Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction

Key Points

  • The recent identification of anaerobic microbial Fe(II) oxidation closed a gap in the iron redox cycle. Together with microbial Fe(III) reduction, these metabolisms are now known to transcend phylogenetic boundaries and have been shown to contribute significantly to soil and sediment biogeochemistry and mineralogy in anaerobic environments.

  • It is now accepted that microorganisms primarily control iron redox chemistry in most environments. Under anoxic conditions, Fe(III) oxide minerals are reduced by Fe(III)-reducing microorganisms (FRM). The ubiquity of FRM and their phylogenetic diversity makes this microbial metabolism globally significant. FRM can use both organic (CO2) and inorganic (H2) electron donors. The microbially mediated reduction of Fe(III) oxide minerals can generate both aqueous and solid-phase Fe(II)-bearing minerals such as siderite.

  • Microbially mediated Fe(II) oxidation is carried out by Fe(II)-oxidizing microorganisms (FOM). FOM are ubiquitous and have been identified in many different environments. The aerobic microbial oxidation of Fe(II) has been known for more than 100 years, but anaerobic Fe(II) oxidation by FOM was only identified in the early 1990s. Anaerobic Fe(II) oxidation by FOM can occur in both the presence and absence of light. FOM can couple Fe(II) oxidation to the reduction of nitrate, perchlorate and chlorate. Nitrate-dependent FOM can oxidize solid-phase Fe(II), including Fe(II) associated with structural Fe in minerals such as almandine and staurolite. Biogenic Fe(II) oxide minerals include magnetite and hematite, and nitrate-dependent Fe(II) oxidation has been implicated as having a direct role in the formation of banded iron formations in Precambrian Earth.

  • Recent evidence indicates that both of these metabolic processes have direct bioremediative and biotechnological applications. Anaerobic oxidation of Fe(II) by FOM can lead to the precipitation of biogenic Fe(III) oxides such as goethite and hematite. This provides a mechanism for the immobilization of heavy metals and metalloids through co-precipitation or physical envelopment. The anaerobic formation of biogenic Fe(III)-oxide-containing minerals has therefore been identified as a plausible bioremediation strategy for heavy metals and radionuclides. In addition to the ability to utilize insoluble Fe(III) as an electron acceptor, FRM such as Geobacter spp. can alternatively pass electrons onto the surface of an electrode (anode). This has led to the development of microbial fuel cells for the generation of electricity. FRM can also transform various organic contaminants (including benzene, toluene and phenol) and heavy metal and radionuclide contaminants (including uranium) and so might also be useful in bioremediation.


Iron (Fe) has long been a recognized physiological requirement for life, yet for many microorganisms that persist in water, soils and sediments, its role extends well beyond that of a nutritional necessity. Fe(II) can function as an electron source for iron-oxidizing microorganisms under both oxic and anoxic conditions and Fe(III) can function as a terminal electron acceptor under anoxic conditions for iron-reducing microorganisms. Given that iron is the fourth most abundant element in the Earth's crust, iron redox reactions have the potential to support substantial microbial populations in soil and sedimentary environments. As such, biological iron apportionment has been described as one of the most ancient forms of microbial metabolism on Earth, and as a conceivable extraterrestrial metabolism on other iron-mineral-rich planets such as Mars. Furthermore, the metabolic versatility of the microorganisms involved in these reactions has resulted in the development of biotechnological applications to remediate contaminated environments and harvest energy.

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The microbially mediated iron redox cycle.
Figure 2: Potential electron donors and acceptors: a redox tower.
Figure 3: Phylogenetic affiliation of microorganisms contributing to iron redox cycling.
Figure 4: Microbial strategies mediating electron transfer to insoluble Fe(III) oxides.
Figure 5: Physiological model of the biochemistry involved in microbial Fe(III) reduction by Shewanella and Geobacter spp.


  1. 1

    Cornell, R. M. & Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (Wiley-VCH, Weinheim, 2003).

    Google Scholar 

  2. 2

    Stumm, W. & Morgan, J. J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters (John Wiley & Sons, New York, 1996).

    Google Scholar 

  3. 3

    Baker, B. J. & Banfield, J. F. Microbial communities in acid mine drainage. FEMS Microbiol. Ecol. 44, 139–152 (2003).

    CAS  PubMed  Google Scholar 

  4. 4

    Chaudhuri, S. K., Lack, J. G. & Coates, J. D. Biogenic magnetite formation through anaerobic biooxidation of Fe(II). Appl. Environ. Microbiol. 67, 2844–2848 (2001). This paper gives the first demonstration of magnetite formation through anaerobic iron bio-oxidation and the first demonstration of the bioavailability of Fe( II ) in silicaceous minerals.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Lack, J. G. et al. Immobilization of radionuclides and heavy metals through anaerobic bio-oxidation of Fe(II). Appl. Environ. Microbiol. 68, 2704–2710 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Lovley, D. R., Holmes, D. E. & Nevin, K. P. Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microb. Physiol. 49, 219–286 (2004).

    CAS  PubMed  Google Scholar 

  7. 7

    Canfield, D. E. et al. Pathways of organic carbon oxidation in three continental margin sediments. Mar. Geol. 113, 27–40 (1993). This paper gives the first demonstration of the importance of microbial Fe( III ) reduction for the oxidation of organic matter in marine sediments.

    CAS  PubMed  Google Scholar 

  8. 8

    Clement, J., Shrestha, J., Ehrenfeld, J. & Jaffe, P. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biol. Biochem. 37, 2323–2328 (2005).

    CAS  Google Scholar 

  9. 9

    Lovley, D. R. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55, 259–287 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Kukkadapu, R. K., Zachara, J. M., Smith, S. C., Fredrickson, J. K. & Liu, C. X. Dissimilatory bacterial reduction of Al-substituted goethite in subsurface sediments. Geochim. Cosmochim. Acta 65, 2913–2924 (2001).

    CAS  Google Scholar 

  11. 11

    Mendelssohn, I. A., Kleiss, B. A. & Wakeley, J. S. Factors controlling the formation of oxidized root channels. Wetlands 15, 37–46 (1995).

    Google Scholar 

  12. 12

    Furukawa, Y., Smith, A. C., Kostka, J. E., Watkins, J. & Alexander, C. R. Quantification of macrobenthic effects on diagenesis using a multicomponent inverse model in salt marsh sediments. Limnol. Oceanogr. 49, 2058–2072 (2004).

    CAS  Google Scholar 

  13. 13

    Emerson, D., Weiss, J. V. & Megonigal, J. P. Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants. Appl. Environ. Microbiol. 65, 2758–2761 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Weiss, J. V., Emerson, D., Backer, S. M. & Megonigal, J. P. Enumeration of Fe(II)-oxidizing and Fe(III)-reducing bacteria in the root zone of wetland plants: Implications for a rhizosphere iron cycle. Biogeochemistry 64, 77–96 (2003).

    CAS  Google Scholar 

  15. 15

    Weiss, J. V., Emerson, D. & Megonigal, J. P. Rhizosphere iron(III) deposition and reduction in a Juncus effusus L.-dominated wetland. Soil Sci. Soc. Am. J. 69, 1861–1870 (2005).

    CAS  Google Scholar 

  16. 16

    Ghiorse, W. C. Biology of iron-depositing and manganese-depositing bacteria. Ann. Rev. Microbiol. 38, 515–550 (1984).

    CAS  Google Scholar 

  17. 17

    Emerson, D. & Moyer, C. L. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl. Environ. Microbiol. 63, 4784–4792 (1997). This paper demonstrates the unsuspected ubiquity and diversity of organisms capable of microaerophilic Fe( II ) bio-oxidation at circumneutral pH.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Sobolev, D. & Roden, E. E. Suboxic deposition of ferric iron by bacteria in opposing gradients of Fe(II) and oxygen at circumneutral pH. Appl. Environ. Microbiol. 1328–1334 (2001).

  19. 19

    Edwards, K. J., Rogers, D. R., Wirsen, C. O. & McCollom, T. M. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α- and γ-Proteobacteria from the deep sea. Appl. Environ. Microbiol. 69, 2906–2913 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Widdel, F. et al. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362, 834–836 (1993). This paper gives the first demonstration of anaerobic, phototrophic Fe( II ) oxidation and suggests the importance of this metabolism in the Earth's early history.

    CAS  Google Scholar 

  21. 21

    Straub, K. L., Benz, M., Schink, B. & Widdel, F. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl. Environ. Microbiol. 62, 1458–1460 (1996). This paper gives the first clear demonstration of anaerobic, mesophilic nitrate-dependent Fe( II ) oxidation.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Senn, D. B. & Hemond, H. F. Nitrate controls on iron and arsenic in an urban lake. Science 296, 2373–2376 (2002).

    CAS  PubMed  Google Scholar 

  23. 23

    Straub, K. L., Schonhuber, W., Buchholz-Cleven, B. & Schink, B. Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling. Geomicrobiol. J. 21, 371–378 (2004).

    CAS  Google Scholar 

  24. 24

    Weber, K. A., Urrutia, M. M., Churchill, P. F., Kukkadapu, R. K. & Roden, E. E. Anaerobic redox cycling of iron by freshwater sediment microorganisms. Environ. Microbiol. 8, 100–113 (2006).

    CAS  Google Scholar 

  25. 25

    Weber, K. A., Picardal, F. W. & Roden, E. E. Microbially catalyzed nitrate-dependent oxidation of biogenic solid-phase Fe(II) compounds. Environ. Sci. Technol. 35, 1644–1650 (2001).

    CAS  PubMed  Google Scholar 

  26. 26

    Bruce, R. A., Achenbach, L. A. & Coates, J. D. Reduction of (per)chlorate by a novel organism isolated from paper mill waste. Environ. Microbiol. 1, 319–329 (1999).

    CAS  PubMed  Google Scholar 

  27. 27

    Shelobolina, E. S., VanPraagy, C. G. & Lovley, D. R. Use of ferric and ferrous iron containing minerals for respiration by Desulfitobacterium frappieri. Geomicrobiol. J. 20, 143–156 (2003).

    CAS  Google Scholar 

  28. 28

    Harrison Jr, A. P. The acidophilic Thiobacilli and other acidophilic bacteria that share their habitat. Ann. Rev. Microbiol. 38, 265–292 (1984).

    CAS  Google Scholar 

  29. 29

    Davison, W. & Seed, G. The kinetics of the oxidation of ferrous iron in synthetic and natural waters. Geochim. Cosmochim. Acta 47, 67–79 (1983).

    CAS  Google Scholar 

  30. 30

    Emerson, D. & Weiss, J. V. Bacterial iron oxidation in circumneutral freshwater habitats: findings from the field and the laboratory. Geomicrobiol. J. 21, 405–414 (2004).

    CAS  Google Scholar 

  31. 31

    Hafenbradl, D. et al. Ferroglobus placidus gen. nov., sp. nov. a novel hyperthermophilic archaeum that oxidizes Fe(II) at neutral pH under anoxic conditions. Arch. Microbiol. 166, 308–314 (1996). This paper describes the first isolation of a hyperthermophilic anaerobic, nitrate-dependent Fe( II )-oxidizing organism and the only archaeum known to be capable of this metabolism.

    CAS  PubMed  Google Scholar 

  32. 32

    Jiao, Y., Kappler, A., Croal, L. R. & Newman, D. K. Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1. Appl. Environ. Microbiol. 71 4487–4496 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Ehrenreich, A. & Widdel, F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl. Environ. Microbiol. 60, 4517–4526 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Heising, S. & Schink, B. Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannielii strain. Microbiology 144, 2263–2269 (1998).

    CAS  PubMed  Google Scholar 

  35. 35

    Heising, S., Richter, L., Ludwig, W. & Schink, B. Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes iron in coculture with a 'Geospirillum' sp. strain. Arch. Microbiol. 172, 116–124 (1999).

    CAS  Google Scholar 

  36. 36

    Straub, K. L., Rainey, F. A. & Widdel, F. Rhodovulum iodosum sp. nov, and Rhodovulum robiginosum sp. nov., two new marine phototrophic ferrous-iron-oxidizing purple bacteria. Int. J. Syst. Bacteriol. 49, 729–735 (1999).

    CAS  PubMed  Google Scholar 

  37. 37

    Straub, K. L., Benz, M. & Schink, B. Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol. Ecol. 34, 181–186 (2001).

    CAS  PubMed  Google Scholar 

  38. 38

    Kappler, A. & Newman, D. K. Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria. Geochim. Cosmochim. Acta 68, 1217–1226 (2004).

    CAS  Google Scholar 

  39. 39

    Ciania, A., Gossa, K.-U. & Schwarzenbach, R. P. Light penetration in soil and particulate minerals. Eur. J. Soil Sci. 53, 561–574 (2005).

    Google Scholar 

  40. 40

    Straub, K. L., Hanzlik, M. & Buchholz-Cleven, B. E. E. The use of biologically produced ferrihydrite for the isolation of novel iron-reducing bacteria. Syst. Appl. Microbiol. 21, 442–449 (1998).

    CAS  PubMed  Google Scholar 

  41. 41

    Kluber, H. D. & Conrad, R. Effects of nitrate, nitrite, NO and N2O on methanogenesis and other redox processes in anoxic rice field soil. FEMS Microbiol. Ecol. 25, 301–318 (1998).

    CAS  Google Scholar 

  42. 42

    Ratering, S. & Schnell, S. Nitrate-dependent iron(II) oxidation in paddy soil. Environ. Microbiol. 3, 100–109 (2001).

    CAS  PubMed  Google Scholar 

  43. 43

    Finneran, K. T., Housewright, M. E. & Lovley, D. R. Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments. Environ. Microbiol. 4, 510–516 (2002).

    CAS  PubMed  Google Scholar 

  44. 44

    Weber, K. A. & Coates, J. D. in Manual of Environmental Microbiology, 3rd edn (eds Hurst, C. J., Crawford, R. L., Knudsen, G. R., McInerney, M. J. & Stetzenbach, L. D.) in the press (ASM Press).

  45. 45

    Weber, K. A. et al. Anaerobic nitrate-dependent iron(II) bio-oxidation by a novel, lithoautotrophic, β-proteobacterium, strain 2002. Appl. Environ. Microbiol. 72, 686–694 (2006). The first description of the only organism that has been clearly demonstrated to grow by mesophilic autotrophic nitrate-dependent Fe( II ) oxidation.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Beller, H. R. Anaerobic, nitrate-dependent oxidation of U(IV) oxide minerals by the chemolithoautotrophic bacterium Thiobacillus denitrificans. Appl. Environ. Microbiol. 71, 2170–2174 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Lack, J. G., Chaudhuri, S. K., Chakraborty, R., Achenbach, L. A. & Coates, J. D. Anaerobic biooxidation of Fe(II) by Dechlorosoma suillum. Microb. Ecol. 43, 424–431 (2002).

    CAS  PubMed  Google Scholar 

  48. 48

    Coates, J. D. & Achenbach, L. A. Microbial perchlorate reduction: rocket-fuelled metabolism. Nature Rev. Microbiol. 2, 569–580 (2004).

    CAS  Google Scholar 

  49. 49

    Vorholt, J. A., Hafenbradl, D., Stetter, K. O. & Thauer, R. K. Pathways of autotrophic CO2 fixation and dissimilatory nitrate reduction to N2O in Ferroglobus placidus. Arch. Microbiol. 167, 19–23 (1997).

    CAS  PubMed  Google Scholar 

  50. 50

    Gold, T. The deep, hot biosphere. Proc. Natl Acad. Sci. USA 89, 6045–6049 (1992).

    CAS  PubMed  Google Scholar 

  51. 51

    Cairns-Smith, A. G. Precambrian solution photochemistry, inverse segregation, and banded iron formations. Nature 276, 807–808 (1978).

    CAS  Google Scholar 

  52. 52

    Vargas, M., Kashefi, K., Blunt-Harris, E. L. & Lovley, D. R. Microbiological evidence for Fe(III) reduction on early Earth. Nature 395, 65–67 (1998). Describes the first demonstration of dissimilatory Fe( III ) reduction by hyperthermophilic Archaea.

    CAS  PubMed  Google Scholar 

  53. 53

    Lovley, D. R. in Origins: Genesis, Evolution and Diversity of Life (ed. Seckbach, J.) 707 (Kluwer Dordrecht, Boston, 2004).

    Google Scholar 

  54. 54

    Kashefi, K. & Lovley, D. R. Extending the upper temperature limit for life. Science 301, 934 (2003). Provides a description of the most heat-tolerant organism known, strain 121, which grows at 121oC.

    CAS  Google Scholar 

  55. 55

    Kashefi, K. & Lovley, D. Reduction of Fe(III), Mn(IV), and toxic metals at 100 degrees C by Pyrobaculum islandicum. Appl. Environ. Microbiol. 66, 1050–1056 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Tor, J. M., Kashefi, K. & Lovley, D. R. Acetate oxidation coupled to Fe(III) reduction in hyperthermophilic microorganisms. Appl. Environ. Microbiol. 67, 1363–1365 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Kostka, J. E., Stucki, J. W., Nealson, K. H. & Wu, J. Reduction of structural Fe(III) in smectite by a pure cultrue of Shewanella putrefaciens strain MR-1. Clays Clay Miner. 44, 522–529 (1996). This paper gives the first demonstration that structural Fe( III ) in clay minerals is bioavailable for dissimilatory microbial Fe( III ) reduction.

    CAS  Google Scholar 

  58. 58

    Kostka, J. E. & Nealson, K. H. Dissolution and reduction of magnetite by bacteria. Environ. Sci. Technol. 29, 2535–2540 (1995).

    CAS  PubMed  Google Scholar 

  59. 59

    Fredrickson, J. K. et al. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim. Cosmochim. Acta 62, 3239–3257 (1998).

    CAS  Google Scholar 

  60. 60

    Glasauer, S., Weidler, P. G., Langley, S. & Beveridge, T. J. Controls on Fe reduction and mineral formation by a subsurface bacterium. Geochim. Cosmochim. Acta 67, 1277–1288 (2003).

    CAS  Google Scholar 

  61. 61

    Nevin, K. P. & Lovley, D. R. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl. Environ. Microbiol. 66, 2248–2251 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Childers, S. E., Ciufo, S. & Lovley, D. R. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416, 767–769 (2002).

    CAS  Google Scholar 

  63. 63

    Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101 (2005). Provides the first description of the nanowire concept involved in the transfer of electrons onto insoluble electron acceptors during microbial respiration.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Gorby, Y. A. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA 103, 11358–11363 (2006).

    CAS  PubMed  Google Scholar 

  65. 65

    Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P. & Woodward, J. C. Humic substances as electron acceptors for microbial respiration. Nature 382, 445–448 (1996). This paper provides the first demonstration that bacteria can mediate the reduction of insoluble electron acceptors through the use of redox-active natural organic matter.

    CAS  Google Scholar 

  66. 66

    Newman, D. K. & Kolter, R. A role for excreted quinones in extracellular electron transfer. Nature 405, 94–97 (2000).

    CAS  PubMed  Google Scholar 

  67. 67

    Nevin, K. P. & Lovley, D. R. Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl. Environ. Microbiol. 68, 2294–2299 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Turick, C. E., Tisa, L. S. & Caccavo, F. Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. Appl. Environ. Microbiol. 68, 2436–2444 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Nevin, K. P. & Lovley, D. R. Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments. Environ. Sci. Technol. 34, 2472–2478 (2000).

    CAS  Google Scholar 

  70. 70

    Hernandez, M. E., Kappler, A. & Newman, D. K. Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl. Environ. Microbiol. 70, 921–928 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Hernandez, M. E. & Newman, D. K. Extracellular electron transfer. Cell. Mol. Life Sci. 58, 1562–1571 (2001).

    CAS  PubMed  Google Scholar 

  72. 72

    Nevin, K. P. & Lovley, D. R. Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol. J. 19, 141–159 (2002).

    CAS  Google Scholar 

  73. 73

    Lovley, D. R., Fraga, J. L., Coates, J. D. & Blunt-Harris, E. L. Humics as an electron donor for anaerobic respiration. Environ. Microbiol. 1, 89–98 (1999).

    CAS  PubMed  Google Scholar 

  74. 74

    Coates, J. D., Cole, K. A., Chakraborty, R., O'Connor, S. M. & Achenbach, L. A. The diversity and ubiquity of bacteria utilizing humic substances as an electron donor for anaerobic respiration. Appl. Environ. Microbiol. 68, 2445–2452 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Roh, Y. et al. Isolation and characterization of metal-reducing Thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado. Appl. Environ. Microbiol. 68, 6013–6020 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Bowman, J. P. et al. Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int. J. Syst. Bacteriol. 4, 1040–1047 (1997).

    Google Scholar 

  77. 77

    Kusel, K., Dorsch, T., Acker, G. & Stackebrandt, E. Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. Appl. Environ. Microbiol. 65, 3633–3640 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Ye, Q. et al. Alkaline anaerobic respiration: Isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Appl. Environ. Microbiol. 70, 5595–5602 (2004).

    PubMed  PubMed Central  Google Scholar 

  79. 79

    Gorlenko, V. et al. Anaerobranca californiensis sp nov., an anaerobic, alkalithermophilic, fermentative bacterium isolated from a hot spring on Mono Lake. Int. J. Syst. Evol. Microbiol. 54, 739–743 (2004).

    CAS  PubMed  Google Scholar 

  80. 80

    Myers, C. R. & Nealson, K. H. Bacterial manganese reduction and growth with manganese oxide as the sole electron-acceptor. Science 240, 1319–1321 (1988).

    CAS  PubMed  Google Scholar 

  81. 81

    Caccavo F. Jr, Blakemore, R. P. & Lovely, D. R. A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay Estuary, New Hampshire. Appl. Environ. Microbiol. 58, 3211–3216 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Zachara, J. M. et al. Bacterial reduction of crystalline Fe(III) oxides in single phase suspensions and subsurface materials. Am. Mineral. 83, 1426–1443 (1998).

    CAS  Google Scholar 

  83. 83

    Stein, L., La Duc, M., Grundl, T. & Nealson, K. Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments. Environ. Microbiol. 3, 10–18 (2001).

    CAS  PubMed  Google Scholar 

  84. 84

    Snoeyenbos-West, O. L., Nevin, K. P., Anderson, R. T. & Lovley, D. R. Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments. Microb. Ecol. 39, 153–167 (2000).

    CAS  PubMed  Google Scholar 

  85. 85

    Roling, W., van Breukelen, B., Braster, M., Lin, B. & van Verseveld, H. Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl. Envir. Microbiol. 67, 4619–4629 (2001).

    CAS  Google Scholar 

  86. 86

    Todorova, S. G. & Costello, A. M. Design of Shewanella specific 16S rRNA primers and application to analysis of Shewanella in a minerotrophic wetland. Environ. Microbiol. 8, 426–432 (2006).

    CAS  PubMed  Google Scholar 

  87. 87

    Cummings, D., Caccavo, F., Spring, S. & Rosenzweig, R. Ferribacterium limneticum, gen. nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch. Microbiol. 171, 183–188 (1999).

    CAS  Google Scholar 

  88. 88

    Finneran, K., Johnsen, C. & Lovley, D. Rhodoferax ferrireducens sp nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). Int. J. Syst. Evol. Microbiol. 53, 669–673 (2003).

    CAS  PubMed  Google Scholar 

  89. 89

    Coates, J. D., Ellis, D. J., Gaw, C. V. & Lovley, D. R. Geothrix fermentans gen. nov. sp. nov. a novel Fe(III)-reducing bacterium from a hydrocarbon contaminated aquifer. Int. J. Syst. Bacteriol. 49, 1615–1622 (1999).

    CAS  Google Scholar 

  90. 90

    Anderson, R. T., Rooney-Varga, J. N., Gaw, C. V. & Lovely, D. R. Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum-contaminated aquifers. Environ. Sci. Technol. 32, 1222–1229 (1998).

    CAS  Google Scholar 

  91. 91

    Hugenholtz, P., Goebel, B. M. & Pace, N. R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765–4774 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Barns, S. M., Takala, S. L. & Kuske, C. R. Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl. Environ. Microbiol. 65, 1731–1737 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Roberts, J. L. Reduction of ferric hydroxide by strains of Bacillus polymyxa. Soil Sci. 63, 135–140 (1947).

    CAS  Google Scholar 

  94. 94

    Lovley, D. R. & Phillips, E. J. P. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51, 683–689 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Dobbin, P. S. et al. Dissimilatory Fe(III) reduction by Clostridium beijerinckii isolated from freshwater sediment using Fe(III) maltol enrichment. FEMS Microbiol. Lett. 176, 131–138 (1999).

    CAS  PubMed  Google Scholar 

  96. 96

    Coleman, M. L., Hedrick, D. B., Lovley, D. R., White, D. C. & Pye, K. Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature 361, 436–438 (1993).

    CAS  Google Scholar 

  97. 97

    Lovley, D. R., Roden, E. E., Phillips, E. J. P. & Woodward, J. C. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar. Geol. 113, 41–53 (1993).

    CAS  Google Scholar 

  98. 98

    Bond, D. R. & Lovley, D. Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. Environ. Microbiol. 4, 115–124 (2002).

    CAS  PubMed  Google Scholar 

  99. 99

    Lovley, D. & Phillips, E. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl. Environ. Microbiol. 53, 2636–2641 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Roden, E. E. & Wetzel, R. G. Organic carbon oxidation and supression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnol. Oceanogr. 41, 1733–1748 (1996).

    CAS  Google Scholar 

  101. 101

    Madigan, M. T., Martinko, J. M. & Parker, J. Brock Biology of Microorganisms (Pearson Education, New Jersey, 2002).

    Google Scholar 

  102. 102

    Reid, G. A. et al. Structure and function of flavocytochrome c(3), the soluble fumarate reductase from Shewanella NCIMB400. Biochem. Soc. Trans. 26, 418–421 (1998).

    CAS  PubMed  Google Scholar 

  103. 103

    Lovley, D. R. et al. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic-compounds to the reduction of iron and other metals. Arch. Microbiol. 159, 336–344 (1993).

    CAS  PubMed  Google Scholar 

  104. 104

    Myers, C. R. & Myers, J. M. Role of menaquinone in the reduction of fumarate, nitrate, iron(III) and manganese(IV) by Shewanella putrefaciens Mr-1. FEMS Microbiol. Lett. 114, 215–222 (1993).

    CAS  Google Scholar 

  105. 105

    Saffarini, D. A., Blumerman, S. L. & Mansoorabadi, K. J. Role of menaquinones in Fe(III) reduction by membrane fractions of Shewanella putrefaciens. J. Bacteriol. 184, 846–848 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Myers, C. R. & Myers, J. A. Shewanella oneidensis MR-1 restores menaquinone synthesis to a menaquinone-negative mutant. Appl. Environ. Microbiol. 70, 5415–5425 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Heidelberg, J. F. et al. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nature Biotechnol. 20, 1118–1123 (2002).

    CAS  Google Scholar 

  108. 108

    Methe, B. A. et al. Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302, 1967–1969 (2003).

    CAS  PubMed  Google Scholar 

  109. 109

    Leang, C. et al. Adaptation to disruption of the electron transfer pathway for Fe(III) reduction in Geobacter sulfurreducens. J. Bacteriol. 187, 5918–5926 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Myers, C. R. & Myers, J. M. Cloning and sequence of cymA a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J. Bacteriol. 179, 1143–1152 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Myers, J. M. & Myers, C. R. Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. J. Bacteriol. 182, 67–75 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Beliaev, A. S. & Saffarini, D. A. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J. Bacteriol. 180, 6292–6297 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Beliaev, A. S., Saffarini, D. A., McLaughlin, J. L. & Hunnicutt, D. MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol. Microbiol. 39, 722–730 (2001).

    CAS  PubMed  Google Scholar 

  114. 114

    Pitts, K. E. et al. Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA. J. Biol. Chem. 278, 27758–27765 (2003).

    CAS  PubMed  Google Scholar 

  115. 115

    Dobbin, P. S., Butt, J. N., Powell, A. K., Reid, G. A. & Richardson, D. J. Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe(III) by Shewanella frigidimarina NCIMB400. Biochem. J. 342, 439–448 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Gordon, E. H. J. et al. Identification and characterization of a novel cytochrome c(3) from Shewanella frigidimarina that is involved in Fe(III) respiration. Biochem. J. 349, 153–158 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Leys, D. et al. Crystal structures at atomic resolution reveal the novel concept of 'electron-harvesting' as a role for the small tetraheme cytochrome c. J. Biol. Chem. 277, 35703–35711 (2002).

    CAS  PubMed  Google Scholar 

  118. 118

    Myers, C. R. & Myers, J. M. Cell surface exposure of the outer membrane cytochromes of Shewanella oneidensis MR-1. Lett. Appl. Microbiol. 37, 254–258 (2003).

    CAS  PubMed  Google Scholar 

  119. 119

    Myers, J. M. & Myers, C. R. Overlapping role of the outer membrane cytochromes of Shewanella oneidensis MR-1 in the reduction of manganese(IV) oxide. Lett. Appl. Microbiol. 37, 21–25 (2003).

    CAS  PubMed  Google Scholar 

  120. 120

    Butler, J. E., Kaufmann, F., Coppi, M. V., Nunez, C. & Lovley, D. R. MacA a diheme c-type cytochrorne involved in Fe(III) reduction by Geobacter sulfurreducens. J. Bacteriol. 186, 4042–4045 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Lloyd, J. R. et al. Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. Biochem. J. 369, 153–161 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Leang, C., Coppi, M. V. & Lovley, D. R. OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J. Bacteriol. 185, 2096–2103 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Lovely, D. Cleaning up with genomics: applying molecular biology to bioremediation. Nature Rev. Microbiol. 1, 35–44 (2003).

    Google Scholar 

  124. 124

    Mahadevan, R. et al. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl. Environ. Microbiol. 72, 1558–1568 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Cloud, P. E. Paleoecological significance of the banded iron-formation. Econ. Geol. 68, 1135–1143 (1973).

    CAS  Google Scholar 

  126. 126

    Braterman, P. S., Cairns-Smith, A. G. & Sloper, R. W. Photo-oxidation of hydrated Fe(II) — significance for banded iron formations. Nature 303, 163–164 (1983).

    CAS  Google Scholar 

  127. 127

    Cloud, P. E. Significance of the Gunflint (Precambrian) microflora. Science 148, 27–35 (1965).

    PubMed  Google Scholar 

  128. 128

    Lovley, D. R., Stolz, J. F., Nord, G. L. & Phillips, E. J. P. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330, 252–254 (1987). This paper gives the first demonstration of extracellular biogenic magnetite formation.

    CAS  Google Scholar 

  129. 129

    Kohnauser, K. O. et al. Could bacteria have formed the Precambrian banded iron formations? Geology 20, 1079–1082 (2002).

    Google Scholar 

  130. 130

    Kappler, A., Pasquero, C., Konhauser, K. O. & Newman, D. K. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33, 865–868 (2005).

    CAS  Google Scholar 

  131. 131

    Holm, N. G. The 13C/12C ratios of siderite and organic matter from a modern metalliferrous hydrothermal sediment and their implications for banded iron formations. Chem. Geol. 77, 41–45 (1989).

    CAS  Google Scholar 

  132. 132

    Towe, K. M. Early Precambrian oxygen: a case against photosynthesis. Nature 274, 657–661 (1978).

    CAS  Google Scholar 

  133. 133

    Canfield, D. E. & Teske, A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382, 127–132 (1996).

    CAS  PubMed  Google Scholar 

  134. 134

    Yung, Y. L. & McElroy, M. B. Fixation of nitrogen in the prebiotic atmosphere. Science 203, 1002–1004 (1979).

    CAS  PubMed  Google Scholar 

  135. 135

    Mancinelli, R. L. & McKay, C. P. The evolution of nitrogen cycle. Orig. Life Evol. Biosph. 18, 311–325 (1988).

    CAS  PubMed  Google Scholar 

  136. 136

    Walker, J. C. G. Suboxic diagenesis in banded iron formations. Nature 309, 340–342 (1984).

    CAS  PubMed  Google Scholar 

  137. 137

    Coates, J. D. & Chakraborty, R. in Bioremediation: A Critical Review (eds Head, I. M., Singleton, I. & Milner, M. G.) 227–257 (Horizon Scientific, Wymondham UK, 2003).

    Google Scholar 

  138. 138

    Kim, H. J. et al. A mediator-less microbial fuel cell using a metal reducing bacterium. Enzyme Microbiol. Technol. 30, 145–152 (2002).

    CAS  Google Scholar 

  139. 139

    Bond, D., Holmes, D., Tender, L. & Lovely, D.R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295, 483–485 (2002).

    CAS  PubMed  Google Scholar 

  140. 140

    Tender, L. et al. Harnessing microbially generated power on the seafloor. Nature Biotechnol. 20, 821–825 (2002).

    CAS  Google Scholar 

  141. 141

    Bond, D. & Lovley, D. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69, 1548–1555 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Bond, D. & Lovley, D. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Envir. Microbiol. 71, 2186–2189 (2005).

    CAS  Google Scholar 

  143. 143

    Lovley, D. et al. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339, 297–299 (1989).

    CAS  Google Scholar 

  144. 144

    Coates, J., Anderson, R., Woodward, J., Phillips, E. & Lovely, D. R. Anaerobic hydrocarbon degradation in petroleum-contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions. Environ. Sci. Technol. 30, 2784–2789 (1996).

    CAS  Google Scholar 

  145. 145

    Coates, J., Anderson, R. & Lovley, D. Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Appl. Environ. Microbiol. 62, 1099–1101 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146

    Anderson, R. T. & Lovley, D. Naphthalene and benzene degradation under Fe(III)-reducing conditions in petroleum-contaminated aquifers. Bioremediation J. 3, 121–135 (1999).

    CAS  Google Scholar 

  147. 147

    Lovley, D. R., Phillips, E. J. P., Gorby, Y. A. & Landa, E. R. Microbial reduction of uranium. Nature 350, 413–416 (1991). This paper gives the first description of the microbially mediated reduction of hexavalent uranium.

    CAS  Google Scholar 

  148. 148

    Lovley, D. R. & Coates, J. D. Novel forms of anaerobic respiration of environmental relevance. Curr. Opin. Microbiol. 3, 252–256 (2000).

    CAS  PubMed  Google Scholar 

  149. 149

    Langmuir, D. Aqueous Environmental Geochemistry (Prentice-Hall, New Jersey, 1997).

    Google Scholar 

  150. 150

    Thamdrup, B. in Advanced Microbial Ecology (ed. Schink, B.) 41–84 (Kluwer Academic/Plenum Publishers, New York, 2000).

    Google Scholar 

  151. 151

    Dutton, P. L. & Prince, R. C. in The Photosynthetic Bacteria (eds Clayton, R. A. & Sistrom, W. R.) 525–570 (Plenum, New York, 1978).

    Google Scholar 

Download references


Research on microbial redox cycling of iron in the laboratories of J.D.C. and L.A.A. is supported by grants from the US Department of Energy Environmental Remediation Sciences Program.

Author information



Corresponding author

Correspondence to John D. Coates.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links


Entrez Genome Project

Chlorobium ferrooxidans

Dechloromonas aromatica

Geobacter metallireducens

Geothrix fermentans

Marinobacter aquaeolei

Rhodopseudomonas palustris

Shewanella frigidimarina

Shewanella oneidensis

Shewanella putrefaciens

Thiobacillus denitrificans


John D. Coates' homepage



A lithotrophic organism uses an inorganic substrate (usually of mineral origin) to obtain energy for growth.


A heterotrophic organism requires organic compounds as a carbon source.


An environment with a partial pressure of oxygen that is substantially lower than the atmospheric oxygen content.


An environment lacking oxygen.

Neoteric environments

Modern environments.

Electron sink

A compound that receives electrons as an endpoint of an oxidative reaction.


The disturbance of sediment layers by biological activity.


An organism that is an obligate anaerobe but can survive in environments where the partial pressure of oxygen is substantially lower than in the atmosphere.


A phototrophic organism obtains energy for growth from sunlight; carbon is derived from inorganic carbon (carbon dioxide) or organic carbon.

Neutrophilic Fe(II) oxidation

Microbial Fe(II) oxidation that occurs at circumneutral pH values (pH 7).


An organism that grows optimally in a cold environment (<15°C).


An organism that grows optimally in a moderate environment (25–45°C).


An organism that grows optimally in hot environments (>80°C).


An autotrophic organism uses inorganic carbon (carbon dioxide) as a carbon source.


An organism that obtains energy from inorganic compounds and carbon from carbon dioxide.


A mixotrophic organism uses an inorganic chemical energy source and organic compounds as a carbon source.


Eutrophic waters are rich in minerals and organic nutrients.

Oligotrophic environment

An environment that is relatively low in nutrients and cannot support much plant life.


An organism that grows optimally at temperatures ranging from 45–80°C.


An organism that grows in an acid environment (<pH 6).


An organism that grows in an alkaline environment (pH 9–pH 11).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weber, K., Achenbach, L. & Coates, J. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4, 752–764 (2006). https://doi.org/10.1038/nrmicro1490

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing