesis of scrapie: the role of spleen and thymus. J. Comp. Pathol. 88, 563–573 (1978).

    Article  CAS  PubMed  Google Scholar 

  43. Hill, A. F., Zeidler, M., Ironside, J. & Collinge, J. Diagnosis of new variant Creutzfeldt-Jakob disease by tonsil biopsy. Lancet 349, 99 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Kimberlin, R. H. & Walker, C. A. Pathogenesis of mouse scrapie: dynamics of agent replication in spleen, spinal cord and brain after infection by different routes. J. Comp. Pathol. 89, 551–562 (1979).

    Article  CAS  PubMed  Google Scholar 

  45. Mould, D. L., Dawson, A. M. & Rennie, J. C. Very early replication of scrapie in lymphocytic tissue. Nature 228, 779–780 (1970).

    Article  CAS  PubMed  Google Scholar 

  46. Beekes, M. & McBride, P. A. Early accumulation of pathological PrP in the enteric nervous system and gut-associated lymphoid tissue of hamsters orally infected with scrapie. Neurosci. Lett. 278, 181–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Bruce, M. E. Agent replication dynamics in a long incubation period model of mouse scrapie. J. Gen. Virol. 66, 2517–2522 (1985).

    Article  PubMed  Google Scholar 

  48. Büeler, H. R. et al. Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347 (1993).

    Article  PubMed  Google Scholar 

  49. Dickinson, A. G. & Fraser, H. in Slow Transmissible Diseases of the Nervous System (eds Prusiner, S. B. & Hadlow, W. J.) 367–386 (Academic Press, New York, 1979).

    Google Scholar 

  50. Rubenstein, R. et al. Scrapie-infected spleens: analysis of infectivity, scrapie-associated fibrils, and protease-resistant proteins. J. Infect. Dis. 164, 29–35 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Clarke, M. C. & Haig, D. A. Multiplication of scrapie agent in mouse spleen. Res. Vet. Sci. 12, 195–197 (1971).

    Article  CAS  PubMed  Google Scholar 

  52. Dickinson, A. G., Fraser, H., Meikle, V. M. & Outram, G. W. Competition between different scrapie agents in mice. Nature New Biol. 237, 244–245 (1972).

    Article  CAS  PubMed  Google Scholar 

  53. McGovern, G., Brown, K. L., Bruce, M. E. & Jeffrey, M. Murine scrapie infection causes an abnormal germinal centre reaction in the spleen. J. Comp. Pathol. 130, 181–194 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Terszowski, G. et al. Evidence for a functional second thymus in mice. Science 312, 284–287 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Kimberlin, R. H. & Walker, C. A. The role of the spleen in the neuroinvasion of scrapie in mice. Virus Res. 12, 201–211 (1989).

    Article  CAS  PubMed  Google Scholar 

  56. Kimberlin, R. H. & Walker, C. A. Pathogenesis of scrapie (strain 263K) in hamsters infected intracerebrally, intraperitoneally or intraocularly. J. Gen. Virol. 67, 255–263 (1986).

    Article  PubMed  Google Scholar 

  57. Mohri, S., Handa, S. & Tateishi, J. Lack of effect of thymus and spleen on the incubation period of Creutzfeldt-Jakob disease in mice. J. Gen. Virol. 68, 1187–1189 (1987).

    Article  PubMed  Google Scholar 

  58. Tateishi, J., Ohta, M., Koga, M., Sato, Y. & Kuroiwa, Y. Transmission of chronic spongiform encephalopathy with kuru plaques from humans to small rodents. Ann. Neurol. 5, 581–584 (1979).

    Article  CAS  PubMed  Google Scholar 

  59. Clarke, M. C. & Kimberlin, R. H. Pathogenesis of mouse scrapie: distribution of agent in the pulp and stroma of infected spleens. Vet. Microbiol. 9, 215–225 (1984).

    Article  CAS  PubMed  Google Scholar 

  60. Fraser, H. & Farquhar, C. F. Ionising radiation has no influence on scrapie incubation period in mice. Vet. Microbiol. 13, 211–223 (1987).

    Article  CAS  PubMed  Google Scholar 

  61. Brandner, S. et al. Normal host prion protein PrPC is required for scrapie spread within the central nervous system. Proc. Natl Acad. Sci. USA 93, 13148–13151 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kaeser, P. S., Klein, M. A., Schwarz, P. & Aguzzi, A. Efficient lymphoreticular prion propagation requires PrPc in stromal and hematopoietic cells. J. Virol. 75, 7097–7106. (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Blättler, T. et al. PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain. Nature 389, 69–73 (1997).

    Article  PubMed  Google Scholar 

  64. Klein, M. A. et al. A crucial role for B cells in neuroinvasive scrapie. Nature 390, 687–690 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Klein, M. A. et al. PrP expression in B lymphocytes is not required for prion neuroinvasion. Nature Med. 4, 1429–1433 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Montrasio, F. et al. B lymphocyte-restricted expression of prion protein does not enable prion replication in prion protein knockout mice. Proc. Natl Acad. Sci. USA 98, 4034–4037 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Heinen, E., Bosseloir, A. & Bouzahzah, F. Follicular dendritic cells: origin and function. Curr. Top. Microbiol. Immunol. 201, 15–47 (1995).

    CAS  PubMed  Google Scholar 

  68. Kosco-Vilbois, M. H. Follicular dendritic cells: a license to tangle with scrapie. Immunol. Today 21, 468 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Taylor, P. R. et al. The follicular dendritic cell restricted epitope, FDC-M2, is complement C4; localization of immune complexes in mouse tissues. Eur. J. Immunol. 32, 1888–1896 (2002).

    CAS  PubMed  Google Scholar 

  70. Huber, C. et al. Lymphotoxin-β receptor-dependent genes in lymph node and follicular dendritic cell transcriptomes. J. Immunol. 174, 5526–5536 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Shakhov, A. N. et al. Gene profiling approach in the analysis of lymphotoxin and TNF deficiencies. J. Leukoc. Biol. 68, 151–157 (2000).

    CAS  PubMed  Google Scholar 

  72. Fu, Y. X. & Chaplin, D. D. Development and maturation of secondary lymphoid tissues. Annu. Rev. Immunol. 17, 399–433 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Cyster, J. G. et al. Chemokines and B-cell homing to follicles. Curr. Top. Microbiol. Immunol. 246, 87–93 (1999).

    CAS  PubMed  Google Scholar 

  74. Ruddle, N. H. & Waksman, B. H. Cytotoxic effect of lymphocyte-antigen interaction in delayed hypersensitivity. Science 157, 1060–1062 (1967).

    Article  CAS  PubMed  Google Scholar 

  75. Ruddle, N. H. & Waksman, B. H. Cytotoxicity mediated by soluble antigen and lymphocytes in delayed hypersensitivity. 3. Analysis of mechanism. J. Exp. Med. 128, 1267–1279 (1968).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Locksley, R. M., Killeen, N. & Lenardo, M. J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Picarella, D. E., Kratz, A., Li, C. B., Ruddle, N. H. & Flavell, R. A. Insulitis in transgenic mice expressing tumor necrosis factor β (lymphotoxin) in the pancreas. Proc. Natl Acad. Sci. USA 89, 10036–10040 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kratz, A., Campos-Neto, A., Hanson, M. S. & Ruddle, N. H. Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J. Exp. Med. 183, 1461–1472 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Kitamoto, T., Muramoto, T., Mohri, S., Doh ura, K. & Tateishi, J. Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt-Jakob disease. J. Virol. 65, 6292–6295 (1991).

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Brown, K. L. et al. Scrapie replication in lymphoid tissues depends on prion protein- expressing follicular dendritic cells. Nature Med. 5, 1308–1312 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Prinz, M. et al. Lymph nodal prion replication and neuroinvasion in mice devoid of follicular dendritic cells. Proc. Natl Acad. Sci. USA 99, 919–924 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Oldstone, M. B. et al. Lymphotoxin-α- and lymphotoxin-β-deficient mice differ in susceptibility to scrapie: evidence against dendritic cell involvement in neuroinvasion. J. Virol. 76, 4357–4363 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Gommerman, J. L. et al. Manipulation of lymphoid microenvironments in nonhuman primates by an inhibitor of the lymphotoxin pathway. J. Clin. Invest. 110, 1359–1369 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Gommerman, J. L. & Browning, J. L. Lymphotoxin/light, lymphoid microenvironments and autoimmune disease. Nature Rev. Immunol. 3, 642–655 (2003).

    Article  CAS  Google Scholar 

  85. Montrasio, F. et al. Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288, 1257–1259 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Mabbott, N. A., Mackay, F., Minns, F. & Bruce, M. E. Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie. Nature Med. 6, 719–720 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Klein, M. A. et al. Complement facilitates early prion pathogenesis. Nature Med. 7, 488–492. (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Mabbott, N. A., Bruce, M. E., Botto, M., Walport, M. J. & Pepys, M. B. Temporary depletion of complement component C3 or genetic deficiency of C1q significantly delays onset of scrapie. Nature Med. 7, 485–487 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Kovacs, G. G. et al. Complement activation in human prion disease. Neurobiol. Dis. 15, 21–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Blanquet-Grossard, F., Thielens, N. M., Vendrely, C., Jamin, M. & Arlaud, G. J. Complement protein C1q recognizes a conformationally modified form of the prion protein. Biochemistry 44, 4349–4356 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Felten, S. Y. et al. Noradrenergic sympathetic innervation of lymphoid organs. Prog. Allergy 43, 14–36 (1988).

    CAS  PubMed  Google Scholar 

  92. Cole, S. & Kimberlin, R. H. Pathogenesis of mouse scrapie: dynamics of vacuolation in brain and spinal cord after intraperitoneal infection. Neuropathol. Appl. Neurobiol. 11, 213–227 (1985).

    Article  CAS  PubMed  Google Scholar 

  93. McBride, P. A. & Beekes, M. Pathological PrP is abundant in sympathetic and sensory ganglia of hamsters fed with scrapie. Neurosci. Lett. 265, 135–138 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Haik, S. et al. The sympathetic nervous system is involved in variant Creutzfeldt-Jakob disease. Nature Med. 9, 1121–1122 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Glatzel, M., Heppner, F. L., Albers, K. M. & Aguzzi, A. Sympathetic innervation of lymphoreticular organs is rate limiting for prion neuroinvasion. Neuron 31, 25–34. (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Prinz, M. et al. Positioning of follicular dendritic cells within the spleen controls prion neuroinvasion. Nature 425, 957–962 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Forster, R. et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Denzer, K., Kleijmeer, M. J., Heijnen, H. F., Stoorvogel, W. & Geuze, H. J. Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J. Cell Sci. 113, 3365–3374 (2000).

    CAS  PubMed  Google Scholar 

  99. Denzer, K. et al. Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J. Immunol. 165, 1259–1265 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Leblanc, P. et al. Retrovirus infection strongly enhances scrapie infectivity release in cell culture. EMBO J. 25, 2674–2685 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Banks, W. A., Niehoff, M. L., Adessi, C. & Soto, C. Passage of murine scrapie prion protein across the mouse vascular blood-brain barrier. Biochem. Biophys. Res. Commun. 318, 125–130 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Mabbott, N. A., McGovern, G., Jeffrey, M. & Bruce, M. E. Temporary blockade of the tumor necrosis factor receptor signaling pathway impedes the spread of scrapie to the brain. J. Virol. 76, 5131–5139 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Takemura, S. et al. Lymphoid neogenesis in rheumatoid synovitis. J. Immunol. 167, 1072–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Kaiserling, E. Newly-formed lymph nodes in the submucosa in chronic inflammatory bowel disease. Lymphology 34, 22–29 (2001).

    CAS  PubMed  Google Scholar 

  105. Hogg, J. C. et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 350, 2645–2653 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Drayton, D. L., Liao, S., Mounzer, R. H. & Ruddle, N. H. Lymphoid organ development: from ontogeny to neogenesis. Nature Immunol. 7, 344–353 (2006).

    Article  CAS  Google Scholar 

  107. Alavaikko, M. J., Hansmann, M. L., Nebendahl, C., Parwaresch, M. R. & Lennert, K. Follicular dendritic cells in Hodgkin's disease. Am. J. Clin. Pathol. 95, 194–200 (1991).

    Article  CAS  PubMed  Google Scholar 

  108. Petrasch, S., Stein, H., Kosco, M. H. & Brittinger, G. Follicular dendritic cells in non-Hodgkin lymphomas: localisation, characterisation and pathophysiological aspects. Eur. J. Cancer 27, 1052–1056 (1991).

    Article  CAS  PubMed  Google Scholar 

  109. Magliozzi, R., Columba-Cabezas, S., Serafini, B. & Aloisi, F. Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J. Neuroimmunol 148, 11–23 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Vernau, W., Jacobs, R. M., Valli, V. E. & Heeney, J. L. The immunophenotypic characterization of bovine lymphomas. Vet. Pathol. 34, 222–225 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Tuo, W. et al. Prpc and PrpSc at the fetal-maternal interface. J. Biol. Chem. 276, 18229–18234 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Aguzzi, A. Prions and the immune system: a journey through gut, spleen, and nerves. Adv. Immunol. 81, 123–171 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Prinz, M. et al. Oral prion infection requires normal numbers of Peyer's patches but not of enteric lymphocytes. Am. J. Pathol. 162, 1103–1111 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Houston, F., Foster, J. D., Chong, A., Hunter, N. & Bostock, C. J. Transmission of BSE by blood transfusion in sheep. Lancet 356, 999–1000 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Sigurdson, C. J. et al. PrP(CWD) lymphoid cell targets in early and advanced chronic wasting disease of mule deer. J. Gen. Virol. 83, 2617–2628 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Heggebo, R. et al. Detection of PrPSc in lymphoid tissues of lambs experimentally exposed to the scrapie agent. J. Comp. Pathol. 128, 172–181 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Mabbott, N. A., Young, J., McConnell, I. & Bruce, M. E. Follicular dendritic cell dedifferentiation by treatment with an inhibitor of the lymphotoxin pathway dramatically reduces scrapie susceptibility. J. Virol. 77, 6845–6854 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Neutra, M. R., Frey, A. & Kraehenbuhl, J. P. Epithelial M cells: gateways for mucosal infection and immunization. Cell 86, 345–348 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. Jeffrey, M. et al. Transportation of prion protein across the intestinal mucosa of scrapie-susceptible and scrapie-resistant sheep. J. Pathol. 209, 4–14 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Kerneis, S., Bogdanova, A., Kraehenbuhl, J. P. & Pringault, E. Conversion by Peyer's patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277, 949–952 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Heppner, F. L. et al. Transepithelial prion transport by M cells. Nature Med. 7, 976–977 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Huang, F. P., Farquhar, C. F., Mabbott, N. A., Bruce, M. E. & MacPherson, G. G. Migrating intestinal dendritic cells transport PrPSc from the gut. J. Gen. Virol. 83, 267–271 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Aucouturier, P. et al. Infected splenic dendritic cells are sufficient for prion transmission to the CNS in mouse scrapie. J. Clin. Invest. 108, 703–708 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Hunter, N. et al. Transmission of prion diseases by blood transfusion. J. Gen. Virol. 83, 2897–2905 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Aguzzi, A. & Glatzel, M. vCJD tissue distribution and transmission by transfusion — a worst-case scenario coming true? Lancet 363, 411–412 (2004).

    Article  PubMed  Google Scholar 

  126. Peden, A. H., Head, M. W., Ritchie, D. L., Bell, J. E. & Ironside, J. W. Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet 364, 527–529 (2004).

    Article  PubMed  Google Scholar 

  127. Fischer, M. B., Roeckl, C., Parizek, P., Schwarz, H. P. & Aguzzi, A. Binding of disease-associated prion protein to plasminogen. Nature 408, 479–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Prinz, M. et al. Prion pathogenesis in the absence of Toll-like receptor signalling. EMBO Rep. 4, 195–199 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Adachi, O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143–150 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Sethi, S., Lipford, G., Wagner, H. & Kretzschmar, H. Postexposure prophylaxis against prion disease with a stimulator of innate immunity. Lancet 360, 229–230 (2002).

    Article  PubMed  Google Scholar 

  132. Heikenwalder, M. et al. Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nature Med. 10, 187–192 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Beringue, V. et al. Role of spleen macrophages in the clearance of scrapie agent early in pathogenesis. J. Pathol. 190, 495–502 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Hsiao, K. K. et al. Serial transmission in rodents of neurodegeneration from transgenic mice expressing mutant prion protein. Proc. Natl Acad. Sci. USA 91, 9126–9130 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lasmezas, C. I. et al. Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein. Science 275, 402–405 (1997).

    Article  CAS  PubMed  Google Scholar 

  136. Tagliavini, F. et al. Amyloid fibrils in Gerstmann-Straussler-Scheinker disease (Indiana and Swedish kindreds) express only PrP peptides encoded by the mutant allele. Cell 79, 695–703 (1994).

    Article  CAS  PubMed  Google Scholar 

  137. Soto, C. Diagnosing prion diseases: needs, challenges and hopes. Nature Rev. Microbiol. 2, 809–819 (2004).

    Article  CAS  Google Scholar 

  138. Polymenidou, M. et al. Coexistence of multiple PrPSc types in individuals with Creutzfeldt-Jakob disease. Lancet Neurol. 4, 805–814 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Saborio, G. P., Permanne, B. & Soto, C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411, 810–813 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Soto, C. et al. Pre-symptomatic detection of prions by cyclic amplification of protein misfolding. FEBS Lett. 579, 638–642 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Castilla, J., Saa, P. & Soto, C. Detection of prions in blood. Nature Med. 11, 982–985 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Saa, P., Castilla, J. & Soto, C. Presymptomatic detection of prions in blood. Science 313, 92–94 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Duguid, J. R. & Dinauer, M. C. Library subtraction of in vitro cDNA libraries to identify differentially expressed genes in scrapie infection. Nucleic Acids Res. 18, 2789–2792 (1990).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. Duguid, J. & Trzepacz, C. Major histocompatibility complex genes have an increased brain expression after scrapie infection. Proc. Natl Acad. Sci. USA 90, 114–117 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Dandoy-Dron, F. et al. Gene expression in scrapie. Cloning of a new scrapie-responsive gene and the identification of increased levels of seven other mRNA transcripts. J. Biol. Chem. 273, 7691–7697 (1998).

    Article  CAS  PubMed  Google Scholar 

  146. Miele, G., Manson, J. & Clinton, M. A novel erythroid-specific marker of transmissible spongiform encephalopathies. Nature Med. 7, 361–364 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Hsich, G., Kinney, K., Gibbs, C. J., Lee, K. H. & Harrington, M. G. The 14–3–3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N. Engl. J. Med. 335, 924–930 (1996).

    Article  CAS  PubMed  Google Scholar 

  148. Beaudry, P. et al. 14–3–3 protein, neuron-specific enolase, and S-100 protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Dement. Geriatr. Cogn. Disord. 10, 40–46 (1999).

    Article  CAS  PubMed  Google Scholar 

  149. Flechsig, E. et al. Prion protein devoid of the octapeptide repeat region restores susceptibility to scrapie in PrP knockout mice. Neuron 27, 399–408 (2000).

    Article  CAS  PubMed  Google Scholar 

  150. Klohn, P. C., Stoltze, L., Flechsig, E., Enari, M. & Weissmann, C. A quantitative, highly sensitive cell-based infectivity assay for mouse scrapie prions. Proc. Natl Acad. Sci. USA 100, 11666–11671 (2003).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. Traggiai, E. et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304, 104–107 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Macchiarini, F., Manz, M. G., Palucka, A. K. & Shultz, L. D. Humanized mice: are we there yet? J. Exp. Med. 202, 1307–1311 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Silveira, J. R. et al. The most infectious prion protein particles. Nature 437, 257–261 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Dickinson, A. G. & Meikle, V. M. Host-genotype and agent effects in scrapie incubation: change in allelic interaction with different strains of agent. Mol. Gen. Genet. 112, 73–79 (1971).

    Article  CAS  PubMed  Google Scholar 

  155. Weissmann, C. A 'unified theory' of prion propagation. Nature 352, 679–683 (1991).

    Article  CAS  PubMed  Google Scholar 

  156. King, C. Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature 428, 319–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J. S. Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Tanaka, M., Collins, S. R., Toyama, B. H. & Weissman, J. S. The physical basis of how prion conformations determine strain phenotypes. Nature 442, 585–589 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Nonno, R. et al. Efficient transmission and characterization of Creutzfeldt-Jakob disease strains in bank voles. PLoS Pathog. 2, e12 (2006).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. Baumann, C. Sigurdson and A. Schumacher for their active discussions and critical reading of this review. A. A. is supported by grants from the EU, the Swiss National Foundation, the National Centre of Competence in Research on Neural Plasticity and Repair, the Stammbach Foundation and the Ernst-Jung Foundation. M.H. is supported by the Foundation for Research at the Medical Faculty, University of Zurich, the Bonizzi-Theler Stiftung and by the Verein zur Förderung des akademischen Nachwuchses (FAN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Aguzzi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

UniProtKB

MyD88

FURTHER INFORMATION

Institute of Neuropathology

Glossary

Iatrogenic transmission

The transmission of infectious agents as a consequence of a medical procedure.

Lymphoreticular system

The lymphoreticular system (LRS) is divided into primary and secondary lymphoid tissues. Primary lymphoid organs are anatomical sites where the cells of the LRS are generated, including the bone marrow and the thymus. Secondary lymphoid organs are sites where the LRS cells function. These sites include the spleen, the lymph nodes and mucosa associated lymphoid tissue. Tertiary lymphoid organs arise at sites of chronic inflammation.

Peripheral prion inoculation

This defines any administration of the prion agent other than into the central nervous system, including intraperitoneal (ip), intravenous (iv), oral or intraocular (io) administration.

Splenic stroma

The splenic stroma defines those cells in the spleen, which are of non-hematopoietic origin and are resistant to γ-irradiation.

Splenic pulp

The splenic pulp can be subdivided into the red and the white splenic pulp. The splenic red pulp fills the sinuses of the spleen and its composition includes macrophages and red blood cells. The white splenic pulp is a parenchymatous tissue of the spleen consisting of compact masses of lymphatic cells and contains the germinal centres.

Homeostatic chemokine

A subset of the chemokine family that are constitutively expressed in pre-formed lymphoid tissues and which promote and maintain the organization of this tissue.

FDC-M1 positive cluster

A dense network of cells found in germinal centres, immunoreactive for the FDC-M1 antibody and the CD21/35 receptor. Tingible body macrophages also stain positive for FDC-M1 but are morphologically distinct.

Lymphotoxin

(LT). LTα and LTβ are proinflammatory cytokines that belong to the tumour necrosis factor (TNF) superfamily. They are mainly expressed by B- and T lymphocytes, and natural killer cells. LTs exist as membrane-bound heterotrimers (LTα1β2 or LTα2β1) or as secreted homotrimers (LTα3). LTs bind TNFR1 or LTβR inducing a signalling cascade that is important for the maturation and maintenance of follicular dendritic cells.

Ectopic expression

This defines the expression of a gene in an abnormal site in an organism. This phenomenon can be induced by disease or by a pathogen, but can be also induced artificially by expressing a transgene with a tissue or cell-specific promoter.

LTβR pathway

Following interaction with lymphotoxin ligands, LTβR can activate an 'alternative' pathway for NFκB, inducing the expression of genes such as homeostatic chemokines and tumour necrosis superfamily members, which is important for the maintenance and maturation of follicular dendritic cells.

Extra-neural compartment

This includes organs and cells that do not belong to the central or peripheral nervous system.

Innervation pattern

This describes the type (qualitative and quantitative) of innervation present in a peripheral organ that does not belong to the central nervous system.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguzzi, A., Heikenwalder, M. Pathogenesis of prion diseases: current status and future outlook. Nat Rev Microbiol 4, 765–775 (2006). https://doi.org/10.1038/nrmicro1492

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1492

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing