Key Points
-
The ε-proteobacteria represent a unique assemblage of microorganisms that have had little defined taxonomic or ecological consideration, despite the attention given to the pathogenic members, and despite the recent explosion in the number of unclassified and unaffiliated ε-proteobacterial 16S rRNA sequences deposited into the public databases.
-
Because most lineages are without cultured representatives or are only known from environmentally retrieved 16S rRNA gene sequences from PCR-based studies, an evaluation of class taxonomic structure serves as a frame of reference for placing the environmental ε-proteobacterial sequences in an evolutionary context. For each of the phylogenetic clusters identified in this study, sequence affinities strongly correlate with ecotype distribution and metabolic diversity and capabilities.
-
Our taxonomy reveals a large cluster of environmentally relevant groups, representing the largest increase in 16S rRNA gene-sequence diversity throughout the ε-proteobacteria. We have provisionally termed this cluster the Thiovulgaceae fam. nov.
-
Thiovulgaceae fam. nov. includes several recently described genera, and the diversity within this cluster is being revealed, particularly in terrestrial habitats.
-
The ε-proteobacteria are metabolically versatile and are well suited to environmental variability and extreme habitat conditions. As such, they are ecologically and biogeochemically significant in modern symbioses with metazoans, or in anaerobic or microaerophilic, sulphur-rich, marine and terrestrial aquatic habitats, many of which are deemed 'extreme' environments.
-
Many of the ε-proteobacteria, and specifically those affiliated with the Thiovulgaceae fam. nov., are chemolithoautotrophs, and might have had an important ecological and biogeochemical role throughout much of Earth's history.
Abstract
The ε-proteobacteria have recently been recognized as globally ubiquitous in modern marine and terrestrial ecosystems, and have had a significant role in biogeochemical and geological processes throughout Earth's history. To place this newly expanded group, which consists mainly of uncultured representatives, in an evolutionary context, we present an overview of the taxonomic classification for the class, review ecological and metabolic data in key sulphidic habitats and consider the ecological and geological potential of the ε-proteobacteriain modern and ancient systems. These integrated perspectives provide a framework for future culture- and genomic-based studies.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Genomic insights into phage-host interaction in the deep-sea chemolithoautotrophic Campylobacterota, Nitratiruptor
ISME Communications Open Access 01 November 2022
-
Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys
Microbiome Open Access 30 June 2020
-
Deep microbial proliferation at the basalt interface in 33.5–104 million-year-old oceanic crust
Communications Biology Open Access 02 April 2020
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Garrity, G. M., Bell, J. A. & Lilburn, T. In Bergey's Manual of Systematic Bacteriology Vol. 2 (eds Brenner, D. J., Krieg, N. R., Staley, J. T. & Garrity, G. M.) 1145 Part C (Springer, New York, 2005).
Miroshnichenko, M. L. et al. Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov within the class 'ε-proteobacteria', isolated from a deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 54, 41?45 (2004). This paper erected the order Nautiliales, (containing the family Nautiliacea and the genera Nautilia and Caminibacter ), which is only the second order to be described from the ε-proteobacteria.
Olsen, G. J., Woese, C. R. & Overbeek, R. The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol. 176, 1?6 (1994).
On, S. L. W. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Campylobacter and related bacteria. Int. J. Syst. Evol. Microbiol. 54, 291?292 (2004).
Vandamme, P. et al. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60, 407?438 (1996). An important overview of the plethora of methods used to classify bacteria, including illustrations of how to integrate these diverse methods into a unified taxonomic scheme.
Gevers, D. et al. Re-evaluating prokaryotic species. Nature Rev. Microbiol. 3, 733?739 (2005).
Swofford, D. PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods) 4th edn (Sinauer Associates, Sunderland, 2003).
Guindon, S., Lethiec, F., Duroux, P. & Gascuel, O. PHYML Online ? a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res. 33, W557?W559 (2005).
Alain, K. et al. Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int. J. Syst. Evol. Microbiol. 52, 1317?1323 (2002).
Miroshnichenko, M. L. et al. Nautilia lithotrophica gen. nov., sp. nov., a thermophilic sulfur-reducing ε-proteobacterium isolated from a deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 52, 1299?1304 (2002).
Takai, K. et al. Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic, acidophilic, hydrogen-oxidizing chemolithoautotroph within the ε-proteobacteria, isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. Int. J. Syst. Evol. Microbiol. 55, 183?189 (2005).
Meinersmann, R. J., Patton, C. M., Evins, G. M., Wachsmuth, I. K. & Fields, P. I. Genetic diversity and relationships of Campylobacter species and subspecies. Int. J. Syst. Evol. Microbiol. 52, 1789?1797 (2002).
Takai, K., Nealson, K. H. & Horikoshi, K. Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the ε-proteobacteria, isolated from a black smoker in a Central Indian Ridge hydrothermal field. Int. J. Syst. Evol. Microbiol. 54, 25?32 (2004).
Luijten, M. L. G. C. et al. Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov. Int. J. Syst. Evol. Microbiol. 53, 787?793 (2003).
Stolz, J. F. et al. Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the ε-proteobacteria. Int. J. Syst. Bacteriol. 49, 1177?1180 (1999).
Snelling, W. J., Matsuda, M., Moore, J. E. & Dooley, J. S. G. Under the microscope: Arcobacter. Lett. Appl. Microbiol. 42, 7?14 (2006).
Maugeri, T. L. et al. Detection and enumeration of Arcobacter spp. in the coastal environment of the Straits of Messina (Italy). New Microbiol. 28, 177?182 (2005).
Mcclung, C. R., Patriquin, D. G. & Davis, R. E. Campylobacter nitrofigilis sp. nov., a nitrogen-fixing bacterium associated with roots of Spartina alterniflora Loisel. Int. J. Syst. Bacteriol. 33, 605?612 (1983).
Wirsen, C. O. et al. Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur. Appl. Environ. Microbiol. 68, 316?325 (2002). The process of filamentous sulphur formation is attributed to the isolate Candidatus A. sulfidicus that was later found to use the rTCA pathway for CO 2 fixation.
De Vos, P. & Trü per, H. G. Judicial Commission of the International Committee on Systematic Bacteriology. IXth International (IUMS) Congress of Bacteriology and Applied Microbiology. Minutes of the meetings, 14, 15 and 18 August 1999, Sydney, Australia. Int. J. Syst. Evol. Microbiol. 50, 2239?2244 (2000).
Euzeby, J. P. et al. 'List of Changes in Taxonomic Opinion': making use of the new lists. Int. J. Syst. Evol. Microbiol. 54, 1429?1430 (2004).
Euzeby, J. P. Notification of changes in taxonomic opinion previously published outside the IJSEM. Int. J. Syst. Evol. Microbiol. 56, 11 (2006).
Wirsen, C. O. & Jannasch, H. W. Physiological and morphological observations on Thiovulum sp. J. Bacteriol. 136, 765?774 (1978).
Nakagawa, S., Takai, K., Inagaki, F., Horikoshi, K. & Sako, Y. Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the ε-proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough. Int. J. Syst. Evol. Microbiol. 55, 925?933 (2005).
Inagaki, F., Takai, K., Nealson, K. H. & Horikoshi, K. Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the ε-proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int. J. Syst. Evol. Microbiol. 54, 1477?1482 (2004).
Kodama, Y. & Watanabe, K. Sulfuricurvum kujiense gen. nov., sp. nov., a facultatively anaerobic, chemolithoautotrophic, sulfur-oxidizing bacterium isolated from an underground crude oil storage cavity. Int. J. Syst. Evol. Microbiol. 54, 2297?2300 (2004).
Voordouw, G. et al. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl. Environ. Microbiol. 62, 1623?1629 (1996).
Gevertz, D., Telang, A. J., Voordouw, G. & Jenneman, G. E. Isolation and characterization of strains CVO and FWKOB, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl. Environ. Microbiol. 66, 2491?2501 (2000). This study is the first description of chemoautotrophic isolates of ε -proteobacteria from any environment.
Inagaki, F., Takai, K., Hideki, K. I., Nealson, K. H. & Horikishi, K. Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ε-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int. J. Syst. Evol. Microbiol. 53, 1801?1805 (2003).
Engel, A. S., Porter, M. L., Stern, L. A., Quinlan, S. & Bennett, P. C. Bacterial diversity and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic 'ε-proteobacteria'. FEMS Microbiol. Ecol. 51, 31?53 (2004).
Cavanaugh, C. M., Jones, M. L., Jannasch, H. W. & Waterbury, J. B. Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213, 340?342 (1981).
Wintzingerode, F. V., Gö bel, U. B. & Stackebrandt, E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21, 213?229 (1997).
Takai, K. et al. Spatial distribution of marine Crenarchaeota group I in the vicinity of deep-sea hydrothermal systems. Appl. Environ. Microbiol. 70, 2404?2413 (2004).
Nakagawa, S. et al. Distribution, phylogenetic diversity and physiological characteristics of ε-proteobacteria in a deep-sea hydrothermal field. Environ. Microbiol. 7, 1619?1632 (2005).
Moyer, C. L., Dobbs, F. C. & Karl, D. M. Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 61, 1555?1562 (1995). This study is the first to focus on characterizing the genetic diversity of 16S rRNA gene sequences of a hydrothermal vent microbial community, finding that ε -proteobacteria dominate the samples.
Longnecker, K. & Reysenbach, A. L. Expansion of the geographic distribution of a novel lineage of ε-proteobacteria to a hydrothermal vent site on the Southern East Pacific Rise. FEMS Microbiol. Ecol. 35, 287?293 (2001).
Nakagawa, T. et al. Geomicrobiological exploration and characterization of a novel deep-sea hydrothermal system at the TOTO caldera in the Mariana Volcanic Arc. Environ. Microbiol. 8, 37?49 (2006).
Taylor, C. D. & Wirsen, C. O. Microbiology and ecology of filamentous sulfur formation. Science 277, 1483?1485 (1997). This study links the widespread occurrence of filamentous sulphur formation in marine habitats to laboratory sulphur produced by enrichment cultures of a chemolithoautotrophic sulphur-oxidizing bacterium isolated from coastal marine seawater.
Taylor, C. D., Wirsen, C. O. & Gaill, F. Rapid microbial production of filamentous sulfur mats at hydrothermal vents. Appl. Environ. Microbiol. 65, 2253?2255 (1999).
Corre, E., Reysenbach, A. L. & Prieur, D. ε-proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. FEMS Microbiol. Lett. 205, 329?335 (2001).
Reysenbach, A. L., Longnecker, K. & Kirshtein, J. Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl. Environ. Microbiol. 66, 3798?3806 (2000).
Higashi, Y. et al. Microbial diversity in hydrothermal surface to subsurface environments of Suiyo Seamount, Izu-Bonin Arc, using a catheter-type in situ growth chamber. FEMS Microbiol. Ecol. 47, 327?336 (2004).
Alain, K. et al. Early steps in microbial colonization processes at deep-sea hydrothermal vents. Environ. Microbiol. 6, 227?241 (2004).
Campbell, B. J., Jeanthon, C., Kostka, J. E., Luther, G. W. & Cary, S. C. Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Appl. Environ. Microbiol. 67, 4566?4572 (2001). The first study to describe characterized enrichment cultures of four ε -proteobacteria from A. pompejana symbionts and vent chimney samples.
Nakagawa, S., Inagaki, F., Takai, K., Horikoshi, K. & Sako, Y. Thioreductor micantisoli gen. nov., sp. nov., a novel mesophilic, sulfur-reducing chemolithoautotroph within the ε-proteobacteria isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int. J. Syst. Evol. Microbiol. 55, 599?605 (2005).
Voordeckers, J. W., Starovoytov, V. & Vetriani, C. Caminibacter mediatlanticus sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. Int. J. Syst. Evol. Microbiol. 55, 773?779 (2005).
Takai, K. et al. Isolation and phylogenetic diversity of members of previously uncultivated ε-proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol. Lett. 218, 167?174 (2003). This study describes the isolation of metabolically diverse marine ε -proteobacteria, predominately from vent sites, whereby many have recently been described as new taxa.
Huber, J. A., Butterfield, D. A. & Baross, J. A. Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol. Ecol. 43, 393?409 (2003).
Kormas, K. A., Smith, D. C., Edgcomb, V. & Teske, A. Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176). FEMS Microbiol. Ecol. 45, 115?125 (2003).
Madrid, V. M., Taylor, G. T., Scranton, M. I. & Chistoserdov, A. Y. Phylogenetic diversity of bacterial and archaeal communities in the anoxic zone of the Cariaco Basin. Appl. Environ. Microbiol. 67, 1663?1674 (2001).
Vetriani, C., Tran, H. V. & Kerkhof, L. J. Fingerprinting microbial assemblages from the oxic/anoxic chemocline of the Black Sea. Appl. Environ. Microbiol. 69, 6481?6488 (2003).
Li, L., Kato, C. & Horikoshi, K. Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench. Marine Biotechnol. 1, 391?400 (1999).
Mills, H. J., Hodges, C., Wilson, K., MacDonald, I. R. & Sobecky, P. A. Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico. FEMS Microbiol. Ecol. 46, 39?52 (2003).
Todorov, J. R., Chistoserdov, A. Y. & Aller, J. Y. Molecular analysis of microbial communities in mobile deltaic muds of Southeastern Papua New Guinea. FEMS Microbiol. Ecol. 33, 147?155 (2000).
Teske, A. et al. Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl. Environ. Microbiol. 68, 1994?2007 (2002).
Inagaki, F., Sakihama, Y., Inoue, A., Kato, C. & Horikoshi, K. Molecular phylogenetic analyses of reverse-transcribed bacterial rRNA obtained from deep-sea cold seep sediments. Environ. Microbiol. 4, 277?286 (2002).
Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: The unseen majority. Proc. Natl Acad. Sci. USA 95, 6578?6583 (1998).
Pedersen, K. Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol. Lett. 185, 9?16 (2001).
Schumacher, W., Kroneck, P. M. H. & Pfennig, N. Comparative systematic study on Spirillum-5175, Campylobacter and Wolinella species ? description of Spirillum-5175 as Sulfurospirillum deleyianum gen. nov., sp. nov. Arch. Microbiol. 158, 287?293 (1992).
Watanabe, K., Kodama, Y., Syutsubo, K. & Harayama, S. Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavities. Appl. Environ. Microbiol. 66, 4803?4809 (2000).
Kodama, Y. & Watanabe, K. Isolation and characterization of a sulfur-oxidizing chemolithotroph growing on crude oil under anaerobic conditions. Appl. Environ. Microbiol. 69, 107?112 (2003).
Pedersen, K., Nilsson, E., Arlinger, J., Hallbeck, L. & O'Neill, A. Distribution, diversity and activity of microorganisms in the hyper-alkaline spring waters of Maqarin in Jordan. Extremophiles 8, 151?164 (2004).
Barton, H. A. & Luiszer, F. Microbial metabolic structure in a sulfidic cave hot spring: potential mechanisms of biospeleogenesis. J. Cave Karst Stud. 67, 28?38 (2005).
Elshahed, M. S. et al. Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl. Environ. Microbiol. 69, 5609?5621 (2003).
Rudolph, C., Moissl, C., Henneberger, R. & Huber, R. Ecology and microbial structures of archaeal/bacterial strings-of-pearls communities and archaeal relatives thriving in cold sulfidic springs. FEMS Microbiol. Ecol. 50, 1?11 (2004).
Angert, E. R. et al. Molecular phylogenetic analysis of a bacterial community in Sulphur River, Parker Cave, Kentucky. Amer. Mineral. 83, 1583?1592 (1998).
Engel, A. S., Porter, M. L., Kinkle, B. K. & Kane, T. C. Ecological assessment and geological significance of microbial communities from Cesspool Cave, Virginia. Geomicrobiol. J. 18, 259?274 (2001).
Engel, A. S. et al. Filamentous 'ε-proteobacteria' dominate microbial mats from sulfidic cave springs. Appl. Environ. Microbiol. 69, 5503?5511 (2003). The first study to show that filamentous ε -proteobacteria are abundant and of metabolic significance in a natural, terrestrial, subterranean system.
Finlay, B. J. Global dispersal of free-living microbial eukaryote species. Science 296, 1061?1063 (2002).
Lopez-Garcia, P. et al. Bacterial diversity in hydrothermal sediment and e-proteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ. Microbiol. 5, 961?976 (2003).
Casamayor, E. O., Garcia-Cantizano, J., Mas, J. & Pedros-Alio, C. Primary production in estuarine oxic/anoxic interfaces: contribution of microbial dark CO2 fixation in the Ebro River Salt Wedge Estuary. Mar. Ecol. Prog. Ser. 215, 49?56 (2001).
Taylor, G. T. et al. Chemoautotrophy in the redox transition zone of the Cariaco Basin: a significant midwater source of organic carbon production. Limnol. Oceanogr. 46, 148?163 (2001).
Van Dover, C. L. & Fry, B. Stable isotopic compositions of hydrothermal vent organisms. Mar. Biol. 102, 257?263 (1989).
Preuss, A., Schauder, R., Fuchs, G. & Stichler, W. Carbon isotope fractionation by autotrophic bacteria with 3 different CO2 fixation pathways. Z. Naturforsch. [C] 44, 397?402 (1989).
Porter, M. L. Ecosystem Energetics of Sulfidic Karst. Thesis, Univ. Cincinnati (1999).
Engel, A. S., Stern, L. A. & Bennett, P. C. Microbial contributions to cave formation: new insights into sulfuric acid speleogenesis. Geology 32, 369?372 (2004).
Russell, M. J. & Hall, A. J. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. London 154, 377?402 (1997).
Wachtershauser, G. The case for the chemoautotrophic origin of life in an iron-sulfur world. Orig. Life Evol. Biosph. 20, 173?176 (1990).
Wachtershauser, G. Evolution of the 1st metabolic cycles. Proc. Natl Acad. Sci. USA 87, 200?204 (1990). This paper presents the hypothesis that a version of the rTCA cycle was the first metabolic cycle to have evolved.
Smith, E. & Morowitz, H. J. Universality in intermediary metabolism. Proc. Natl Acad. Sci. USA 101, 13168?13173 (2004).
Russell, M. J. & Martin, W. The rocky roots of the acetyl-CoA pathway. Trends Biochem. Sci. 29, 358?363 (2004).
Pereto, J. G., Velasco, A. M., Becerra, A. & Lazcano, A. Comparative biochemistry of CO2 fixation and the evolution of autotrophy. Int. Microbiol. 2, 3?10 (1999).
Lindahl, P. A. & Chang, B. The evolution of acetyl-CoA synthase. Orig. Life Evol. Biosphere 31, 403?434 (2001).
Evans, M. C. W., Buchanan, B. B. & Arnon, D. I. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc. Natl Acad. Sci. USA 55, 928?934 (1966).
Fuchs, G., Stupperich, E. & Eden, G. Autotrophic CO2 fixation in Chlorobium limicola ? evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Arch. Microbiol. 128, 64?71 (1980).
Hugler, M., Huber, H., Stetter, K. O. & Fuchs, G. Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch. Microbiol. 179, 160?173 (2003).
Campbell, B. J., Stein, J. L. & Cary, S. C. Evidence of chemolithoautotrophy in the bacterial community associated with Alvinella pompejana, a hydrothermal vent polychaete. Appl. Environ. Microbiol. 69, 5070?5078 (2003).
Campbell, B. J. & Cary, S. C. Abundance of reverse tricarboxylic acid cycle genes in free-living microorganisms at deep-sea hydrothermal vents. Appl. Environ. Microbiol. 70, 6282?6289 (2004). The abundance and expression of rTCA genes in microbial communities from deep-sea hydrothermal vents establishes the ubiquity of ε -proteobacteria and chemolithoautotrophy at vents.
Hugler, M., Wirsen, C. O., Fuchs, G., Taylor, C. D. & Sievert, S. M. Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the ε subdivision of proteobacteria. J. Bacteriol. 187, 3020?3027 (2005).
Takai, K. et al. Enzymatic and genetic characterization of carbon and energy metabolisms by deep-sea hydrothermal chemolithoautotrophic isolates of ε-proteobacteria. Appl. Environ. Microbiol. 71, 7310?7320 (2005).
Aoshima, M., Ishii, M. & Igarashi, Y. A novel enzyme, citryl-CoA lyase, catalysing the second step of the citrate cleavage reaction in Hydrogenobacter thermophilus TK-6. Mol. Microbiol. 52, 763?770 (2004).
Fatland, B. L. et al. Molecular characterization of a heteromeric ATP-citrate lyase that generates cytosolic acetyl-coenzyme A in Arabidopsis. Plant Physiol. 130, 740?756 (2002).
Reysenbach, A. L., Banta, A. B., Boone, D. R., Cary, S. C. & Luther, G. W. Microbial essentials at hydrothermal vents. Nature 404, 835?835 (2000).
Gupta, R. S. The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol. Rev. 24, 367?402 (2000).
Wolf, Y. I., Rogozin, I. B., Grishin, N. V., Tatusov, R. L. & Koonin, E. V. Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol. Biol. 1, 8 (2001).
Gupta, R. S. & Griffiths, E. Critical issues in bacterial phylogeny. Theor. Popul. Biol. 61, 423?434 (2002).
Sheridan, P. P., Freeman, K. H. & Brenchley, J. E. Estimated minimal divergence times of the major bacterial and archaeal phyla. Geomicrobiol. J. 20, 1?14 (2003).
Canfield, D. E. & Teske, A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382, 127?132 (1996).
Brocks, J. J. et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437, 866?870 (2005).
Johnson, C. M. & Beard, B. L. Geochemistry. Biogeochemical cycling of iron isotopes. Science 309, 1025?1027 (2005).
Des Marais, D. J. Palaeobiology: sea change in sediments. Nature 437, 826?827 (2005).
Farquhar, J. & Wing, B. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213, 1?13 (2003).
Karl, D. M. The microbiology of deep-sea hydrothermal vents. (CRC Press, Boca Raton, 1995).
Wirsen, C. O., Jannasch, H. W. & Molyneaux, S. J. Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites. J. Geophys. Res. 98, 9693?9703 (1993).
Zbinden, M., Martinez, I., Guyot, F., Cambon-Bonavita, M. A. & Gaill, F. Zinc-iron sulphide mineralization in tubes of hydrothermal vent worms. Eur. J. Mineral. 13, 653?658 (2001).
Goffredi, S. K., Waren, A., Orphan, V. J., Van Dover, C. L. & Vrijenhoek, R. C. Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean. Appl. Environ. Microbiol. 70, 3082?3090 (2004).
Haddad, A., Camacho, F., Durand, P. & Cary, S. Phylogenetic characterization of the epibiotic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana. Appl. Environ. Microbiol. 61, 1679?1687 (1995). The first paper showing the dominance of ε-proteobacterial 16S rRNA gene sequences in the episymbionts of A. pompejana.
Polz, M. F. & Cavanaugh, C. M. Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc. Natl Acad. Sci. USA 92, 7232?7236 (1995).
Desbruyéres, D. et al. Biology and ecology of the 'Pompeii worm' (Alvinella pompejana), a normal dweller of an extreme deep-sea environment: a synthesis of current knowledge and recent developments. Deep Sea Res. II 45, 383?422 (1998).
Cary, S. C., Cottrell, M. T., Stein, J. L., Camacho, F. & Desbruyeres, D. Molecular identification and localization of filamentous symbiotic bacteria associated with the hydrothermal vent annelid Alvinella pompejana. Appl. Environ. Microbiol. 63, 1124?1130 (1997).
Urakawa, H. et al. Hydrothermal vent gastropods from the same family (Provannidae) harbour ε- and γ-proteobacterial endosymbionts. Environ. Microbiol. 7, 750?754 (2005).
Suzuki, Y. et al. Novel chemoautotrophic endosymbiosis between a member of the ε-proteobacteria and the hydrothermal vent gastropod Alviniconcha aff. hessleri (Gastropoda: Provannidae) from the Indian Ocean. Appl. Environ. Microbiol. 71, 5440?5450 (2005).
Cary, S. C., Shank, T. & Stein, J. Worm basks in extreme temperatures. Nature 391, 545 (1998).
Di Meo-Savoie, C. A., Luther, G. W. & Cary, S. C. Physicochemical characterization of the microhabitat of the epibionts associated with Alvinella pompejana, a hydrothermal vent annelid. Geochim. Cosmochim. Acta 68, 2055?2066 (2004).
Luther, G. W. et al. Chemical speciation drives hydrothermal vent ecology. Nature 410, 813?816 (2001).
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792?1797 (2004).
Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540?552 (2000).
Acknowledgements
B.J.C was partially supported by the National Science Foundation. A.S.E was partially supported by the College of Basic Sciences at Louisiana State University, USA. The authors thank T.E. Hanson for his valuable input in to this review.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Related links
Related links
DATABASES
Entrez Genome Project
FURTHER INFORMATION
Annette Summers Engel's laboratory
A Metagenome of Alvinella pompejana symbiont database link
Glossary
- Thermophile
-
An organism that grows optimally at high temperatures, usually above 45°C.
- Autotroph
-
An organism that can use carbon dioxide as the sole source of carbon for growth.
- Heterotroph
-
An organism that uses organic compounds as nutrients to produce energy for growth.
- Chemocline
-
A chemical gradient from high to low concentrations, often consisting of a relatively small stratum where the concentration changes rapidly between the two endpoints.
- Mesophile
-
An organism that grows optimally at moderate temperatures, ranging between 20°C and 45°C.
- Chemolithoautotroph
-
An organism that obtains energy from inorganic compounds and carbon from CO2.
- Calvin?Benson pathway
-
Also known as the Calvin?Benson cycle. A series of biochemical, enzyme-mediated reactions in which CO2 is reduced and incorporated into organic molecules.
- Reductive TCA cycle
-
(rTCA cycle). The TCA cycle in reverse, leading to the fixation of CO2. Represents a putatively ancient metabolic pathway in which autotrophic carbon fixation occurs under anaerobic conditions.
- Mixotroph
-
An organism that can use both heterotrophic and autotrophic metabolic processes.
- Phylotype
-
A group of sequences that show some threshold of sequence similarity, usually >97%, and that also form a monophyletic clade.
- Epibiont
-
An organism that lives attached to a host organism without apparent consequence (benefit or detriment) to the host.
- Push cores
-
Soft sediment collected using a hollow plastic collection tube that is pushed into the sediment, after which the ends are closed.
- Methane cold seeps
-
Areas of the deep ocean floor where oil and methane gas bubble up from under sea-sediment layers at ambient temperatures, providing an energy source that can sustain deep-sea microbial communities.
- Wood?Ljungdahl pathway
-
Also known as the acetyl-coenzyme A pathway. An ancient carbon-fixation pathway found in bacteria and archaea in which CO2 is converted to acetate; the key enzyme is acetyl-coenzyme A synthase/CO dehydrogenase.
- Aphotic
-
Receiving no light or energy from the sun.
Rights and permissions
About this article
Cite this article
Campbell, B., Engel, A., Porter, M. et al. The versatile ε-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4, 458–468 (2006). https://doi.org/10.1038/nrmicro1414
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrmicro1414
This article is cited by
-
Genomic insights into phage-host interaction in the deep-sea chemolithoautotrophic Campylobacterota, Nitratiruptor
ISME Communications (2022)
-
Bacterial community in Sinonovacula constricta intestine and its relationship with culture environment
Applied Microbiology and Biotechnology (2022)
-
Chemical Links Between Redox Conditions and Estimated Community Proteomes from 16S rRNA and Reference Protein Sequences
Microbial Ecology (2022)
-
Removal of organic and inorganic contaminants from the air, soil, and water by algae
Environmental Science and Pollution Research (2022)
-
Metagenomic analysis reveals wide distribution of phototrophic bacteria in hydrothermal vents on the ultraslow-spreading Southwest Indian Ridge
Marine Life Science & Technology (2022)