Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The genomic code: inferring Vibrionaceae niche specialization

Abstract

The Vibrionaceae show a wide range of niche specialization, from free-living forms to those attached to biotic and abiotic surfaces, from symbionts to pathogens and from estuarine inhabitants to deep-sea piezophiles. The existence of complete genome sequences for closely related species from varied aquatic niches makes this group an excellent case study for genome comparison.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Niche specialization of the Vibrionaceae.
Figure 2: Genome mining to define Vibrionaceae characteristics.
Figure 3: Linear pairwise genome comparison of the Vibrionaceae.
Figure 4: Genomic appraisal of osmoregulation among the Vibrionaceae.

Similar content being viewed by others

References

  1. Garrity, G. M., Bell, J. A. & Lilburn, T. in Bergey's Manual of Systematic Bacteriology (eds Brenner, D. J., Krieg, N. R., Staley, J. T. & Garrity, G. M.) 491?494 (Springer, New York, 2005).

    Google Scholar 

  2. Heidelberg, J. F. et al. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406, 477?483 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen, C. Y. et al. Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res. 13, 2577?2587 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Makino, K. et al. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361, 743?749 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Ruby, E. G. et al. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc. Natl Acad. Sci. USA 102, 3004?3009 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vezzi, A. et al. Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307, 1459?1461 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Gulig, P. A., Bourdage, K. L. & Starks, A. M. Molecular pathogenesis of Vibrio vulnificus. J. Microbiol. 43, 118?131 (2005).

    CAS  PubMed  Google Scholar 

  8. Nyholm, S. V. & McFall-Ngai, M. J. The winnowing: establishing the squid?vibrio symbiosis. Nature Rev. Microbiol. 2, 632?642 (2004).

    Article  CAS  Google Scholar 

  9. Mrazek, J., Spormann, A. M. & Karlin, S. Genomic comparisons among γ-Proteobacteria. Environ. Microbiol. 8, 273?288 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Aiyar, S. E., Gaal, T. & Gourse, R. L. rRNA promoter activity in the fast-growing bacterium Vibrio natriegens. J. Bacteriol. 184, 1349?1358 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Hurley, C. C., Quirke, A., Reen, F. J. & Boyd, E. F. Four genomic islands that mark post-1995 pandemic Vibrio parahaemolyticus isolates. BMC Genomics 7, 104 (2006).

  12. Quirke, A.-M., Reen, F. J., Claesson, M. J. & Boyd, E. F. Genomic island identification in Vibrio vulnificus reveals significant genome plasticity in this human pathogen. Bioinformatics 22, 905?910 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Williams, K. P. Traffic at the tmRNA gene. J. Bacteriol. 185, 1059?1070 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Okada, K., Iida, T., Kita-Tsukamoto, K. & Honda, T. Vibrios commonly possess two chromosomes. J. Bacteriol. 187, 752?757 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Trucksis, M., Michalski, J., Deng, Y. K. & Kaper, J. B. The Vibrio cholerae genome contains two unique circular chromosomes. Proc. Natl Acad. Sci. USA 95, 14464?14469 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Campanaro, S. et al. Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains. BMC Genomics 6, 122 (2005).

  17. Schoolnik, G. K. & Yildiz, F. H. The complete genome sequence of Vibrio cholerae: a tale of two chromosomes and of two lifestyles. Genome Biol. 1, R1?R3 (2000).

    Article  Google Scholar 

  18. Xu, Q., Dziejman, M. & Mekalanos, J. J. Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc. Natl Acad. Sci. USA 100, 1286?1291 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Egan, E. S. & Waldor, M. K. Distinct replication requirements for the two Vibrio cholerae chromosomes. Cell 114, 521?530 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Egan, E. S., Lobner-Olesen, A. & Waldor, M. K. Synchronous replication initiation of the two Vibrio cholerae chromosomes. Curr. Biol. 14, R501?R502 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Abbott, J. C., Aanensen, D. M., Rutherford, K., Butcher, S. & Spratt, B. G. WebACT? an online companion for the Artemis Comparison Tool. Bioinformatics 21, 3665?3666 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Hallin, P. F. & Ussery, D. W. CBS genome atlas database: a dynamic storage for bioinformatic results and sequence data. Bioinformatics 20, 3682?3686 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Eberhard, A. et al. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20, 2444?2449 (1981).

    Article  CAS  PubMed  Google Scholar 

  24. Milton, D. L. Quorum sensing in vibrios: complexity for diversification. Int. J. Med. Microbiol. 296, 61?71 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Lupp, C. & Ruby, E. G. Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors. J. Bacteriol. 187, 3620?3629 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Henke, J. M. & Bassler, B. L. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J. Bacteriol. 186, 6902?6914 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Hammer, B. K. & Bassler, B. L. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol. 50, 101?104 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. McDougald, D. et al. Defences against oxidative stress during starvation in bacteria. Antonie Van Leeuwenhoek 81, 3?13 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. McDougald, D., Rice, S. A. & Kjelleberg, S. SmcR-dependent regulation of adaptive phenotypes in Vibrio vulnificus. J. Bacteriol. 183, 758?762 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yildiz, F. H., Liu, X. S., Heydorn, A. & Schoolnik, G. K. Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol. Microbiol. 53, 497?515 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Chatzidaki-Livanis, M., Jones, M. K. & Wright, A. C. Genetic variation in the Vibrio vulnificus group 1 capsular polysaccharide operon. J. Bacteriol. 188, 1987?1998 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kierek, K. & Watnick, P. I. Environmental determinants of Vibrio cholerae biofilm development. Appl. Environ. Microbiol. 69, 5079?5088 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ali, A., Rashid, M. H. & Karaolis, D. K. High-frequency rugose exopolysaccharide production by Vibrio cholerae. Appl. Environ. Microbiol. 68, 5773?5778 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wai, S. N., Mizunoe, Y., Takade, A., Kawabata, S. I. & Yoshida, S. I. Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation. Appl. Environ. Microbiol. 64, 3648?3655 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Watnick, P. I., Lauriano, C. M., Klose, K. E., Croal, L. & Kolter, R. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol. Microbiol. 39, 223?235 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yildiz, F. H. & Schoolnik, G. K. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc. Natl Acad. Sci. USA 96, 4028?4033 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matz, C. et al. Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. Proc. Natl Acad. Sci. USA 102, 16819?16824 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yip, E. S., Grublesky, B. T., Hussa, E. A. & Visick, K. L. A novel, conserved cluster of genes promotes symbiotic colonization and σ-dependent biofilm formation by Vibrio fischeri. Mol. Microbiol. 57, 1485?1498 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Merrell, D. S. & Camilli, A. The cadA gene of Vibrio cholerae is induced during infection and plays a role in acid tolerance. Mol. Microbiol. 34, 836?849 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Merrell, D. S. & Camilli, A. Regulation of Vibrio cholerae genes required for acid tolerance by a member of the 'ToxR-like' family of transcriptional regulators. J. Bacteriol. 182, 5342?5350 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Smith, B. & Oliver, J. D. In situ and in vitro gene expression by Vibrio vulnificus during entry into, persistence within, and resuscitation from the viable but nonculturable state. Appl. Environ. Microbiol. 72, 1445?1451 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kapfhammer, D., Karatan, E., Pflughoeft, K. J. & Watnick, P. I. Role for glycine betaine transport in Vibrio cholerae osmoadaptation and biofilm formation within microbial communities. Appl. Environ. Microbiol. 71, 3840?3847 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pflughoeft, K. J., Kierek, K. & Watnick, P. I. Role of ectoine in Vibrio cholerae osmoadaptation. Appl. Environ. Microbiol. 69, 5919?5927 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Karaolis, D. K. et al. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc. Natl Acad. Sci. USA 95, 3134?3139 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Waldor, M. K. & Mekalanos, J. J. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272, 1910?1914 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Huq, A., West, P. A., Small, E. B., Huq, M. I. & Colwell, R. R. Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae serovar 01 associated with live copepods in laboratory microcosms. Appl. Environ. Microbiol. 48, 420?424 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Islam, M. S., Drasar, B. S. & Sack, R. B. Probable role of blue-green algae in maintaining endemicity and seasonality of cholera in Bangladesh: a hypothesis. J. Diarrhoeal Dis. Res. 12, 245?256 (1994).

    CAS  PubMed  Google Scholar 

  48. Kaper, J. B., Morris, J. G. Jr. & Levine, M. M. Cholera. Clin. Microbiol. Rev. 8, 48?86 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tamplin, M. L., Gauzens, A. L., Huq, A., Sack, D. A. & Colwell, R. R. Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl. Environ. Microbiol. 56, 1977?1980 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chiavelli, D. A., Marsh, J. W. & Taylor, R. K. The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Appl. Environ. Microbiol. 67, 3220?3225 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kirn, T. J., Jude, B. A. & Taylor, R. K. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature 438, 863?866 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Zampini, M. et al. Vibrio cholerae persistence in aquatic environments and colonization of intestinal cells: involvement of a common adhesion mechanism. FEMS Microbiol. Lett. 244, 267?273 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. McFall-Ngai, M. J. & Ruby, E. G. Sepiolids and vibrios: when first they meet. BioScience 48, 257?265 (1998).

    Article  Google Scholar 

  54. Stabb, E. V. & Ruby, E. G. Contribution of pilA to competitive colonization of the squid Euprymna scolopes by Vibrio fischeri. Appl. Environ. Microbiol. 69, 820?826 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nyholm, S. V., Stabb, E. V., Ruby, E. G. & McFall-Ngai, M. J. Establishment of an animal?bacterial association: recruiting symbiotic vibrios from the environment. Proc. Natl Acad. Sci. USA 97, 10231?10235 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Riemann, L. & Azam, F. Widespread N-acetyl-D-glucosamine uptake among pelagic marine bacteria and its ecological implications. Appl. Environ. Microbiol. 68, 5554?5562 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Reguera, G. & Kolter, R. Virulence and the environment: a novel role for Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin. J. Bacteriol. 187, 3551?3555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Watnick, P. I., Fullner, K. J. & Kolter, R. A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J. Bacteriol. 181, 3606?3609 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Cowell, R. R. et al. in Vibrios in the environment (ed. Colwell, R. R.) 367?387 (John Wiley & Sons, New York, 1984).

    Google Scholar 

  60. Huq, A. et al. Colonization of the gut of the blue crab (Callinectes sapidus) by Vibrio cholerae. Appl. Environ. Microbiol. 52, 586?588 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Boyd, E. F., Heilpern, A. J. & Waldor, M. K. Molecular analyses of a putative CTXphi precursor and evidence for independent acquisition of distinct CTX(phi)s by toxigenic Vibrio cholerae. J. Bacteriol. 182, 5530?5538 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jermyn, W. S. & Boyd, E. F. Characterization of a novel Vibrio pathogenicity island (VPI-2) encoding neuraminidase (nanH) among toxigenic Vibrio cholerae isolates. Microbiology 148, 3681?3693 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Galen, J. E. et al. Role of Vibrio cholerae neuraminidase in the function of cholera toxin. Infect. Immun. 60, 406?415 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Schneider, D. R. & Parker, C. D. Purification and characterization of the mucinase of Vibrio cholerae. J. Infect. Dis. 145, 474?482 (1982).

    Article  CAS  PubMed  Google Scholar 

  65. Islam, M. S. et al. Chemotaxis between Vibrio cholerae O1 and a blue-green alga, Anabaena sp. Epidemiol. Infect. 134, 645?648 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Islam, M. S. et al. Involvement of the hap gene (mucinase) in the survival of Vibrio cholerae O1 in association with the blue-green alga, Anabaena sp. Can. J. Microbiol. 48, 793?800 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Jermyn, W. S. & Boyd, E. F. Molecular evolution of Vibrio pathogenicity island-2 (VPI-2): mosaic structure among Vibrio cholerae and Vibrio mimicus natural isolates. Microbiology 151, 311?322 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Meibom, K. L., Blokesch, M., Dolganov, N. A., Wu, C. Y. & Schoolnik, G. K. Chitin induces natural competence in Vibrio cholerae. Science 310, 1824?1827 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Faruque, S. M. et al. Genetic diversity and virulence potential of environmental Vibrio cholerae population in a cholera-endemic area. Proc. Natl Acad. Sci. USA 101, 2123?2128 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dziejman, M. et al. Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc. Natl Acad. Sci. USA 99, 1556?1561 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. O'Shea, Y. A. et al. The Vibrio seventh pandemic island-II is a 26.9 kb genomic island present in Vibrio cholerae El Tor and O139 serogroup isolates that shows homology to a 43.4 kb genomic island in V. vulnificus. Microbiology 150, 4053?4063 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Dziejman, M. et al. Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. Proc. Natl Acad. Sci. USA 102, 3465?3470 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Purdy, A., Rohwer, F., Edwards, R., Azam, F. & Bartlett, D. H. A glimpse into the expanded genome content of Vibrio cholerae through identification of genes present in environmental strains. J. Bacteriol. 187, 2992?3001 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Blake, P. A., Weaver, R. E. & Hollis, D. G. Diseases of humans (other than cholera) caused by vibrios. Annu. Rev. Microbiol. 34, 341?367 (1980).

    Article  CAS  PubMed  Google Scholar 

  75. Daniels, N. A. et al. Vibrio parahaemolyticus infections in the United States, 1973?1998. J. Infect. Dis. 181, 1661?1666 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Matsumoto, C. et al. Pandemic spread of an O3:K6 clone of Vibrio parahaemolyticus and emergence of related strains evidenced by arbitrarily primed PCR and toxRS sequence analyses. J. Clin. Microbiol. 38, 578?585 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Linkous, D. A. & Oliver, J. D. Pathogenesis of Vibrio vulnificus. FEMS Microbiol. Lett. 174, 207?214 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Strom, M. S. & Paranjpye, R. N. Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect. 2, 177?188 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Nilsson, W. B., Paranjype, R. N., DePaola, A. & Strom, M. S. Sequence polymorphism of the 16S rRNA gene of Vibrio vulnificus is a possible indicator of strain virulence. J. Clin. Microbiol. 41, 442?446 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Panicker, G., Vickery, M. C. & Bej, A. K. Multiplex PCR detection of clinical and environmental strains of Vibrio vulnificus in shellfish. Can. J. Microbiol. 50, 911?922 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Rosche, T. M., Yano, Y. & Oliver, J. D. A rapid and simple PCR analysis indicates there are two subgroups of Vibrio vulnificus which correlate with clinical or environmental isolation. Microbiol. Immunol. 49, 381?389 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Boucher, Y. et al. Recovery and evolutionary analysis of complete integron gene cassette arrays from Vibrio. BMC Evol. Biol. 6, 3 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bartlett, D. H. Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta. 1595, 367?381 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Allen, E. E., Facciotti, D. & Bartlett, D. H. Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl. Environ. Microbiol. 65, 1710?1720 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in E.F.B.'s laboratory is funded by a Science Foundation Ireland (SFI) Research Frontier programme grant and a SFI Investigator programme grant. F.J.R. is funded by an Irish Research Council Science Engineering and Technology Postdoctoral fellowship. S.A.M. is funded by SFI and a Cork City Council grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Fidelma Boyd.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Escherichia coli

Photobacterium profundum SS9

Pseudoaltermonas haloplanktis

Shewanella oneidensis

Vibrio alginolyticus

Vibrio cholerae N16961

Vibrio fischeri ES114

Vibrio lentus

Vibrio parahaemolyticus RIMD 2210633

Vibrio salmonicida

Vibrio splendidus

Vibrio vulnificus CMCP6

Vibrio vulnificus YJ016

FURTHER INFORMATION

E. Fidelma Boyd's homepage

Artemis Comparison Tool

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reen, F., Almagro-Moreno, S., Ussery, D. et al. The genomic code: inferring Vibrionaceae niche specialization. Nat Rev Microbiol 4, 697–704 (2006). https://doi.org/10.1038/nrmicro1476

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1476

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing