Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Non-inherited antibiotic resistance

Abstract

In addition to their impressive, well-publicized and well-researched propensity to evolve and acquire genetically determined mechanisms for resistance to antibiotics, bacteria that are inherently susceptible to these drugs can also be phenotypically refractory to their action. This phenomenon of 'non-inherited resistance' to antibiotics has been known since the beginning of the antibiotic era but, relative to inherited resistance, it has been given little attention. Here, we review the in vitro and in vivo evidence for the different forms of non-inherited resistance and the mechanisms responsible. With the aid of a simple mathematical model and computer simulations, we show how non-inherited resistance could extend the duration of antibiotic treatment, cause treatment failure and promote the generation and ascent of inherited resistance in treated patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Viability of exponential-phase and stationary-phase bacteria in the presence of antibiotics.
Figure 2: The effect of non-inherited resistance on the course of antibiotic treatment (model simulation results).

Similar content being viewed by others

References

  1. Rubin, R. J. et al. The economic impact of Staphylococcus aureus infection in New York city hospitals. Emerg. Infect. Dis. 5, 9–17 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lipsitch, M. The rise and fall of antimicrobial resistance. Trends Microbiol. 9, 438–444 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Levy, S. B. & Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nature Med. 10, S122–S129 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Fuller, J. D. & Low, D. E. A review of Streptococcus pneumoniae infection treatment failures associated with fluoroquinolone resistance. Clin. Infect. Dis. 41, 118–121 (2005).

    Article  PubMed  Google Scholar 

  5. Cosgrove, S. E. The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay and health care costs. Clin. Infect. Dis. 42, S82–S89 (2006).

    Article  PubMed  Google Scholar 

  6. Andriole, V. T. The quinolones: past, present and future. Clin. Infect. Dis. 40, S425–S431 (2005).

    Google Scholar 

  7. Monnet, D. L. in The Global Threat of Antibiotic Resistance: Exploring Roads towards Concerted Action (Dag Hammarskjold Foundation, Uppsala Sweden, 1994).

    Google Scholar 

  8. Lomovskaya, O. et al. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob. Agents Chemother. 45, 105–116 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boehr, D. D. et al. Broad-spectrum peptide inhibitors of aminoglycoside antibotic resistance enzymes. Chem. Biol. 10, 189–196 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Mullin, S., Mani, N. & Grossman, T. H. Inhibition of antibiotic efflux in bacteria by the novel multidrug resistance inhibitors biricodar (VX-710) and timcodar (VX-853). Antimicrob. Agents Chemother. 48, 4171–4176 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moloughney, J. G., Thomas, J. D. & Toney, J. H. Novel IMP-1 metallo-β-lactamase inhibitors can reverse meropenem resistance in Escherichia coli expressing IMP-1. FEMS Microbiol. Lett. 243, 65–71 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Lomovskaya, O. & Bostian, K. A. Practical applications and feasibility of efflux pump inhibitors in the clinic — a vision for applied use. Biochem. Pharmacol. 30, 910–918 (2006).

    Article  Google Scholar 

  13. Feikin, D. R. et al. Mortality from invasive pneumococcal pneumonia in the era of antibiotic resistance, 1995–1997. Am. J. Public Health 90, 223–229 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu, V. L. et al. An international prospective study of pneumococcal bacteremia: correlation with in vitro resistance, antibiotics administered and clinical outcome. Clin. Infect. Dis. 37, 230–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Austrian, R. & Gold, J. Pneumococcal bacteremia with especial reference to bacteremic pneumococcal pneumonia. Ann. Intern. Med. 60, 759–776 (1964).

    Article  CAS  PubMed  Google Scholar 

  16. Finland, M. Adventures with antibacterial drugs. Clin. Pharmacol. Ther. 13, 469–511 (1972).

    Article  CAS  PubMed  Google Scholar 

  17. Lynch, J. P. & Zhanel, G. G. Escalation of antimicrobial resistance among Streptococcus pneumoniae: implications for therapy. Semin. Respir. Crit. Care Med. 26, 575–616 (2005).

    Article  PubMed  Google Scholar 

  18. Sorensen, T. I., Nielson, G., Anderson, P. & Teasdale, T. Genetic and environmental influences on premature death in adult adoptees. N. Engl. J. Med. 318, 727–732 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Spitznagel, J. K. in Mechanisms of Microbial Diseases (eds Schaechter, M., Medhoff, M. G. & Eisenstein, B. J.) 90–114 (Williams and Wilkins, Baltimore USA, 1993).

    Google Scholar 

  20. Zeigler, H. K. in Mechanisms of Microbial Diseases (eds Schaechter, M., Medhoff, M. G. &Eisenstein, B. J.) 114–153 (Williams and Wilkins, Baltimore USA, 1993).

    Google Scholar 

  21. Levin, B. R. & Antia, R. Why we don't get sick: the within-host population dynamics of bacterial infections. Science 292, 1112–1115 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Janeway, C. A. & Travers, P. Immunobiology: The Immune System in Health and Disease (Current Biology Limited, London, 1996).

    Google Scholar 

  23. Lee, S. W., Foley, E. J. & Epstein, J. A. Mode of action of penicillin I. Bacterial growth and penicillin activity —Staphylococcus aureus FDA. J. Bacteriol. 48, 393–399 (1944).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. McDermott, W. Microbial persistence. Yale J. Biol. Med. 30, 257–291 (1958).

    CAS  PubMed  Google Scholar 

  25. Paramasivan, C. N., Sulochana, S., Kubendiran, G., Venkatesan, P. & Mitchison, D. A. Bactericidal action of gatifloxacin, rifampin, and isoniazid on logarithmic- and stationary-phase cultures of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 49, 627–631 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Herbert, D. et al. Bactericidal action of ofloxacin, sulbactam-ampicillin, rifampin, and isoniazid on logarithmic- and stationary-phase cultures of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 40, 2296–2299 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tuomanen, E., Cozens, R., Tosch, W., Zak, O. & Tomasz, A. The rate of killing of Escherichia coli by β-lactam antibiotics is strictly proportional to the rate of bacterial growth. J. Gen. Microbiol. 132, 1297–1304 (1986).

    CAS  PubMed  Google Scholar 

  28. Zeiler, H. J. & Voigt, W. H. Efficacy of Ciprofloxacin in stationary phase bacteria in vivo. Am. J. Med. 82, 87–90 (1987).

    CAS  PubMed  Google Scholar 

  29. Anderl, J. N., Zahller, J., Roe, F. & Stewart, P. S. Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 47, 1251–1256 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eagle, H. Experimental approach to the problem of treatment failure with penicillin. Am. J. Med. 13, 389–399 (1952).

    Article  CAS  PubMed  Google Scholar 

  31. Eagle, H., Fleischman, R. & Musselman, A. D. The bactericidal action of penicillin in vivo: the participation of the host, and the slow recovery of the surviving organisms. Ann. Intern. Med. 33, 544–571 (1950).

    Article  CAS  PubMed  Google Scholar 

  32. Eagle, H. The effect of the size of the inoculum and the age of the infection on the curative dose of penicillin in experimental infections with streptococci, pneumococci, and Treponema pallidum. J. Exp. Med. 90, 595–607 (1949).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Darnell, J. E., Pesch, B. B. & Glaser, R. J. Effect of penicillin on group A streptococci in vivo in the absence of leucocytes. J. Clin. Invest. 34, 1237–1241 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wood, W. B. & Smith, M. R. An experimental analysis of the curative action of penicillin in acute bacterial infections. 1. The relationship of bacterial growth rates to the antimicrobial effect of penicillin. J. Exp. Med. 103, 487–498 (1956).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Smith, M. R. & Wood, W. B. An experimental analysis of the curative action of penicillin in acute bacterial infections. 3. The effect of suppuration upon the antibacterial action of the drug. J. Exp. Med. 103, 509–522 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bull, J. J., Levin, B. R., DeRouin, T., Walker, N. & Bloch, C. A. Dynamics of success and failure in phage and antibiotic therapy in experimental infections. BMC Microbiol. 2, 35 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Negri, M. C., Lipsitch, M., Blazquez, J., Levin, B. R. & Baquero, F. Concentration-dependent selection of small phenotypic differences in TEM β-lactamase-mediated antibiotic resistance. Antimicrob. Agents Chemother. 44, 2485–2491 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Smith, H. W. & Hugggins, M. B. Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J. Gen. Microbiol. 128, 307–318 (1982).

    CAS  PubMed  Google Scholar 

  39. Zappala, R. The Population Biology of Antibiotic Treatment Failure in Immunecompetent Mice. Ph. D. Dissertation, Emory Univ. (2004).

    Google Scholar 

  40. McCune, R. M. & Tompsett, R. Fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. 1. The persistence of drug-susceptible tubercle bacilli in the tissues despite prolonged antimicrobial therapy. J. Exp. Med. 104, 737–762 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Toman, K. Bacterial persistence in leprosy. Int. J. Lepr. Other Mycobact. Dis. 49, 205–217 (1981).

    CAS  PubMed  Google Scholar 

  42. Musser, J. M., Gray, B. M., Schlievert, P. M. & Pichichero, M. E. Streptococcus pyogenes pharyngitis — characterization of strains by multilocus enzyme genotype, M-protein and T-protein serotype, and pyrogenic exotoxin gene probing. J. Clin. Microbiol. 30, 600–603 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Fitoussi, F. et al. Molecular DNA analysis for differentiation of persistence or relapse from recurrence in treatment failure of Streptococcus pyogenes pharyngitis. Eur. J. Clin. Microbiol. Infect. Dis. 16, 233–237 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Clement, S. et al. Evidence of an intracellular reservoir in the nasal mucosa of patients with recurrent Staphylococcus aureus rhinosinusitis. J. Infect. Dis. 192, 1023–1028 (2005).

    Article  PubMed  Google Scholar 

  45. Bigger, W. B. Treatment of staphylococcal infections with Dexicillin. Lancet 244, 497–500 (1944).

    Article  Google Scholar 

  46. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Barclay, M. L., Begg, E. J. & Chambers, S. T. Adaptive resistance following single doses of gentamicin in a dynamic in vitro model. Antimicrob. Agents Chemother. 36, 1951–1957 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wiuff, C. et al. Phenotypic tolerance: antibiotic enrichment of non-inherited resistance in bacterial populations. Antimicrob. Agents Chemother. 49, 1483–1494 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Levin, B. R. Microbiology. Non-inherited resistance to antibiotics. Science 305, 1578–1579 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Kussell, E., Kishony, R., Balaban, N. Q. & Leibler, S. Bacterial persistence: a model of survival in changing environments. Genetics 169, 1807–1814 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Metris, A., Le Marc, Y., Elfwing, A., Ballagi, A. & Baranyi, J. Modelling the variability of lag times and the first generation times of single cells of E. coli. Int. J. Food Microbiol. 100, 13–19 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Debbia, E. A., Roveta, S., Schito, A. M., Gualco, L. & Marchese, A. Antibiotic persistence: the role of spontaneous DNA repair response. Microb. Drug Resist. 7, 335–342 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Miller, C. et al. SOS response induction by β-lactams and bacterial defense against antibiotic lethality. Science 305, 1629–1631 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Keren, I., Shah, D., Spoering, A., Kaldalu, N. & Lewis, K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186, 8172–8180 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moyed, H. S. & Bertrand, K. P. h ipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol. 155, 768–775 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lewis, K. Persister cells and the riddle of biofilm survival. Biochemistry (Moscow) 70, 267–274 (2005).

    Article  CAS  Google Scholar 

  57. Tomasz, A., Albino, A. & Zanati, E. Multiple antibiotic resistance in a bacterium with suppressed autolytic system. Nature 227, 138–140 (1970).

    Article  CAS  PubMed  Google Scholar 

  58. Rodriguez, C. A. et al. Tolerance to vancomycin in pneumococci: detection with a molecular marker and assessment of clinical impact. J. Infect. Dis. 190, 1481–1487 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Rajashekaraiah, K. R. et al. Clinical significance of tolerant strains of Staphylococcus aureus in patients with endocarditis. Ann. Intern. Med. 93, 796–801 (1980).

    Article  CAS  PubMed  Google Scholar 

  60. Tomasz, A. & de Vegvar, M. L. Construction of a penicillin-tolerant laboratory mutant of Staphylococcus aureus. Eur. J. Clin. Microbiol. 5, 710–713 (1986).

    Article  CAS  PubMed  Google Scholar 

  61. Tuomanen, E., Durack, D. T. & Tomasz, A. Antibiotic tolerance among clinical isolates of bacteria. Antimicrob. Agents Chemother. 30, 521–527 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tuomanen, E. Phenotypic tolerance: the search for β-lactam antibiotics that kill nongrowing bacteria. Rev. Infect. Dis. 8 (Suppl. 3), 279–291 (1986).

    Article  Google Scholar 

  63. Tuomanen, E. & Tomasz, A. Mechanism of phenotypic tolerance of nongrowing pneumococci to β-lactam antibiotics. Scand. J. Infect. Dis. 74, S102–S112 (1990).

    Google Scholar 

  64. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Lewis, K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45, 999–1007 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stewart, P. S. & Costerton, J. W. Antibiotic resistance of bacteria in biofilms. Lancet 358, 135–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Anderl, J. N., Franklin, M. J. & Stewart, P. S. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 44, 1818–1824 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gilbert, P., Collier, P. J. & Brown, M. R. W. Influence of growth-rate on susceptibility to antimicrobial agents — biofilms, cell-cycle, dormancy, and stringent response. Antimicrob. Agents Chemother. 34, 1865–1868 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Southey-Pillig, C. J., Davies, D. G. & Sauer, K. Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. J. Bacteriol. 187, 8114–8126 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Elowitz, M. B., Levine, A. J., Siggia, E. & Swain, P. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Andes, D. & Craig, W. A. Animal model pharmacokinetics and pharmacodynamics: a critical review. Int. J. Antimicrob. Agents 19, 261–268 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Mouton, J. W., van Ogtrop, M. L., Andes, D. & Craig, W. A. Use of pharmacodynamic indices to predict efficacy of combination therapy in vivo. Antimicrob. Agents Chemother. 43, 2473–2478 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Drusano, G. L. Antimicrobial pharmacodynamics: critical interactions of 'bug and drug'. Nature Rev. Microbiol. 2, 289–300 (2004).

    Article  CAS  Google Scholar 

  74. Bettegowda, C. et al. Imaging bacterial infections with radiolabeled 1-(2′-deoxy-2′-fluoro-b-D-arabinofuranosyl)-5-iodouracil. Proc. Natl Acad. Sci. USA 102, 1145–1150 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Harris, K. A. Jr, Mukundan, U., Musser, J. M., Kreiswirth, B. N. & Lalitha, M. K. Genetic diversity and evidence for acquired antimicrobial resistance in Mycobacterium tuberculosis at a large hospital in South India. Int. J. Infect. Dis. 4, 140–147 (2000).

    Article  PubMed  Google Scholar 

  76. Kolls, J. K. & Nelson, S. Immune modulation in the treatment of respiratory infection. Respir. Res. 1, 9–11 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Regoes, R. R. et al. Pharmacodynamic functions: a multiparameter approach to the design of antibiotic treatment regimens. Antimicrob. Agents Chemother. 48, 3670–3676 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lipsitch, M. & Levin, B. R. The population dynamics of antimicrobial chemotherapy. Antimicrob. Agents Chemother. 41, 363–373 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank F. Baquero, K. Drlica, P. Small and C. Wiuff for comments and suggestions. This enterprise was supported by grants from the US National Institutes of Health and the British Wellcome Trust (IPRAVE Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce R. Levin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Entrez Genome Project

Escherichia coli K12

Mycobacterium tuberculosis

Staphylococcus aureus

Streptococcus pneumoniae

Treponema pallidum

FURTHER INFORMATION

Author's homepage

Bill and Melinda Gates Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levin, B., Rozen, D. Non-inherited antibiotic resistance. Nat Rev Microbiol 4, 556–562 (2006). https://doi.org/10.1038/nrmicro1445

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1445

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing