Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signalling and oxidant adaptation in Candida albicans and Aspergillus fumigatus

Key Points

  • This review provides an analysis of the signal transduction pathways that contribute to oxidant-stress adaptation in Candida albicans and Aspergillus fumigatus.

  • In addition to the signal pathways, downstream effector proteins and their activities in oxidant neutralization are discussed.

  • An analysis especially of the two-component signal transduction proteins and the relationship of these proteins to the Hog1p MAPK are discussed including differences among the two-component eukaryotic and prokaryotic proteins.

  • The relationship of in vitro analysis of oxidant adaptation is extended in this review to a discussion of survival of pathogens in phagocytic cells.

  • The neutrophil is the primary response cell in protection. Comparisons are made between PMNs and monocytes in their interactions with C. albicans.

  • The pathogenesis of candidiasis and invasive aspergillosis is presented, and the early events in these processes are discussed in relationship to phagocyte functions.

Abstract

Candida species and Aspergillus fumigatus were once thought to be relatively benign organisms. However, it is now known that this is not the case ? Candida species rank among the top four causes of nosocomial infectious diseases in humans and A. fumigatus is the most deadly mould, often having a 90% mortality rate in immunocompromised transplant recipients. Adaptation to stress, including oxidative stress, is a necessary requisite for survival of these organisms during infection. Here, we describe the latest information on the signalling pathways and target proteins that contribute to oxidant adaptation in C. albicans and A. fumigatus, which has been obtained primarily through the analysis of mutants or inference from genome annotation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Candidiasis and invasive aspergillosis.
Figure 2: The high osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway in fungi.
Figure 3: The two-component signal proteins of Candida albicans and their domains.
Figure 4: The processes that precede and follow phagocytosis of Candida albicans yeast cells by neutrophils (left) and monocytes (right).

Similar content being viewed by others

References

  1. Wisplinghoff, H. et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 39, 309?317 (2004).

    PubMed  Google Scholar 

  2. Ascioglu, S. et al. Defining opportunistic fungal infections in immunocompromised patients with cancer and hematopoietic stem cell transplants: an international consensus. Clin. Infect. Dis. 34, 7?14 (2002).

    CAS  PubMed  Google Scholar 

  3. Stover, B. H. et al. Nosocomial infection rates in US children's hospitals neonatal and pediatric intensive care units. Am. J. Infect. Control 29, 152?157 (2001).

    CAS  PubMed  Google Scholar 

  4. Wilson, L. S. et al. The direct cost and incidence of systemic fungal infections. Value Health 5, 26?34 (2002).

    PubMed  Google Scholar 

  5. Wisplinghoff, H. et al. Nosocomial blood stream infections in pediatric patients in US hospitals: epidemiology, clinical features, and susceptibilities. Pediatr. Infect. Dis. J. 22, 686?691 (2003).

    PubMed  Google Scholar 

  6. Wenzel, R. P. Nosocomial candidemia: risk factors and attributable mortality. Clin. Infect. Dis. 20, 153?154 (1995). One of the first studies on the estimation of mortality in the background of immunocompromised patients.

    Google Scholar 

  7. Anderson, J. B. Antifungal-drug resistance: mechanisms and pathogen fitness. Nature Rev. Microbiol. 3, 547?556 (2005).

    CAS  Google Scholar 

  8. Singh, N. & Paterson, D. L. Aspergillus infections in transplant recipients. Clin. Microbiol. Rev. 18, 44?69 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Denning, D. W. Invasive aspergillosis. Clin. Infect. Dis. 26, 781?803 (1998).

    CAS  PubMed  Google Scholar 

  10. Yamazaki, T. et al. Epidemiology of visceral mycoses: analysis of data in the annual of the pathological autopsy cases in Japan. J. Clin. Microbiol. 37, 1732?1738 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Casadevall, A., Dadachova, E. & Pirofski, L. Passive antibody therapy for infectious diseases. Nature Rev. Microbiol. 2, 695?703 (2004).

    CAS  Google Scholar 

  12. Calderone, R. In Candida and Candidiasis Ch.1 (ed. Calderone, R.) 3?15 (ASM Press, Washington DC, 2002).

    Google Scholar 

  13. Bruno, V. M. & Mitchell, A. Largescale gene function analysis in Candida albicans. Trends Microbiol. 12, 157?161 (2004).

    CAS  PubMed  Google Scholar 

  14. Denning, D. W., Anderson, M. J., Turner, G., Latge, J. -P. & Bennett, J. W. Sequencing the Aspergillus fumigatus genome. Lancet Infect. Dis. 2, 251?253 (2002).

    CAS  PubMed  Google Scholar 

  15. Jones, T. et al. The diploid genome sequence of Candida albicans. Proc. Natl Acad. Sci. USA 101, 7329?7334 (2004).

    CAS  PubMed  Google Scholar 

  16. Nierman, W. et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438, 1151?1156 (2005).

    CAS  PubMed  Google Scholar 

  17. Magee, B. B. & Magee, P. T. Through a glass opaquely: the biological significance of mating in Candida albicans. Science 289, 310?313 (2004).

    Google Scholar 

  18. Rustchenko, E. & Sherman, F. Genetic instability in Candida albicans. In Pathogenic Fungi in Humans and Animals (ed. Howard, D. H.) 723?776 (Marcel Dekker, New York, 2003).

    Google Scholar 

  19. Romani, L. Innate immunity to fungi: the art of speed and specificity. In Pathogenic Fungi: Host Interactions and Emerging Strategies for Control (eds San Blas, G. & Calderone, R.) 167?214 (Calister Academic Press, Norfolk, 2004).

    Google Scholar 

  20. Cole, G., Seshan, K. R., Lynn, K. T. & Franco, M. Gastrointestinal candidiasis: histopathology of Candida?host interactions in a murine model. Mycol. Res. 4, 385?408 (1993).

    Google Scholar 

  21. Calderone, R. & Fonzi, W. Virulence attributes of Candida albicans. Trends Microbiol. 9, 327?335 (2001).

    CAS  PubMed  Google Scholar 

  22. Phillipe, B. et al. Killing of Aspergillus fumigatus is mediated by reactive oxygen intermediates. Infect. Immun. 71, 3034?3042 (2003).

    Google Scholar 

  23. Dennis, C. G. et al. Effect of amphotericin B and micafungin combination on survival, histopathology and fungal burden in experimental aspergillosis in the p47phox−/− mouse model of chronic granulomatous disease. Antimicrob. Agents Chemother. 50, 422?427 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Aratani, Y. et al. Relative contributions of myeloperoxidase and NADPH-oxidase to the early host defense against pulmonary infections with Candida albicans and Aspergillus fumigatus. Med. Mycol. 40, 557?563 (2002).

    CAS  PubMed  Google Scholar 

  25. Rex, J. H., Bennett, J. E., Gallin, J. I., Malech, H. L. & Melnick, D. A. Normal and deficient neutrophils can cooperate to damage Aspergillus fumigatus hyphae. J. Infect. Dis. 162, 523?528 (1990).

    CAS  PubMed  Google Scholar 

  26. Washburn, R., Gallin, J. & Bennett, J. Oxidative killing of Aspergillus fumigatus proceeds by parallel myeloperoxidase-dependent and -independent pathways. Infect. Immun. 55, 2088?2092 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bellocchio, S. et al. TLRs govern neutrophil activity in aspergillosis. J. Immunol. 173, 7406?7415 (2004).

    CAS  PubMed  Google Scholar 

  28. Aratani, Y. et al. Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase. Infect. Immun. 67, 1828?1836 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Aratani, Y. et al. Critical role of myeloperoxidase and nicotinamide adenine dinucleotide phosphate-oxidase in high-burden systemic infection of mice with Candida albicans. J. Infect. Dis. 185, 1833?1837 (2002).

    CAS  PubMed  Google Scholar 

  30. Lefkowitz, S. S., Gelderman, M. P., Lefkowitz, D. L., Moguilevsky, N. & Bollen, A. Phagocytosis and intracellular killing of Candida albicans by macrophages exposed to myeloperoxidase. J. Infect. Dis. 173, 1202?1207 (1996).

    CAS  PubMed  Google Scholar 

  31. Balish, E. et al. Susceptibility of germfree phagocyte oxidase- and nitric oxide synthase 2-deficient mice, defective in the production of reactive metabolites of both oxygen and nitrogen, to mucosal and systemic candidiasis of endogenous origin. Infect. Immun. 73, 1313?1320 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Diamond, R. D., Lyman, C. A. & Wysong, D. R. Disparate effects of interferon-γ and tumor necrosis factor-α on early neutrophil respiratory burst and fungicidal responses to Candida albicans hyphae in vitro. J. Clin. Invest. 87, 711?720 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lehrer, R. I., Ganz, T., Szklarek, D. & Selsted, M. E. Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations. J. Clin. Invest. 81, 1829?1835 (1998).

    Google Scholar 

  34. Newman, S. L., Bhugra, B., Holly, A. & Morris, R. E. Enhanced killing of Candida albicans by human macrophages adherent to type 1 collagen matrices via induction of phagolysosomal fusion. Infect. Immun. 73, 770?777 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Reeves, E, P. et al. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416, 291?297 (2002).

    CAS  PubMed  Google Scholar 

  36. Lehrer, R. I. & Cline, M. J. Interaction of Candida albicans with human leukocytes. J. Bacteriol. 98, 996?1004 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cutler, J. E. & Poor, A. H. Effect of mouse phagocytes on Candida albicans in in vivo chambers. Infect. Immun. 31, 1110?1116 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Romani, L., Bistoni, F. & Puccetti, P. Fungi, dendritic cells, and receptors: a host perspective of fungal virulence. Trends Microbiol. 10, 508?514 (2002).

    CAS  PubMed  Google Scholar 

  39. Balloy, V. et al. Involvement of Toll-like receptor 2 in experimental invasive pulmonary aspergillosis. Infect. Immun. 73, 5420?5425 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. van Der Graaf, C. A., Netea, M. G., Verschueren, I., van der Meer, J. W. & Kullberg, B. J. Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae. Infect. Immun. 73, 7458?7464 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chauhan, N. et al. The SSK1 of Candida albicans is associated with oxidative stress adaptation and cell wall biosynthesis. Euk. Cell 2, 1018?1024 (2003).

    CAS  Google Scholar 

  42. Wysong, D. R., Christin, L., Sugar, A. L., Robbins, P. W. & Diamond, R. D. Cloning and sequencing of a Candida albicans catalase gene and affects of disruption of the gene. Infect. Immun. 66, 1953?1961 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Fradin, C. et al. Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol. Microbiol. 56, 397?415 (2005). An exceptional presentation of data comparing the relative contribution of blood-cell populations in resistance to C. albicans . The paper clearly demonstrates that neutrophils are the primary mediators of innate immunity.

    CAS  PubMed  Google Scholar 

  44. Hwang, C. S. et al. Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology 148, 3705?3713 (2002).

    CAS  PubMed  Google Scholar 

  45. Hwang, C. S., Baek, Y. U., Yim, H. S. & Kang, S. O. Protective roles of mitochondrial manganese-containing superoxide dismutase against various stresses in Candida albicans. Yeast 20, 929?941 (2003).

    CAS  PubMed  Google Scholar 

  46. Nakagawa, Y., Kanbe, T. & Mizuguchi, I. Disruption of the human pathogenic yeast Candida albicans catalase gene decreases survival in mouse-model infection and elevates susceptibility to higher temperature and to detergents. Microbiol. Immunol. 47, 395?403 (2003).

    CAS  PubMed  Google Scholar 

  47. Martchenko, M., Alarco, A. M., Harcus, D. & Whiteway, M. Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol. Biol. Cell 15, 456?467 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kruppa, M. et al. The Chk1p of Candida albicans and its role in the regulation of cell wall synthesis. FEMS Yeast Res. 3, 289?299 (2003).

    CAS  PubMed  Google Scholar 

  49. Moye-Rowley, S. Regulation of the transcriptional response to oxidative stress in fungi: similarities and differences. Euk. Cell 2, 381?389 (2003).

    CAS  Google Scholar 

  50. Hohmann, S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66, 300?372 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Roman, E., Nombela, C. & Pla, J. The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans. Mol. Cell. Biol. 25, 10611?10627 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nagahashi, S., et al. Isolation of CaSLN1 and CaNIK1, the genes for osmosensing histidine kinase homologues, from the pathogenic fungus, Candida albicans. Microbiology 144, 425?432 (1998). Among the first papers that described the two-component proteins and their functions in human pathogenic fungi.

    CAS  PubMed  Google Scholar 

  53. Calera, J. A., Herman, D & Calderone, R. Identification of Ypd1p, a gene of Candida albicans which encodes a two-component phosphohistidine intermediate protein. Yeast 16, 1053?1059 (2000).

    CAS  PubMed  Google Scholar 

  54. Calera, J. A. & Calderone, R. Identification of a putative response regulator, two-component phosphorelay gene (CaSSK1) from Candida albicans. Yeast 15, 1243?1254 (1999).

    CAS  PubMed  Google Scholar 

  55. Chen, D., Calderone, R., Richert, J. & Li. D. Deletion of the SSK1 response regulator gene in Candida albicans contributes to enhanced killing by human polymorphonuclear neutrophils. Infect. Immun. 73, 865?871 (2005).

    Google Scholar 

  56. Li, D., Bernhardt, J. & Calderone, R. Temporal expression of the Candida albicans genes CHK1 and CSSK1, adherence and morphogenesis in a model of reconstituted human esophageal epithelial candidiasis. Infect. Immun. 70, 1558?1565 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bernhardt, J, Herman, D., Sheridan, M. & Calderone, R. Adherence and invasion studies of Candida albicans strains utilizing in vitro models of esophageal candidiasis. J. Infect. Dis. 184, 1170?1175 (2001).

    CAS  PubMed  Google Scholar 

  58. Hoyer, L. The ALS gene family of Candida albicans. Trends Microbiol. 9, 176?180 (2001).

    CAS  PubMed  Google Scholar 

  59. Stock, A. M. & West, A. H. Response regulators and their interactions with histidine protein kinases In Histidine Kinases in Signal Transduction 237?271 (Elsevier Science, USA, 2002). A concise and well explained review of the response-regulator proteins in bacteria, including the structural requirements for phosphotransfer.

    Google Scholar 

  60. Lee, J. et al. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J. Biol. Chem. 274, 16040?16046 (1999).

    CAS  PubMed  Google Scholar 

  61. Singh, P. et al. SKN7 of Candida albicans: mutant construction and phenotype analysis. Infect. Immun. 72, 2390?2394 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Jamieson, D. J., Stephen, D. W. S. & Terriere, E. C. Analysis of the adaptive oxidative response of Candida albicans. FEMS Microbiol. Lett. 138, 83?88 (1996).

    CAS  PubMed  Google Scholar 

  63. San Jose, C. et al. The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. J. Bacteriol. 178, 5850?5852 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Alonso-Monge, R. et al. The Hog1 MAP kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Euk. Cell 2, 351?361 (2003).

    CAS  Google Scholar 

  65. Alonso-Monge, R., et al. Role of mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J. Bacteriol. 181, 3058?3068 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Arana, D. M., Nombela, C., Alonso-Monge, R. & Pla, J. The Pbs2 MAP kinase kinase is essential for the oxidative stress response in the fungal pathogen Candida albicans. Microbiology 151, 1033?1049 (2005).

    CAS  PubMed  Google Scholar 

  67. Enjalbert, B. et al. Role of Hog1 stress-activated protein kinase in global transcriptional response to stress in the fungal pathogen Candida albicans. Mol. Biol. Cell 17, 1018?1032 (2006). A comprehensive, well written presentation of gene regulation during stress in C. albicans.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Yamada-Okabe, T. et al. Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus, Candida albicans. J. Bacteriol. 181, 7243?7247 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Torosantucci, A. et al. Deletion of the two-component histidine kinase gene (CHK1) of Candida albicans contributes to enhanced growth inhibition and killing by human neutrophils in vitro. Infect. Immun. 70, 985?987 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Calera, J. A. & Calderone, R. A. Histidine kinase, two-component signal transduction proteins of Candida albicans and the pathogenesis of candidosis. Mycoses 42 S49?S53 (1999).

    Google Scholar 

  71. Santos, J. L. & Shiozaki, K. Fungal histidine kinases. Science STKE 98, 1?14 (2001).

    Google Scholar 

  72. Catlett, N. L., Yoder, O. C. & Turgeon, B. G. Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Euk. Cell 2, 1151?1161 (2003). A must-read presentation of two-component proteins in filamentous fungi.

    CAS  Google Scholar 

  73. Li, D. et al. Transcription of CHK1 of Candida albicans is regulated by Ssk1p and Hog1p. Microbiology 150, 3305?3315 (2004).

    CAS  PubMed  Google Scholar 

  74. Chen, D., Sarfati, J., Latge, J -P. & Calderone, R. The SakA (Hog1) and TscB (Sln1) two-component proteins in oxidant adaptation in Aspergillus fumigatus. Med. Mycol. (In the press).

  75. Pott, G. B., Miller, T. K., Bartlett, J. A., Palas, J. S. & Selitrennikoff, C. P. The isolation of FOS-1, a gene encoding a putative two-component histidine kinase from Aspergillus fumigatus. Fungal Genet. Biol. 31, 55?67 (2000).

    CAS  PubMed  Google Scholar 

  76. Clemons, K. V., Miller, T. K., Selitrennikoff, C. P. & Stevens, D. A. fos-1, a putative histidine kinase as a virulence factor for systemic aspergillosis. Med. Mycol. 40, 259?262 (2002).

    CAS  PubMed  Google Scholar 

  77. Xue, T. et al. A mitogen-activated protein kinase that senses nitrogen regulates conidial germination and growth in Aspergillus fumigatus. Euk. Cell 3, 557?560 (2004).

    CAS  Google Scholar 

  78. Wendler F. et al. Diazaborine resistance in the yeast Saccharomyces cerevisiae reveals a link between YAP1 and the pleiotropic drug resistance genes PDR1 and PDR3. J. Biol. Chem. 272, 27091?27098 (1997).

    CAS  PubMed  Google Scholar 

  79. Wu, A. et al. Yeast bZip proteins mediate pleiotropic drug and metal resistance. J. Biol. Chem. 268, 18850?18858 (1993).

    CAS  PubMed  Google Scholar 

  80. Wysocki, R. et al. Transcriptional activation of metalloid tolerance genes in Saccharomyces cerevisiae requires the AP-1-like proteins Yap1p and Yap8p. Mol. Biol. Cell 15, 2049?60 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Moye-Rowley, W. S. Transcription factors regulating the response to oxidative stress in yeast. Antioxid. Redox Signal. 4, 123?140 (2002).

    CAS  PubMed  Google Scholar 

  82. Huh, W. K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686?691 (2003).

    CAS  PubMed  Google Scholar 

  83. Kuge, S., Jones, N. & Nomoto, A. Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J. 16, 1710?1720 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Tanaka, T., Izawa, S. & Inoue, Y. GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae. J. Biol. Chem. 280, 42078?42087 (2005).

    CAS  PubMed  Google Scholar 

  85. Ross, S. J., Findlay, V. J., Malakasi, P. & Morgan, B. A. Thioredoxin peroxidase is required for the transcriptional response to oxidative stress in budding yeast. Mol. Biol. Cell. 11, 2631?2642 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Dormer, U. H., Westwater, J., Stephen, D. W. & Jamieson, D. J. Oxidant regulation of the Saccharomyces cerevisiae GSH1 gene. Biochim. Biophys. Acta 1576, 23?29 (2002).

    CAS  PubMed  Google Scholar 

  87. Tsuzi D., Maeta K., Takatsume Y., Izawa S. & Inoue Y. Regulation of the yeast phospholipid hydroperoxide glutathione peroxidase GPX2 by oxidative stress is mediated by Yap1 and Skn7. FEBS Lett. 565, 148?154 (2004).

    CAS  PubMed  Google Scholar 

  88. Alarco, A. M. & Raymond, M. The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans. J. Bacteriol. 181, 700?708 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang, X., De Micheli, M., Coleman, S. T., Sanglard, D. & Moye-Rowley, W. S. Analysis of the oxidative stress regulation of the Candida albicans transcription factor, Cap1p. Mol. Microbiol. 36, 618?629 (2000).

    CAS  PubMed  Google Scholar 

  90. Bahn, Y. S. & Sundstrom, P. CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transition filamentous growth, and cAMP levels, is required for virulence of Candida albicans. J. Bacteriol 183, 3211?3223 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Rep, M. et al. The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Mol. Microbiol. 40, 1067?1083 (2001).

    CAS  PubMed  Google Scholar 

  92. Pascual-Ahuir, A., Posas, F., Serrano, R. & Proft, M. Multiple levels of control regulate the yeast cAMP-response element-binding protein repressor Sko1p in response to stress. J. Biol. Chem. 276, 37373?37378 (2001).

    CAS  PubMed  Google Scholar 

  93. Martinez-Pastor, M. T. et al. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 15, 2227?2235 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Nicholls, S. et al. Msn2- and Msn4-like transcription factors play no obvious roles in the stress responses of the fungal pathogen Candida albicans. Euk. Cell 3, 1111?1123 (2004).

    CAS  Google Scholar 

  95. Rementeria, A. et al. Genes and molecules involved in Aspergillus fumigatus virulence. Rev. Iberoam. Micol. 22, 1?23 (2005).

    PubMed  Google Scholar 

  96. Lushchak, V. I. & Gospodaryov, D. V. Catalases protect cellular proteins from oxidative modification in Saccharomyces cerevisiae. Cell. Biol. Int. 29, 187?192 (2005).

    CAS  PubMed  Google Scholar 

  97. Avery, A. M. & Avery, S. V. Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J. Biol. Chem. 276, 33730?33735 (2001).

    CAS  PubMed  Google Scholar 

  98. Ikner, A. & Shiozaki, K. Yeast signaling pathways in the oxidative stress response. Mut. Res. 569, 13?27 (2005).

    CAS  Google Scholar 

  99. O'Brien, K. M., Dirmeier, R., Engle, M. & Poyton, R. O. Mitochondrial protein oxidation in yeast mutants lacking manganese-(MnSOD) or copper- and zinc-containing superoxide dismutase (CuZnSOD): evidence that MnSOD and CuZnSOD have both unique and overlapping functions in protecting mitochondrial proteins from oxidative damage. J. Biol. Chem. 279, 51817?51827 (2004).

    CAS  PubMed  Google Scholar 

  100. Lamarre, C., LeMay, J. D., Deslauriers, N. & Bourbonnais, Y. Candida albicans expresses an unusual cytoplasmic manganese-containing superoxide dismutase (SOD3 gene product) upon the entry and during the stationary phase. J. Biol. Chem. 276, 43784?43791 (2001).

    CAS  PubMed  Google Scholar 

  101. Urban, C. et al. The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans. Mol. Microbiol. 57, 1318?1341 (2005).

    CAS  PubMed  Google Scholar 

  102. Holdom, M. D., Lechenne, B., Hay, R. J., Hamilton, A. J. & Monod, M. Production and characterization of recombinant Aspergillus fumigatus Cu, Zn superoxide dismutase and its recognition by immune human sera. J. Clin. Microbiol. 38, 558?562 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Paris, S. et al. Catalases of Aspergillus fumigatus. Infect. Immun. 71, 3551?3562 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Tekaia, F. & Latge, J. P. Aspergillus fumigatus: saprophyte or pathogen. Curr. Opin. Microbiol. 8, 385?392 (2005).

    CAS  PubMed  Google Scholar 

  105. Schmid-Grendelmeier, P. et al. IgE-mediated and T cell-mediated autoimmunity against manganese superoxide dismutase in atopic dermatitis. J. Allergy Clin. Immunol. 115, 1068?1075 (2005).

    CAS  PubMed  Google Scholar 

  106. Burns, C. et al. Identification, cloning, and functional expression of three glutathione transferase genes from Aspergillus fumigatus. Fungal Genet. Biol. 42, 319?327 (2005).

    CAS  PubMed  Google Scholar 

  107. Jahn, B. et al. Characterization of a pigment less conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence. Infect. Immun. 65, 5110?5117 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Tsai, H. F., Chang, Y. C., Washburn, P. G., Wheeler, R. & Kwong-Chung, K. J. The developmental regulation of alb1 gene of Aspergillus fumigatus: its role in modulation of conidia morphogenesis and virulence. J. Bacteriol. 180, 3031?3038 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Brakhage, A. A. & Liebmann, B. Aspergillus fumigatus conidial pigment and cAMP signal transduction: significance for virulence. Med. Mycology 43, S75?S82 (2005).

    CAS  Google Scholar 

  110. Tsunawaki, S., Yoshida, L. S., Nishida, S., Kobayashi, T. & Shimoyama, T. Fungal metabolite gliotoxin inhibits assembly of the human respiratory burst NADPH oxidase. Infect Immun. 72, 3373?3382 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Sugui, J. et al. Disruption of the non-ribosomal peptide synthase gene, glip, in the Aspergillus fumigatus gliotoxin pathway. 2nd Symp. of Advances against Aspergillosis. Abstr. 18 (Athens, 2006).

  112. Ruis, H. & Schuller, C. Stress signaling in yeast. Bioassays 17, 959?965 (1995).

    CAS  Google Scholar 

  113. Enjalbert, B., Nantel, A. & Whiteway, M. Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol. Biol. Cell 14, 1460?1467 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Smith, D. A. et al. A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol. Biol. Cell 15, 4179?4190 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Mullick, A. et al. Gene expression in HL60 granulocytoids and human polymorphonuclear leukocytes exposed in Candida albicans. Infect. Immun. 72, 414?429 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Winn, R. M. et al. Effects of IL-15 on anti-fungal activity with IL-8 release by PMN in response to hyphae of Aspergillus fumigatus. J. Infect. Dis. 188, 585?590 (2003).

    CAS  PubMed  Google Scholar 

  117. Rolides, E. et al. TNF-α enhances antifungal activity of PMN and monocytes against Aspergillus fumigatus. Infect. Immun. 66, 5999?6003 (1998).

    Google Scholar 

  118. Liles, W. C., Huang, J. E., van Burik, J. A. H., Bowden, R. A. & Dale, D. C. Granulocyte colony-stimulating factor administered in vivo augments neutrophil-mediated activity against opportunistic fungal pathogens. J. Infect. Med. 175, 1012?1015 (1997).

    CAS  Google Scholar 

  119. Nemunaitis, J. Use of macrophage colony-stimulating factor in the treatment of fungal infections. Clin. Infect. Dis. 26, 1279?1281 (1998).

    CAS  PubMed  Google Scholar 

  120. Roilides, E., Dignani, M. C., Anaissie, E. J. & Rex, J. H. The role of immunoreconstitution in the management of refractory opportunistic fungal infections. Med. Mycol. 36, 12?25 (1998).

    CAS  PubMed  Google Scholar 

  121. Roilides, E., Dimitriadou-Georgiadou, A., Sein, T., Kadiltsoglou, I. & Walsh, T. J. Tumor necrosis factor α enhances antifungal activities of polymorphonuclear and mononuclear phagocytes against Aspergillus fumigatus. Infect. Immun. 66, 5999?6003 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Roilides, E. et al. Antifungal activity of elutriated human monocytes against Aspergillus fumigatus hyphae: enhancement by granulocyte?macrophages colony-stimulating factor and interferon-γ. J. Infect. Dis. 170, 894?899 (1994).

    CAS  PubMed  Google Scholar 

  123. Roilides, E., Uhlig, K., Venzon, D., Pizzo, P. A. & Walsh, T. J. Enhancement of oxidative response and damage caused by human neutrophils to Aspergillus fumigatus hyphae by granulocyte colony-stimulating factor and γ interferon. Infect. Immun. 61, 1185?1193 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. The International chronic granulomatous disease cooperative study group. A controlled trial of interferon γ to prevent infection in chronic granulomatous disease. New Engl. J. Med. 324, 509?516 (1991).

  125. Fietta, A., Sacchi, F., Mangiarotti, P., Manara, G. & Gialdroni-Grassi, G. Defective phagocyte Aspergillus killing associated with recurrent pulmonary Aspergillus infections. Infection 12, 10?13 (1984).

    CAS  PubMed  Google Scholar 

  126. Ma, H. R., Mu, S. C., Yang, Y. H., Chen, C. M. & Chiang, B. L. Therapeutic effect of interferon-γ for prevention of severe infection in X-linked chronic granulomatous disease. J. Formos. Med. Assoc. 102, 189?192 (2003).

    PubMed  Google Scholar 

  127. Johnson, C. P. et al. A murine model of invasive aspergillosis: variable benefit of interferon-γ administration under in vitro and in vivo conditions. Surg. Infect. (Larchmt) 6, 397?407 (2005).

    Google Scholar 

  128. Shao, C. et al. Transient over expression of γ interferon promotes Aspergillus clearance in invasive pulmonary aspergillosis. Clin. Exp. Immunol. 142, 233?241 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Caesar-TonThat, C. E. & Cutler, J. E. A monoclonal antibody to Candida albicans enhances mouse neutrophil candicidal activity. Infect. Immun. 65, 5354?5357 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Calera, J. A., Zhao, X -J. & Calderone, R. A. Defective hyphal development and avirulence caused by a deletion of the SSK1 response regulator gene in Candida albicans. Infect. Immun. 68, 518?525 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Spellberg, B. J. et al. A phagocytic cell line markedly improves survival of neutropenic infected mice. J. Leukoc. Biol. 78, 338?344 (2005).

    CAS  PubMed  Google Scholar 

  132. Mei-Yeh, J., Deschenes, R. J. & Fassler, J. S. Saccharomyces cerevisiae histidine phosphotransferase Ypd1p shuttles between the nucleus and cytoplasm for SLN1-dependent phosphorylation of Ssk1p and Skn7p. Euk. Cell 2, 1304?1314 (2003).

    Google Scholar 

Download references

Acknowledgements

Some of the data included were supported by NIH-NIAID grants to R.C. and by an NIH-Fogarty International award to R.C. and J.-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Calderone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Aspergillus fumigatus

Candida albicans

Neurospora crassa

Saccharomyces cerevisiae

FURTHER INFORMATION

Richard Calderone's homepage

Aspergillus unit, Institut Pasteur

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauhan, N., Latge, JP. & Calderone, R. Signalling and oxidant adaptation in Candida albicans and Aspergillus fumigatus. Nat Rev Microbiol 4, 435–444 (2006). https://doi.org/10.1038/nrmicro1426

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1426

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing