Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Reverse-genetic approaches to the study of Borna disease virus

Abstract

Borna disease virus (BDV) is an enveloped virus that has a non-segmented, negative-strand RNA genome with the characteristic organization of the mononegaviruses. However, based on its unique genetic and biological features, BDV is considered to be the prototypic member of a new mononegavirus family, the Bornaviridae. BDV causes central nervous system (CNS) disease in a wide variety of mammals. This article discusses the recently developed reverse-genetics systems for BDV, and the implications for the elucidation of the molecular mechanisms underlying BDV–host interactions, including the basis of BDV persistence in the CNS and its associated diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Borna disease virus genome organization.
Figure 2: The Borna disease virus lifecycle.
Figure 3: Borna disease virus minigenome rescue systems.
Figure 4: General scheme for the rescue of recombinant Borna disease virus from cloned cDNA.

Similar content being viewed by others

References

  1. Rott, R. & Becht, H. in Borna Disease (eds Koprowski, H. & Lipkin, W. I.) 17–30 (Springer, Berlin, 1995).

    Book  Google Scholar 

  2. Staeheli, P., Sauder, C., Hausmann, J., Ehrensperger, F. & Schwemmle, M. Epidemiology of Borna disease virus. J. Gen. Virol. 81, 2123–2135 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Ikuta, K., Hagiwara, K., Taniyama, H. & Nowotny, N. in Borna Disease Virus and its Role in Neurobehavioral Disease (ed. Carbone, K. M.) 87–124 (ASM Press, Washington DC, 2002).

    Book  Google Scholar 

  4. Richt, J. A. & Rott, R. Borna disease virus: a mystery as an emerging zoonotic pathogen. Vet. J. 161, 24–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Flower, R. & Kamhieh, S. Letter to the Editor refuting 'Epidemiological pattern of classical Borna disease and regional genetic clustering of Borna disease viruses point towards the existence of to-date unknown endemic reservoir host populations' by Ralf Durrwald, Jolanta Kolodziejek, Aemero Muluneh, Sibylle Herzog and Norbert Nowotny. Microbes Infect. 8, 1419–1420 (2006).

    Article  PubMed  Google Scholar 

  6. Durrwald, R., Kolodziejek, J. & Nowotny, N. Borna disease virus (BDV) sequences derived from plasma samples of Australian cats contain multiple sequencing errors and are otherwise almost identical to strain V, a commonly used BDV laboratory strain. Microbes Infect. 8, 1421–1422 (2006).

    Article  Google Scholar 

  7. Durrwald, R., Kolodziejek, J., Muluneh, A., Herzog, S. & Nowotny, N. Epidemiological pattern of classical Borna disease and regional genetic clustering of Borna disease viruses point towards the existence of to-date unknown endemic reservoir host populations. Microbes Infect. 8, 917–929 (2006).

    Article  PubMed  Google Scholar 

  8. Nowotny, N. et al. Isolation and characterization of a new subtype of Borna disease virus. J. Virol. 74, 5655–5658 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hilbe, M. et al. Shrews as reservoir hosts of borna disease virus. Emerg. Infect. Dis. 12, 675–677 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pletnikov, M., Gonzalez-Dunia, D. & Stitz, L. in Borna Disease Virus and its Role in Neurobehavioral Disease (ed. Carbone, K. M.) 125–178 (ASM Press, Washington DC, 2002).

    Book  Google Scholar 

  11. Pletnikov, M. V., Moran, T. H. & Carbone, K. M. Borna disease virus infection of the neonatal rat: developmental brain injury model of autism spectrum disorders. Front. Biosci. 7, D593–D607 (2002).

    CAS  PubMed  Google Scholar 

  12. Gonzalez-Dunia, D., Sauder, C. & de la Torre, J. C. Borna disease virus and the brain. Brain Res. 44, 647–664 (1997).

    Article  CAS  Google Scholar 

  13. Gonzalez-Dunia, D. et al. Synaptic pathology in Borna disease virus persistent infection. J. Virol. 74, 3441–3448 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hornig, M., Solbrig, M., Horscroft, N., Weissenbock, H. & Lipkin, W. I. Borna disease virus infection of adult and neonatal rats: models for neuropsychiatric disease. Curr. Top. Microbiol. Immunol. 253, 157–177 (2001).

    CAS  PubMed  Google Scholar 

  15. Hornig, M., Weissenbock, H., Horscroft, N. & Lipkin, W. I. An infection-based model of neurodevelopmental damage. Proc. Natl Acad. Sci. USA 96, 12102–12107 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lipkin, W. I., Hatalski, C. G. & Briese, T. Neurobiology of Borna disease virus. J. Neurovirol. 3, S17–S20 (1997).

    PubMed  Google Scholar 

  17. Weissenbock, H., Hornig, M., Hickey, W. F. & Lipkin, W. I. Microglial activation and neuronal apoptosis in Bornavirus infected neonatal Lewis rats. Brain Pathol. 10, 260–272 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Planz, O., Bechter, K., and Schwemmle, M. in Borna Disease Virus and its Role in Neurobehavioral Disease (ed. Carbone, K. M.) 179–226 (ASM Press, Washington DC, 2002).

    Book  Google Scholar 

  19. Carbone, K. M. Borna disease virus and human disease. Clin. Microbiol. Rev. 14, 513–527 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Billich, C. et al. High-avidity human serum antibodies recognizing linear epitopes of Borna disease virus proteins. Biol. Psychiatry 51, 979–987 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Briese, T. et al. Genomic organization of Borna disease virus. Proc. Natl Acad. Sci. USA 94, 4362–4366 (1994).

    Article  Google Scholar 

  22. Cubitt, B., Oldstone, C. & de la Torre, J. C. Sequence and genome organization of Borna disease virus. J. Virol. 94, 1382–1396 (1994).

    Google Scholar 

  23. de la Torre, J. C. Molecular biology of Borna disease virus: prototype of a new group of animal viruses. J. Virol. 94, 7669–7675 (1994).

    Google Scholar 

  24. Schneemann, A., Schneider, P. A., Lamb, R. A. & Lipkin, W. I. The remarkable coding strategy of borna disease virus: a new member of the nonsegmented negative strand RNA viruses. Virology 95, 1–8 (1995).

    Article  Google Scholar 

  25. Kohno, T. et al. Fine structure and morphogenesis of Borna disease virus. J. Virol. 73, 760–766 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gosztonyi, G. & Ludwig, H. in Borna Disease (eds Koprowski, H. & Lipkin, W. I.) 39–74 (Springer, Berlin, 1995).

    Book  Google Scholar 

  27. Whelan, S. P. S., Barr, J. N. & Wertz, G. W. in Biology of Negative Strand RNA Viruses: the Power of Reverse Genetics (ed. Kawaoka, Y.) 61–119 (Springer, Berlin, 2004).

    Book  Google Scholar 

  28. Conzelmann, K. K. Reverse genetics of mononegavirales. Curr. Top. Microbiol. Immunol. 283, 1–41 (2004).

    CAS  PubMed  Google Scholar 

  29. Perez, M., Sanchez, A., Cubitt, B., Rosario, D. & de la Torre, J. C. A reverse genetics system for Borna disease virus. J. Gen. Virol. 84, 3099–3104 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Perez, M. & de la Torre, J. C. Identification of the Borna disease virus (BDV) proteins required for the formation of BDV-like particles. J. Gen. Virol. 86, 1891–1895 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Schneider, U. Novel insights into the regulation of the viral polymerase complex of neurotropic Borna disease virus. Virus Res. 111, 148–160 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Schneider, U., Naegele, M., Staeheli, P. & Schwemmle, M. Active borna disease virus polymerase complex requires a distinct nucleoprotein-to-phosphoprotein ratio but no viral X protein. J. Virol. 77, 11781–11789 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pyper, J. M. & Gartner, A. E. Molecular basis for the differential subcellular localization of the 38- and 39-kilodalton structural proteins of Borna disease virus. J. Virol. 71, 5133–5139 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rudolph, M. G. et al. Crystal structure of the borna disease virus nucleoprotein. Structure 11, 1219–1226 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Wehner, T. et al. Detection of a novel Borna disease virus-encoded 10 kDa protein in infected cells and tissues. J. Gen. Virol. 78, 2459–2466 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Schwardt, M. et al. The negative regulator of Borna disease virus polymerase is a non-structural protein. J. Gen. Virol. 86, 3163–3169 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Gonzalez-Dunia, D., Cubitt, B., Grasser, F. A. & de la Torre, J. C. Characterization of Borna disease virus p56 protein, a surface glycoprotein involved in virus entry. J. Virol. 71, 3208–3218 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Richt, J. A. et al. Processing of the Borna disease virus glycoprotein gp94 by the subtilisin-like endoprotease furin. J. Virol. 72, 4528–4533 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kiermayer, S., Kraus, I., Richt, J. A., Garten, W. & Eickmann, M. Identification of the amino terminal subunit of the glycoprotein of Borna disease virus. FEBS Lett. 531, 255–258 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Eickmann, M. et al. Maturation of Borna disease virus glycoprotein. FEBS Lett. 579, 4751–4756 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Poch, O., Blumberg, B. M., Bougueleret, L. & Tordo, N. Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. J. Gen. Virol. 71, 1153–1162 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Tordo, N., DeHaan, P., Goldbach, R. & Poch, O. Evolution of negative-stranded RNA genomes. Semin. Virol. 3, 341–357 (1992).

    CAS  Google Scholar 

  43. Gonzalez-Dunia, D., Cubitt, B. & de la Torre, J. C. Mechanism of Borna disease virus entry into cells. J. Virol. 72, 783–788 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Perez, M., Watanabe, M., Whitt, M. A. & de la Torre, J. C. N-terminal domain of Borna disease virus G (p56) protein is sufficient for virus receptor recognition and cell entry. J. Virol. 75, 7078–7085 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cubitt, B. & de la Torre, J. C. Borna disease virus (BDV), a nonsegmented RNA virus, replicates in the nuclei of infected cells where infectious BDV ribonucleoproteins are present. J. Virol. 68, 1371–1381 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cros, J. F. & Palese, P. Trafficking of viral genomic RNA into and out of the nucleus: influenza, Thogoto and Borna disease viruses. Virus Res. 95, 3–12 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Goldfarb, D. S., Corbett, A. H., Mason, D. A., Harreman, M. T. & Adam, S. A. Importin α: a multipurpose nuclear-transport receptor. Trends Cell Biol. 14, 505–514 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Kobayashi, T. et al. Nuclear targeting activity associated with the amino terminal region of the Borna disease virus nucleoprotein. Virology 243, 188–197 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Shoya, Y. et al. Two proline-rich nuclear localization signals in the amino- and carboxyl-terminal regions of the Borna disease virus phosphoprotein. J. Virol. 72, 9755–9762 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wolff, T., Unterstab, G., Heins, G., Richt, J. A. & Kann, M. Characterization of an unusual importin α binding motif in the Borna disease virus p10 protein which directs nuclear import. J. Biol. Chem. 277, 12151–12157 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Walker, M. P. & Lipkin, W. I. Characterization of the nuclear localization signal of the borna disease virus polymerase. J. Virol. 76, 8460–8467 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wolff, T., Pfleger, R., Wehner, T., Reinhardt, J. & Richt, J. A. A short leucine-rich sequence in the Borna disease virus p10 protein mediates association with the viral phospho- and nucleoproteins. J. Gen. Virol. 81, 939–947 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Kobayashi, T. et al. Modulation of Borna disease virus phosphoprotein nuclear localization by the viral protein X encoded in the overlapping open reading frame. J. Virol. 77, 8099–8107 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kobayashi, T. et al. Borna disease virus nucleoprotein requires both nuclear localization and export activities for viral nucleocytoplasmic shuttling. J. Virol. 75, 3404–3412 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yanai, H. et al. A methionine-rich domain mediates CRM1-dependent nuclear export activity of Borna disease virus phosphoprotein. J. Virol. 80, 1121–1129 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schneemann, A., Schneider, P. A., Kim, S. & Lipkin, W. I. Identification of signal sequences that control transcription of Borna disease virus, a nonsegmented, negative-strand RNA virus. J. Virol. 94, 6514–6522 (1994).

    Google Scholar 

  57. Schneider, P. A., Kim, R. & Lipkin, W. I. Evidence for translation of the Borna disease virus G protein by leaky ribosomal scanning and ribosomal reinitiation. J. Virol. 71, 5614–5619 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cubitt, B., Ly, C. & de La Torre, J. C. Identification and characterization of a new intron in Borna disease virus. J. Gen. Virol. 82, 641–646 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Cubitt, B., Oldstone, C., Valcarcel, J. & de la Torre, J. C. RNA splicing contributes to the generation of mature mRNAs of Borna disease virus, a non-segmented negative-strand RNA virus. Virus Res. 94, 69–79 (1994).

    Article  Google Scholar 

  60. Schneider, P. A., Schneemann, A. & Lipkin, W. I. RNA splicing in Borna disease virus, a nonsegmented, negative-strand RNA virus. J. Virol. 94, 5007–5012 (1994).

    Google Scholar 

  61. Tomonaga, K. et al. Identification of alternative splicing and negative splicing activity of a nonsegmented negative-strand RNA virus, Borna disease virus. Proc. Natl Acad. Sci. USA 97, 12788–12793 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Neumann, G., Whitt, M. A. & Kawaoka, Y. A decade after the generation of a negative-sense RNA virus from cloned cDNA — what have we learned? J. Gen. Virol. 83, 2635–2662 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Luytjes, W., Krystal, M., Enami, M., Pavin, J. D. & Palese, P. Amplification, expression, and packaging of foreign gene by influenza virus. Cell 59, 1107–1113 (1989).

    Article  CAS  PubMed  Google Scholar 

  64. Roberts, A. & Rose, J. K. Recovery of negative-strand RNA viruses from plasmid DNAs: a positive approach revitalizes a negative field. Virology 247, 1–6 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Fuerst, T. R., Niles, E. G., Studier, F. W. & Moss, B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc. Natl Acad. Sci. USA 83, 8122–8126 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bajramovic, J. J., Syan, S., Brahic, M., de la Torre, J. C. & Gonzalez-Dunia, D. 1-β-D-arabinofuranosylcytosine inhibits borna disease virus replication and spread. J. Virol. 76, 6268–6276 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yanai, H. et al. Development of a novel Borna disease virus reverse genetics system using RNA polymerase II promoter and SV40 nuclear import signal. Microbes Infect. 8, 1522–1529 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Schneider, U., Schwemmle, M. & Staeheli, P. Genome trimming: a unique strategy for replication control employed by Borna disease virus. Proc. Natl Acad. Sci. USA 102, 3441–3446 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Geib, T. et al. Selective virus resistance conferred by expression of Borna disease virus nucleocapsid components. J. Virol. 77, 4283–4290 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Poenisch, M., Unterstab, G., Wolff, T., Staeheli, P. & Schneider, U. The X protein of Borna disease virus regulates viral polymerase activity through interaction with the P protein. J. Gen. Virol. 85, 1895–1898 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Schneider, U., Naegele, M. & Staeheli, P. Regulation of the Borna disease virus polymerase complex by the viral nucleoprotein p38 isoform. Arch. Virol. 149, 1409–1414 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Kraus, I. et al. Open reading frame III of borna disease virus encodes a nonglycosylated matrix protein. J. Virol. 75, 12098–12104 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Flick, R. & Hobom, G. Interaction of influenza virus polymerase with viral RNA in the 'corkscrew' conformation. J. Gen. Virol. 80, 2565–2572 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Brownlee, G. G. & Sharps, J. L. The RNA polymerase of influenza a virus is stabilized by interaction with its viral RNA promoter. J. Virol. 76, 7103–7113 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Barr, J. N. & Wertz, G. W. Bunyamwera bunyavirus RNA synthesis requires cooperation of 3′- and 5′-terminal sequences. J. Virol. 78, 1129–1138 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kohl, A., Dunn, E. F., Lowen, A. C. & Elliott, R. M. Complementarity, sequence and structural elements within the 3′ and 5′ non-coding regions of the Bunyamwera orthobunyavirus S segment determine promoter strength. J. Gen. Virol. 85, 3269–3278 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Pleschka, S. et al. Conservation of coding potential and terminal sequences in four different isolates of Borna disease virus. J. Gen. Virol. 82, 2681–2690 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Rosario, D., Perez, M. & de la Torre, J. C. Functional characterization of the genomic promoter of borna disease virus (BDV): implications of 3′-terminal sequence heterogeneity for BDV persistence. J. Virol. 79, 6544–6550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Collins, P. L., Mink, M. A. & Stec, D. S. Rescue of synthetic analogs of respiratory syncytial virus genomic RNA and effect of truncations and mutations on the expression of a foreign reporter gene. Proc. Natl Acad. Sci. USA 88, 9663–9667 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li, X. & Palese, P. Mutational analysis of the promoter required for influenza virus virion RNA synthesis. J. Virol. 66, 4331–4338 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Prehaud, C., Lopez, N., Blok, M. J., Obry, V. & Bouloy, M. Analysis of the 3′ terminal sequence recognized by the Rift Valley fever virus transcription complex in its ambisense S segment. Virology 227, 189–197 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Meyer, B. J. & Southern, P. J. Sequence heterogeneity in the termini of lymphocytic choriomeningitis virus genomic and antigenomic RNAs. J. Virol. 68, 7659–7664 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Meyer, B. J. & Southern, P. J. A novel type of defective viral genome suggests a unique strategy to establish and maintain persistent lymphocytic choriomeningitis virus infections. J. Virol. 71, 6757–6764 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Meyer, B. J. & Schmaljohn, C. Accumulation of terminally deleted RNAs may play a role in Seoul virus persistence. J. Virol. 74, 1321–1331 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Volmer, R., Monnet, C. & Gonzalez-Dunia, D. Borna disease virus blocks potentiation of presynaptic activity through inhibition of protein kinase c signaling. PLoS Pathog. 2, e19 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Kamitani, W. et al. Borna disease virus phosphoprotein binds a neurite outgrowth factor, amphoterin/HMG-1. J. Virol. 75, 8742–8751 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kamitani, W. et al. Glial expression of Borna disease virus phosphoprotein induces behavioral and neurological abnormalities in transgenic mice. Proc. Natl Acad. Sci. USA 100, 8969–8974 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Unterstab, G. et al. Viral targeting of the interferon-β inducing Traf family member-associated NF-κB activator (TANK)-binding kinase-1. Proc. Natl Acad. Sci. USA 102, 13640–13645 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Volmer, R. et al. Mechanism of the antiviral action of 1-β-D-arabinofuranosylcytosine on Borna disease virus. J. Virol. 79, 4514–4518 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work conducted in J.C.T.'s laboratory was supported by a National Institutes of Health grant.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

BDV

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Torre, J. Reverse-genetic approaches to the study of Borna disease virus. Nat Rev Microbiol 4, 777–783 (2006). https://doi.org/10.1038/nrmicro1489

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1489

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing