Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cold-adapted archaea

Key Points

  • Most of the Earth's biosphere is cold, and psychrophilic microorganisms can be found in these permanently cold environments (≤5°C).

  • Archaea are ubiquitous microorganisms that are present in most terrestrial and aquatic environments.

  • Diverse functional roles have been established for psychrophilic archaea, and molecular analyses have established their importance in a wide variety of cold environments. These include marine environments (coastal, open-ocean and deep-sea waters, sea ice, marine-based lakes, sediment and subsurface, digestive tracts and faeces of animals, marine snow and sponges) and non-marine environments (soils including rhizosphere, landfills, farms, permafrost, glaciers and streams, alpine lakes, wetlands, freshwater sediments and anaerobic bioreactors).

  • Despite the largest proportion and greatest diversity of archaea existing in cold environments, few psychrophilic archaea have been isolated.

  • Most isolated psychrophilic archaea are methanogens, and others include a halophile, a euryarchaeon associated with bacteria and a crenarchaeon, a marine sponge symbiont.

  • Cellular mechanisms of cold adaptation have largely been derived from the model eurypsychrophilic archaeon Methanococcoides burtonii, and have included studies of protein structure and function, intracellular solutes, gene regulation, tRNA modification, membrane-lipid composition, genomics and proteomics.

  • Cold shock is physiologically relevant to non-psychrophilic archaea, and these molecular responses have begun to be characterized in hyperthermophiles.

  • Ace Lake and other lakes in the Vestfold Hills region of Antarctica are diverse, pristine systems, ideal for studying the biota and biogeochemistry of cold environments.

  • Cold-adapted archaea, and in particular methanogens, offer important insights into the search for extraterrestrial life.

Abstract

Many archaea are extremophiles. They thrive at high temperatures, at high pressure and in concentrated acidic environments. Nevertheless, the largest proportion and greatest diversity of archaea exist in cold environments. Most of the Earth's biosphere is cold, and archaea represent a significant fraction of the biomass. Although psychrophilic archaea have long been the neglected majority, the study of these microorganisms is beginning to come of age. This review casts a spotlight on the ecology, adaptation biology and unique science that is being realized from studies on cold-adapted archaea.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diversity of archaea from naturally cold environments.
Figure 2: Cellular processes that are important for cold adaptation in Methanococcoides burtonii.

Similar content being viewed by others

References

  1. Cavicchioli, R. & Siddiqui, K. S. Cold adapted enzymes. In Enzyme Technology (eds Pandey, A., Webb, C., Soccol, C. R. & Larroche, C.) 615?638 (Asiatech Publishers Inc., New Delhi, 2004). This text was also published by Springer Science, New York, 2006.

    Google Scholar 

  2. Feller G. & Gerday, C. Psychrophilic enzymes: hot topics in cold adaptation. Nature Rev. Microbiol. 1, 200?208 (2003). Excellent review on cold-adapted enzymes that also covers other cellular aspects and important concepts of cold adaptation.

    CAS  Google Scholar 

  3. Margesin, R. & Schinner, F. Cold-Adapted Organisms ?Ecology, Physiology, Enzymology and Molecular Biology (Springer-Verlag, Berlin, 1999).

    Google Scholar 

  4. Price, B. P. & Sowers, T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl Acad. Sci. USA 101, 4631?4636 (2004).

    CAS  PubMed  Google Scholar 

  5. Siddiqui, K. S. & Cavicchioli, R. Cold adapted enzymes. Annu. Rev. Biochem. (in the press).

  6. Wagner, D., Lipski, A., Embacher, A. & Gattinger, A. Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality. Environ. Microbiol. 7, 1582?1592 (2005). Description of methanogenic activity and community composition in permafrost that addresses the importance of nutrient limitation and temperature fluxes.

    CAS  PubMed  Google Scholar 

  7. Madigan, M., Martinko, J. & Parker, J. Brock Biology of Microorganisms. 10th edn (Prentice Hall, 2002). Best microbiology text book that covers ecology, physiology and evolution of the Archaea.

    Google Scholar 

  8. Schleper, C., Jurgens, G. & Jonuscheit, M. Genomic studies of uncultivated archaea. Nature Rev. Microbiol. 3, 479?488 (2005). Superb coverge of uncultivated archaea and the use of genomics for inferring diversity and (eco)physiology, with a focus on the Crenarchaeota.

    CAS  Google Scholar 

  9. Karner, M. B., DeLong, E. F. & Karl, D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409, 507?510 (2001).

    CAS  PubMed  Google Scholar 

  10. Cavicchioli, R., Siddiqui, K. S., Andrews, D. & Sowers, K. R. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 13, 253?261 (2002).

    CAS  PubMed  Google Scholar 

  11. Cavicchioli, R. Extremophiles and the search for extra-terrestrial life. Astrobiology 2, 281?292 (2002).

    CAS  PubMed  Google Scholar 

  12. Cavicchioli, R., Thomas, T. & Curmi, P. M. G. Cold stress response in archaea. Extremophiles 4, 321?331 (2000). Overview of molecular mechanisms of cold adaptation in archaea.

    CAS  PubMed  Google Scholar 

  13. Bakermans, C. & Nealson, K. H. Relationship of critical temperature to macromolecular synthesis and growth yield in Psychrobacter cryopegella. J. Bacteriol. 186, 2340?2345 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Brenchley, J. E. Psychrophilic microorganisms and their cold-active enzymes. J. Indust. Microbiol. 17, 432?437 (1996).

    CAS  Google Scholar 

  15. Franzmann, P. D. et al. Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int. J. Syst. Bacteriol. 47, 1068?1072 (1997).

    CAS  PubMed  Google Scholar 

  16. Franzmann, P. D., Stringer, N., Ludwig, W., Conway de Macario, E. & Rohde, M. A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov. System. Appl. Microbiol. 15, 573?581 (1992). Description of the isolation and basic characterization of the archaeon M. burtonii , the isolate that has formed the basis of most studies that address cold adaptation in archaea.

    Google Scholar 

  17. Goodchild, A. et al. A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol. Microbiol. 53, 309?321 (2004).

    CAS  PubMed  Google Scholar 

  18. Wagner, D., Kobabe, S., Pfeiffer, E.-M. & Hubberten, H.-W. Microbial controls on methane fluxes from a polygonal tundra of the Lena Delta, Siberia. Permafrost Periglac. Process 14, 173?185 (2003).

    Google Scholar 

  19. Mehta, M. P., Huber, J. A. & Baross, J. A. Incidence of novel and potentially archaeal nitrogenase genes in the deep Northeast Pacific Ocean. Environ. Microbiol. 7, 1525?1534 (2005).

    CAS  PubMed  Google Scholar 

  20. Cavicchioli, R., Ostrowski, M., Fegatella, F., Goodchild, A. & Guixa-Boixereu, N. Life under nutrient limitation in oligotrophic marine environments: an eco/physiological perspective of Sphingopyxis alaskensis (formerly Sphingomonas alaskensis). Microb. Ecol. 45, 203?217 (2003).

    CAS  PubMed  Google Scholar 

  21. Herndl, G. J., et al. Contribution of archaea to total prokaryotic production in the deep Atlantic Ocean. Appl. Environ. Microbiol. 71, 2303?2309 (2005). Excellent study using FISH and uptake measurements with environmental samples from a range of ocean depths and sites to examine organic and inorganic carbon utilization by Euryarchaeota and Crenarchaeota.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ouverney, C. C. & Fuhrman, J. A. Marine planktonic archaea take up amino acids. Appl. Environ. Microbiol. 66, 4829?4833 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Junge, K., Eicken, H. & Deming, J. W. Bacterial activity at −2 to −20°C in Arctic wintertime sea ice. Appl. Environ. Microbiol. 70, 550?557 (2004). First study that visualizes the presence of archaea in ice.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Knittel, K., Losekann, T., Boetius, A., Kort, R. & Amann, R. Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol. 71, 467?479 (2005). A view of methanotrophic archaea in cold-ocean sediment that integrates diversity, distribution and biogeography, and represents a good example of a targetted ecological study.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Newberry, C. J. et al. Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environ. Microbiol. 6, 274?287 (2004).

    PubMed  Google Scholar 

  26. DeLong, E. F. Microbial community genomics in the ocean. Nature Rev. Microbiol. 3, 459?469 (2005).

    CAS  Google Scholar 

  27. DeLong, E. F., Wu, K. Y., Prezelin, B. B. & Jovine, R. V. M. High abundance of Archaea in Antarctic marine picoplankton. Nature 371, 695?697 (1994). Important paper that draws attention to the significance of archaea in cold marine waters.

    CAS  PubMed  Google Scholar 

  28. DeLong, E. F. et al. Dibiphytanyl ether lipids in nonthermophilic crenarchaeotes. Appl. Environ. Microbiol. 64, 1133?1138 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lórpez-García, P., Moreira, D., López-López, A. & Rodríguez-Valera, F. A novel haloarchaeal-related lineage is widely distributed in deep oceanic regions. Environ. Microbiol. 3, 72?78. (2001).

    Google Scholar 

  30. Massana, R. et al. Vertical distribution and temporal variation of marine planktonic archaea in the Gerlache Strait, Antarctica, during early spring. Limnol. Oceanogr. 43, 607?617 (1998).

    CAS  Google Scholar 

  31. Murray, A. E. et al. Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl. Environ. Microbiol. 64, 2585?2595 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bowman, J. P., McCammon, S. A., Rea, S. M. & McMeekin, T. A. The microbial composition of three limnologically disparate hypersaline Antarctic lakes. FEMS Microbiol. Lett. 183, 81?88 (2000).

    CAS  PubMed  Google Scholar 

  33. Bowman, J. P., Rea, S. M., McCammon, S. A. & McMeekin, T. A. Diversity and community structure within anoxic sediments from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hills, Eastern Antarctica. Environ. Microbiol. 2, 227?237 (2000). Excellent example of a molecular approach to examining the biodiversity and community structure of prokaryotes, highlighting the enormous diversity present in cold-sediment environments.

    CAS  PubMed  Google Scholar 

  34. Coolen, M. J. L. et al. Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: response of methanogens and methanotrophs to environmental changes. Org. Geochem. 35, 1151?1167 (2004).

    CAS  Google Scholar 

  35. Bowman, J. P. & McCuaig, R. D. Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl. Environ. Microbiol. 69, 2463?2483 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Purdy, K. J., Nedwell, D. B. & Embley, T. M. Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. Appl. Environ. Microbiol. 69, 3181?3191 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ravenschlag, K., Sahm, K. & Amann, R. Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard). Appl. Environ. Microbiol. 67, 387?395 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Vetriani, C., Jannasch, H. W., MacGregor, B. J., Stahl, D. A. & Reysenbach, A. L. Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments. Appl. Environ. Microbiol. 65, 4375?4384 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kato, C., Li, L., Tamaoka, J. & Horikoshi, K. Molecular analysis of the sediment of the 11000-m deep Mariana Trench. Extremophiles 1, 117?123 (1997).

    CAS  PubMed  Google Scholar 

  40. Sorensen, K. B. Lauer, A. & Teske, A. Archaeal phylotypes in a metal-rich and low-activity deep subsurface sediment of the Peru Basin, ODP Leg 201, Site 1231. Geobiology 2, 151?161 (2004).

    CAS  Google Scholar 

  41. Kruger, M., Treude, T., Wolters, H., Nauhaus, K. & Boetius, A. Microbial methane turnover in different marine habitats. Palaeogeogr. Palaeoclimatol. Palaeoecol. 227, 6?17 (2005). A good review of methane production and oxidation in the marine ecosystem that illustrates the importance of these processes in cold environments.

    Google Scholar 

  42. McInerney, J. O., Wilkinson, M., Patching, J. W., Embley, T. M. & Powell, R. Recovery and phylogenetic analysis of novel archaeal rRNA sequences from a deep-sea deposit feeder. Appl. Environ. Microbiol. 61, 1646?1648 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. van der Maarel, M. J., Sprenger, W., Haanstra, R. & Forney, L. J. Detection of methanogenic archaea in seawater particles and the digestive tract of a marine fish species. FEMS Microbiol. Lett. 173, 189?194 (1998).

    Google Scholar 

  44. Wells, L. E. & Deming, J. W. Abundance of Bacteria, the Cytophaga-Flavobacterium cluster and Archaea in cold oligotrophic waters and nepheloid layers of the Northwest Passage, Canadian Archipelago. Aquat. Microb. Ecol. 31, 19?31 (2003).

    Google Scholar 

  45. Preston, C. M., Wu, K. Y., Molinski, T. F. & DeLong, E. F. A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc. Natl Acad. Sci. USA 93, 6241?6246 (1996).

    CAS  PubMed  Google Scholar 

  46. Webster, N. S., Negri, A. P., Munro, M. M. & Battershill, C. N. Diverse microbial communities inhabit Antarctic sponges. Environ. Microbiol. 6, 288?300 (2004).

    PubMed  Google Scholar 

  47. Konneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543?546 (2005). Describes the isolation of a novel free-living member of the Crenarchaeota with similarity to Crenarchaeota from cold environments.

    PubMed  Google Scholar 

  48. Jurgens, G., Lindstrom, K. & Saano, A. Novel group within the kingdom Crenarchaeota from boreal forest soil. Appl. Environ. Microbiol. 63, 803?805 (1997). Important discovery of Crenarchaeota in soil from a low-temperature environment.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nicol, G. W., Tscherko, D., Embley, M. T. & Prosser, J. I. Primary succession of soil Crenarchaeota across a receding glacier foreland. Environ. Microbiol. 7, 337?347 (2005).

    CAS  PubMed  Google Scholar 

  50. Pernthaler, J. et al. Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Appl. Environ. Microbiol. 64, 4299?4306 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Battin, T. J., Wille, A., Sattler, B. & Psenner, R. Phylogenetic and functional heterogeneity of sediment biofilms along environmental gradients in a glacial stream. Appl. Environ. Microbiol. 67, 799?807 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jurgens, G. et al. Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization. FEMS Microbiol. Ecol. 34, 45?56 (2000).

    CAS  PubMed  Google Scholar 

  53. Simankova, M. V. et al. Isolation and characterization of new strains of methanogens from cold terrestrial habitats. Syst. Appl. Microbiol. 26, 312?318 (2003).

    PubMed  Google Scholar 

  54. Skidmore, M. L., Foght, J. M. & Sharp, M. J. Microbial life beneath a high arctic glacier. Appl. Environ. Microbiol. 66, 3214?3220 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tung, H. C., Bramall, N. E. & Price, P. B. Microbial origin of excess methane in glacial ice and implications for life on Mars. Proc. Natl Acad. Sci. USA 102, 18292?18296 (2005). Interesting paper that links studies of microbial processes at very low temperature to the search for extraterrestrial life.

    CAS  PubMed  Google Scholar 

  56. Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66?74 (2004).

    CAS  PubMed  Google Scholar 

  57. Simankova, M. V. et al. Methanosarcina lacustris sp. nov., a new psychrotolerant methanogenic archaeon from anoxic lake sediments. Syst. Appl. Microbiol. 24, 362?367 (2001).

    CAS  PubMed  Google Scholar 

  58. Chong, S. C., Liu, Y., Cummins, M., Valentine, D. L. & Boone, D. R. Methanogenium marinum sp. nov., a H2-using methanogen from Skan Bay, Alaska, and kinetics of H2 utilization. Antonie van Leeuwenhoek 81, 263?270 (2002).

    CAS  PubMed  Google Scholar 

  59. Singh, N., Kendall, M. M., Liu, Y. & Boone, D. R. Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alakenese sp. nov., and emended description of Methanosarcina baltica. Int. J. Syst. Evol. Microbiol. 55, 2531?2538 (2005).

    CAS  PubMed  Google Scholar 

  60. von Klein, D., Arab, H., Vö lker, H. & Thomm, M. Methanosarcina baltica, sp. nov., a novel methanogen isolated from the Gotland Deep of the Baltic Sea. Extremophiles 6, 103?110 (2002).

    PubMed  Google Scholar 

  61. Li, L., Kato, C. & Horikoshi, K. Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench. Mar. Biotechnol. 1, 391?400 (1999).

    CAS  PubMed  Google Scholar 

  62. Franzmann, P. D. et al. Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Syst. Appl. Microbiol. 11, 20?27 (1988).

    CAS  Google Scholar 

  63. Rudolph, C., Moissl, C., Henneberger, R. & Huber, R. Ecology and microbial structures of archaeal/bacterial strings-of-pearls communities and archaeal relatives thriving in cold sulfidic springs. FEMS Microbiol. Ecol. 50, 1?11 (2004).

    CAS  PubMed  Google Scholar 

  64. Rudolph, C., Wanner, G. & Huber, R. Natural communities of novel archaea and bacteria growing in cold sulfurous springs with a string-of-pearls like morphology. Appl. Environ. Microbiol. 67, 2336?2344 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Moissl, C., Rudolph, C., Rachel, R., Koch, M. & Huber, R. In situ growth of the novel SM1 euryarchaeon from a string-of-pearls-like microbial community in its cold biotope, it physical separation and insights into its structure and physiology. Arch. Microbiol. 180, 211?217 (2003).

    CAS  PubMed  Google Scholar 

  66. Moissl, C., Rachel, R., Briegel, A., Engelhardt, H. & Huber, R. The unique structure of archaeal 'hami', highly complex cell appendages with nano-grappling hooks. Mol. Microbiol. 56, 361?370 (2005).

    CAS  PubMed  Google Scholar 

  67. Schleper, C., Swanson, R. V., Mathur, E. J. & DeLong, E. F. Characterization of a DNA polymerase from the uncultivated psychrophilic archaeon Cenarchaeum symbiosum. J. Bacteriol. 179, 7803?7811 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gilbert, J. A., Hill, P. J., Dodd, C. E. R. & Laybourn-Parry, J. Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology 150, 171?180 (2004).

    CAS  PubMed  Google Scholar 

  69. Saunders, N. F. W. et al. Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea, Methanogenium frigidum and Methanococcoides burtonii. Genome Res. 13, 1580?1588 (2003). First insight into cold adaptation of archaea derived from genome-sequence data.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Siddiqui, K. S., Cavicchioli, R. & Thomas, T. Thermodynamic activation properties of elongation factor 2 (EF-2) proteins from psychrotolerant and thermophilic archaea. Extremophiles 6, 143?150 (2002).

    CAS  PubMed  Google Scholar 

  71. Thomas, T. & Cavicchioli, R. Effect of temperature on the stability and activity of the elongation factor 2 proteins from low-temperature adapted and thermophilic methanogens. J. Bacteriol. 182, 1328?1332 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Thomas, T. & Cavicchioli, R. Cold adaptation of archaeal elongation factor 2 (EF-2) proteins. Curr. Protein Pept. Sci. 3, 223?230 (2002).

    CAS  PubMed  Google Scholar 

  73. Thomas, T., Kumar, N. & Cavicchioli, R. Effects of ribosomes and intracellular solutes on activities and stabilities of elongation factor 2 proteins from psychrotolerant and thermophilic methanogens. J. Bacteriol. 183, 1974?1982 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Thomas, T. & Cavicchioli, R. Archaeal cold-adapted proteins: structural and evolutionary analysis of the elongation factor 2 proteins from psychrophilic, mesophilic and thermophilic methanogens. FEBS Lett. 439, 281?286 (1998).

    CAS  PubMed  Google Scholar 

  75. Kreil, D. P. & Ouzounis, C. A. Identification of thermophilic species by the amino acid compositions deduced from their genomes. Nucleic Acids Res. 29, 1608?1615 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tekaia, F., Yeramian, E. & Dujon, B. Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis. Gene 297, 51?60 (2002).

    CAS  PubMed  Google Scholar 

  77. Rabus, R. et al. The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ. Microbiol. 6, 887?902 (2004).

    CAS  PubMed  Google Scholar 

  78. Methe, B., Nelson, K. E. & Fraser, C. M. It's a cold world out there (but the prospects are hot). Trends Microbiol. 12, 532?534 (2004). Erratum in: Trends Microbiol. 13, 198 (2005).

    CAS  PubMed  Google Scholar 

  79. Siddiqui, K. S. et al. The role of lysine versus arginine in enzyme cold-adaptation: modifying lysine to homo-arginine stabilizes the cold-adapted α-amylase from Pseudoalteramonas haloplanktis. Proteins (in the press).

  80. Noon, K. R. et al. Influence of temperature on tRNA modification in Archaea: Methanococcoides burtonii (Topt 23°C) and Stetteria hydrogenophila (Topt 90°C). J. Bacteriol. 185, 5483?5490 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Nichols, D. et al. Cold adaptation in the Antarctic archaeon, Methanococcoides burtonii, involves membrane lipid unsaturation. J. Bacteriol. 186, 8508?8515 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gibson, J. A. et al. Unsaturated diether lipids in the psychrotrophic archaeon Halorubrum lacusprofundi. Syst. Appl. Microbiol. 28, 19?26 (2005).

    CAS  PubMed  Google Scholar 

  83. Goodchild, A., Raftery, M., Saunders, N. F. W., Guilhaus, M. & Cavicchioli, R. The biology of the cold adapted archaeon, Methanococcoides burtonii determined by proteomics using liquid chromatography-tandem mass spectrometry. J. Prot. Res. 3, 1164?1176 (2004). The biology of archaeal cold adaptation reconstructed from the identification of large numbers of expressed proteins.

    CAS  Google Scholar 

  84. Goodchild, A., Raftery, M., Saunders, N. F. W., Guilhaus, M. & Cavicchioli, R. Cold adaptation of the Antarctic archaeon, Methanococcoides burtonii assessed by proteomics using ICAT. J. Prot. Res. 4, 473?480 (2005).

    CAS  Google Scholar 

  85. Saunders, N. F. W. et al. Predicted roles for hypothetical proteins in the low-temperature expressed proteome of the Antarctic archaeon Methanococcoides burtonii. J. Prot. Res. 4, 464?472 (2005).

    CAS  Google Scholar 

  86. Lim, J., Thomas, T. & Cavicchioli, R. Low temperature regulated DEAD-box RNA helicase from the Antarctic archaeon, Methanococcoides burtonii. J. Mol. Biol. 297, 553?567 (2000).

    CAS  PubMed  Google Scholar 

  87. Knoblauch, C. & Jorgensen, B. B. Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments. Environ. Microbiol. 1, 457?467 (1999).

    CAS  PubMed  Google Scholar 

  88. Boonyaratanakornkit, B. B. et al. Transcriptional profiling of the hyperthermophilic methanarchaeon Methanococcus jannaschii in response to lethal heat and non-lethal cold shock. Environ. Microbiol. 7, 789?797 (2005).

    CAS  PubMed  Google Scholar 

  89. Weinberg, M. V., Schut, G. J., Brehm, S., Datta, S. & Adams, M. W. Cold shock of a hyperthermophilic archaeon: Pyrococcus furiosus exhibits multiple responses to a suboptimal growth temperature with a key role for membrane-bound glycoproteins. J. Bacteriol. 187, 336?348 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ideno, A., Yoshida, T., Iida, T., Furutani, M. & Maruyama, T. FK506-binding protein of the hyperthermophilic archaeum, Thermococcus sp. KS-1, a cold-shock-inducible peptidyl-prolyl cis-trans isomerase with activities to trap and refold denatured proteins. Biochem. J. 357, 465?471 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Yoshida, T., Ideno, A., Hiyamuta, S., Yohda, M. & Maruyama, T. Natural chaperonin of the hyperthermophilic archaeum, Thermococcus strain KS-1: a hetero-oligomeric chaperonin with variable subunit composition. Mol. Microbiol. 39, 1406?1413 (2001).

    CAS  PubMed  Google Scholar 

  92. Kagawa, H. K. et al. The composition, structure and stability of a group II chaperonin are temperature regulated in a hyperthermophilic archaeon. Mol. Microbiol. 48, 143?156 (2003).

    CAS  PubMed  Google Scholar 

  93. Beja, O. et al. Comparative genomic analysis of archaeal genotypic variants in a single population and in two different oceanic provinces. Appl. Environ. Microbiol. 68, 335?345 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ghané, F. & Grogan, D. W. Chromosomal marker exchange in the archaeon Sulfolobus acidocaldarius: physiological and cellular aspects. Microbiology 144, 1649?1657 (1998).

    Google Scholar 

  95. Lopez-Garcia, P., Brochier, C., Moreira, D. & Rodriguez-Valera, F. Comparative analysis of a genome fragment of an uncultivated mesopelagic crenarchaeote reveals multiple horizontal gene transfers. Environ. Microbiol. 6, 19?34 (2004).

    CAS  PubMed  Google Scholar 

  96. Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N. & Giuranna, M. Detection of methane in the atmosphere of Mars. Science 306, 1758?1761 (2004).

    CAS  PubMed  Google Scholar 

  97. Kral, T. A., Bekkum, C. R. & McKay, C. P. Growth of methanogens on a Mars soil simulant. Origins Life Evol. Biosph. 34, 615?626 (2004).

    CAS  Google Scholar 

  98. Christner, B. C., Mosley-Thompson, E., Thompson, L. G. & Reeve, J. N. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ. Microbiol. 3, 570?577 (2001).

    CAS  PubMed  Google Scholar 

  99. Jakosky, B. M., Nealson, K. H., Bakermans, C., Ley, R. E. & Mellon, M. T. Subfreezing activity of microorganisms and the potential habitability of Mars' polar regions. Astrobiology 3, 343?350 (2003).

    CAS  PubMed  Google Scholar 

  100. Inman, I. Antarctic drilling: the plan to unlock Lake Vostok. Science 310, 611?612 (2005).

    CAS  PubMed  Google Scholar 

  101. Garcia-Ruiz, J. M. et al. Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302, 1194?1197 (2003).

    CAS  PubMed  Google Scholar 

  102. Davies, P. C. & Lineweaver, C. H. Finding a second sample of life on Earth. Astrobiology 5, 154?163 (2005).

    CAS  PubMed  Google Scholar 

  103. Gibson, J. A. E. The meromictic lakes and stratified marine basins of the Vestfold Hills, East Antarctica. Antarctic Sci. 11, 175?192 (1999). Comprehensive overview of the depth of knowledge of the diverse lakes and their indigenous microbiota in Antarctica.

    Google Scholar 

  104. Bunt, J. S. Marine studies in the inshore waters of the Antarctic near Mawson, 1956. Nature 183, 1541 (1959).

  105. Lohan, D. & Johnston, S. The International Regime for Bioprospecting: Existing Policies and Emerging Issues for Antarctica (United Nations University and Institute of Advanced Studies, Japan 2003).

    Google Scholar 

  106. Rankin, L. M., Gibson, J. A. E., Franzmann, P. D. & Burton, H. R. The chemical stratification and microbial communities of Ace Lake, Antarctica: a review of the characteristics of a marine-derived meromictic lake. Polarforschung 66, 33?52 (1999).

    Google Scholar 

  107. Bowman, J. P., McCammon, S. A. & Skerratt, J. H. Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 143, 1451?1459 (1997).

    CAS  PubMed  Google Scholar 

  108. Laybourn-Parry, J., Marshall, W. A. & Marchant, H. J. Flagellate nutritional versatility as a key to survival in two contrasting Antarctic saline lakes. Freshw. Biol. 50, 830?838 (2005).

    Google Scholar 

  109. Madan, J. A., Marshall, W. A. & Laybourn-Parry, J. Virus and microbial loop dynamics over an annual cycle. Freshw. Biol. 50, 1291?1300 (2005).

    Google Scholar 

  110. Powell, L. M., Bowman, J. P., Skerratt, J. H., Franzmann, P. D. & Burton, H. R. Ecology of a novel Synechococcus clade occurring in dense populations in saline Antarctic lakes. Mar. Ecol. Prog. Ser. 291, 65?80 (2005).

    CAS  Google Scholar 

  111. Hopmans, E. C., Schouten, S., Rijpstra, W. I. C. & Damste, J. S. S. Identification of carotenals in sediments. Org. Geochem. 36, 485?495 (2005).

    CAS  Google Scholar 

  112. Cromer, L., Gibson, J. A. E., Swadling, K. T. M. & David, R. A. Faunal microfossils: Indicators of Holocene ecological change in a saline Antarctic lake. Palaeogeogr. Palaeoclimatol. Palaeoecol. 221, 83?97 (2005).

    Google Scholar 

  113. Goo, Y. A. et al. Low-pass sequencing for microbial comparative genomics. BMC Genomics 5, 3 (2004).

    PubMed  PubMed Central  Google Scholar 

  114. Schleper, C. et al. Genomic analysis reveals chromosomal variation in natural populations of the uncultured psychrophilic archaeon Cenarchaeum symbiosum. J. Bacteriol. 180, 5003?5009 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lopez-Garcia, P. & Forterre, P. DNA topology and the thermal stress response, a tale from mesophiles and hyperthermophiles. Bioessays 22, 738?46 (2000).

    CAS  PubMed  Google Scholar 

  116. Bell, S. D., Jaxel, C., Nadal, M., Kosa, P. F. & Jackson, S. P. Temperature, template topology, and factor requirements of archaeal transcription. Proc. Natl Acad. Sci. USA 95, 15218?15222 (1998).

    CAS  PubMed  Google Scholar 

  117. Hallam, S. J. et al. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol. 4, e95 (2006).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I dedicate this article to David R. Boone, who died May 27, 2005. As part of the Oregon Collection of Methanogens that he created and directed, David worked tirelessly to isolate and characterize key psychrophilic methanogens. I am deeply indebted to G. Jurgens, who generously constructed the phylogenetic tree, and to K. Sowers and G. Ferry, who provided a stimulating environment during my sabbatical. A special thanks to J. Bowman, J. Gibson, P. Franzmann, K. Kastead, J. Biddle, T. Kolesnikow, past and present members of my lab, and a broad range of colleagues who have, in effect, formed the backbone of this manuscript. This review could not be exhaustive and I regret not being able to cite all relevant literature. Research in my lab is supported by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Cenarchaeum symbiosum

Colwellia psychrerythraea

Escherichia coli

Halobacterium NRC-1

Haloferax volcanii

Halorubrum lacusprofundi

Listeria monocytogenes

Methanocaldococcus jannaschii

Methanococcoides burtonii

Methanogenium frigidum

Methanopyrus kandleri

Pyrococcus furiosus

Sphingopyxis alaskensis

Sulfolobus acidocaldarius

FURTHER INFORMATION

Ricardo Cavicchioli's homepage

Australian Antarctic Division

ArchaeaWeb

DOE Joint Genome Institute (JGI)

Draft genomes: sequence and analyses

Methanococcoides burtonii at the JGI

Why Sequence Six Archaea? (at the JGI)

The J. Craig Venter Institute

The Gordon and Betty Moore Foundation

Microbial Genome Sequencing Project at the Gordon and Betty Moore Foundation

Glossary

Psychrophile

An organism that grows in a cold environment.

Shelford's law of tolerance

A concept of ecological tolerance in which each ecological factor to which an organism responds has maximum and minimum limiting effects between which lies a range that it can tolerate.

Heterotroph

An organism that uses organic compounds as nutrients to produce energy for growth.

Crenarchaeota

One of the four kingdoms of the Archaea, phylogenetically distinct from the Euryarchaeota, Korarchaeota and Nanoarchaeota.

Rhizosphere

The soil zone that surrounds, and is effected by, the roots of plants.

Nitrifiers

Organisms that convert ammonia into a more oxidized form such as nitrate or nitrite.

Meromictic

Meromictic lakes contain a bottom layer of water that does not mix with the upper layer of water. The upper mixed layer (mixolimnion) is typically separated from the lower stagnant anoxic layer (monimolimnion) by a steep density gradient (pycnocline).

Methylotrophic methanogen

Compared to hydrogenotrophic methanogens that use H2 plus CO2 (or formate), methylotrophs use simple C1 compounds such as methanol, methylamines and methylthiols to grow and produce methane.

Chlorophyte

Photosynthetic alga that is a member of the Chlorophyta phylum of eukaryal protists.

Chemolithoautotroph

An organism that obtains energy from inorganic compounds and carbon from CO2.

Mesophile

An organism that is typically isolated from a moderate environment (20?45°C) and that can grow effectively in its natural environment.

Elongation factor 2

(EF2). GTPase that interacts with the ribosome and has an essential role in the elongation step of translation during protein synthesis.

Principle components analysis

A statistical method that can be applied to a multivariate data set to reduce the complexity of the data and to determine whether there are underlying trends that explain the observed variation.

Molecular chaperone

A protein that assists protein folding by preventing peptides emerging from the ribosome from becoming misfolded, or that might refold misfolded proteins (for example, during cellular stress); includes the chaperonin protein-folding machine.

Peptidyl-prolyl cis/trans isomerase

(PPIase). Enzyme that increases the rate at which proteins can fold by catalysing the otherwise rate-limiting cis/trans isomerization of proline imide bonds in polypeptides.

Accretion ice

Ice that has formed after lake water freezes when it comes into contact with colder glacial ice that is above it.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavicchioli, R. Cold-adapted archaea. Nat Rev Microbiol 4, 331–343 (2006). https://doi.org/10.1038/nrmicro1390

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1390

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing