Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Control of filamentous fungal cell shape by septins and formins

An Erratum to this article was published on 01 April 2006

Abstract

Studies in various model systems have identified two protein families that are crucial for shaping cell morphology: the septins and the formins. Both families are conserved in most eukaryotes, but the functions and regulation of individual homologues can vary depending on their precise cellular context. The rich array of cell geometries found in different filamentous fungal species provides a powerful experimental canvas for studying the evolution and regulation of septins and formins. Here, I assimilate what is known about the function of these protein families in filamentous fungi and propose that further studies in these organisms could answer some open mechanistic questions that pertain in general to eukaryotic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of diverse fungal cell shapes.
Figure 2: Septin organization in different filamentous fungi.
Figure 3: Formin localization and mutant phenotypes.

Similar content being viewed by others

References

  1. Sudbery, P., Gow, N. & Berman, J. The distinct morphogenic states of Candida albicans. Trends Microbiol. 12, 317–324 (2004).

    Article  CAS  Google Scholar 

  2. Harris, S. D. et al. Polarisome meets Spitzenkörper: microscopy, genetics, and genomics converge. Euk. Cell. 4, 225–229 (2005).

    Article  CAS  Google Scholar 

  3. Momany, M. Polarity in filamentous fungi: establishment, maintenance and new axes. Curr. Opin. Microbiol. 5, 580–585 (2002).

    Article  CAS  Google Scholar 

  4. Harris, S. D. & Momany, M. Polarity in filamentous fungi: moving beyond the yeast paradigm. Fungal Genet. Biol. 41, 391–400 (2004).

    Article  CAS  Google Scholar 

  5. Hartwell, L. H. Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp. Cell Res. 69, 265–276 (1971).

    Article  CAS  Google Scholar 

  6. Gladfelter, A. S. et al. Interplay between septin organization, cell cycle and cell shape in yeast. J. Cell Sci. 118, 1617–1628 (2005).

    Article  CAS  Google Scholar 

  7. Dobbelaere, J. & Barral, Y. Spatial coordination of cytokinetic events by compartmentalization of the cell cortex. Science 305, 393–396 (2004).

    Article  CAS  Google Scholar 

  8. Kartmann, B. & Roth, D. Novel roles for mammalian septins: from vesicle trafficking to oncogenesis. J. Cell Sci. 114, 839–844 (2001).

    CAS  PubMed  Google Scholar 

  9. Byers, B. & Goetsch, L. A highly ordered ring of membrane-associated filaments in budding yeast. J. Cell Biol. 69, 717–721 (1976).

    Article  CAS  Google Scholar 

  10. Douglas, L. M. et al. Septin function in yeast model systems and filamentous fungi. Euk. Cell 4, 1503–1510 (2005).

    Article  CAS  Google Scholar 

  11. Versele, M. & Thorner, J. Some assembly required: yeast septins provide the instruction manual. Trends Cell Biol. 15, 414–424 (2005).

    Article  CAS  Google Scholar 

  12. Field, C. M. et al. A purified Drosophila septin complex forms filaments and exhibits GTPase activity. J. Cell Biol. 133, 605–616 (1996).

    Article  CAS  Google Scholar 

  13. Frazier, J. A. et al. Polymerization of purified yeast septins: evidence that organized filament arrays may not be required for septin function. J. Cell Biol. 143, 737–749 (1998).

    Article  CAS  Google Scholar 

  14. Casamayor, A. & Snyder, M. Molecular dissection of a yeast septin: distinct domains are required for septin interaction, localization, and function. Mol. Cell. Biol. 23, 2762–2777 (2003).

    Article  CAS  Google Scholar 

  15. Caviston, J. P. et al. The role of Cdc42p GTPase-activating proteins in assembly of the septin ring in yeast. Mol. Cell. Biol. 14, 4051–4066 (2003).

    Article  CAS  Google Scholar 

  16. Dobbelaere, J. et al. Phosphorylation-dependent regulation of septin dynamics during the cell cycle. Dev. Cell 4, 345–357 (2003).

    Article  CAS  Google Scholar 

  17. Versele, M. & Thorner, J. Septin collar formation in budding yeast requires GTP binding and direct phosphorylation by the PAK, Cla4. J. Cell Biol. 164, 701–715 (2004).

    Article  CAS  Google Scholar 

  18. Kozubowski, L., Larson, J. R. & Tatchell, K. Role of the septin ring in the asymmetric localization of proteins at the mother–bud neck in Saccharomyces cerevisiae. Mol. Biol. Cell 16, 3455–3466 (2005).

    Article  CAS  Google Scholar 

  19. Gladfelter, A. S., Pringle, J. R. & Lew, D. J. The septin cortex at the yeast mother–bud neck. Curr. Opin. Microbiol. 4, 681–689 (2001).

    Article  CAS  Google Scholar 

  20. Sudbery, P. E. The germ tubes of Candida albicans hyphae and pseudohyphae show different patterns of septin ring localization. Mol. Microbiol. 41, 19–31 (2001).

    Article  CAS  Google Scholar 

  21. Martin, S. W., Douglas, L. M. & Konopka, J. B. Cell cycle dynamics and quorum sensing in Candida albicans chlamydospores are distinct from budding and hyphal growth. Euk. Cell 4, 1191–1202 (2005).

    Article  CAS  Google Scholar 

  22. Westfall, P. J. & Momany, M. Aspergillus nidulans septin AspB plays pre- and postmitotic roles in septum, branch, and conidiophore development. Mol. Biol. Cell 13, 110–118 (2002).

    Article  CAS  Google Scholar 

  23. Wightman, R. et al. In Candida albicans, the Nim1 kinases Gin4 and Hsl1 negatively regulate pseudohypha formation and Gin4 also controls septin organization. J. Cell Biol. 164, 581–591 (2004).

    Article  CAS  Google Scholar 

  24. Kaneko, A. et al. Tandem affinity purification of the Candida albicans septin protein complex. Yeast 21, 1025–1033 (2004).

    Article  CAS  Google Scholar 

  25. Martin, S. W. & Konopka, J. B. SUMO modification of septin-interacting proteins in Candida albicans. J. Biol. Chem. 279, 40861–40867 (2004).

    Article  CAS  Google Scholar 

  26. Fares, H., Goesch, L. & J. Pringle, J. Identification of a developmentally regulated septin and involvement of the septins in spore formation in Saccharomyces cerevisiae. J. Cell Biol. 132, 399–411 (1996).

    Article  CAS  Google Scholar 

  27. Warenda, A. J. & Konopka, J. B. Septin function in Candida albicans morphogenesis. Mol. Biol. Cell 13, 2732–2746 (2002).

    Article  CAS  Google Scholar 

  28. Hausauer, D. L. et al. Hyphal guidance and invasive growth in Candida albicans require the Ras-like GTPase Rsr1p and its GTPase-activating protein bud2p. Euk. Cell 4, 1273–1286 (2005).

    Article  CAS  Google Scholar 

  29. Momany, M. et al. Characterization of the Aspergillus nidulans septin (asp) gene family. Genetics 157, 969–977 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Martin, S. W. & Konopka, J. B. Lipid raft polarization contributes to hyphal growth in Candida albicans. Euk. Cell 3, 675–684 (2004).

    Article  CAS  Google Scholar 

  31. Zigmond, S. H. Formin-induced nucleation of actin filaments. Curr. Opin. Cell Biol. 16, 99–105 (2004).

    Article  CAS  Google Scholar 

  32. Higgs, H. N. Formin proteins: a domain-based approach. Trends Biochem. Sci. 30, 342–353 (2005).

    Article  CAS  Google Scholar 

  33. Bretscher, A. Polarized growth and organelle segregation in yeast: the tracks, motors, and receptors. J. Cell. Biol. 160, 811–816 (2003).

    Article  CAS  Google Scholar 

  34. Higgs, H. N. & Peterson, K. J. Phylogenetic analysis of the formin homology 2 domain. Mol. Biol. Cell 16, 1–13 (2005).

    Article  CAS  Google Scholar 

  35. Li, C. R. et al. The formin family protein CaBni1p has a role in cell polarity control during both yeast and hyphal growth in Candida albicans. J. Cell Sci. 118, 2637–2648 (2005).

    Article  CAS  Google Scholar 

  36. Sharpless, K. E. & Harris, S. D. Functional characterization and localization of the Aspergillus nidulans formin SEPA. Mol. Biol. Cell 13, 469–479 (2002).

    Article  CAS  Google Scholar 

  37. Crampin, H. et al. Candida albicans hyphae have a Spitzenkörper that is distinct from the polarisome found in yeast and pseudohyphae. J. Cell Sci. 118, 2935–2947 (2005).

    Article  CAS  Google Scholar 

  38. Schmitz, H. P., Kaufmann, A., Kö hli, M., Laissue, P. P. & Philippsen, P. From function to shape — a novel role of a formin in morphogenesis of the fungus Ashbya gossypii. Mol. Biol. Cell 17, 130–145 (2006).

    Article  CAS  Google Scholar 

  39. Martin, R., Walther, A. & Wendland, J. Ras1-induced hyphal development in Candida albicans requires the formin Bni1. Euk. Cell 4, 1712–1724 (2005).

    Article  CAS  Google Scholar 

  40. Bartnicki-Garcia, S. et al. Evidence that Spitzenkörper behavior determines the shape of a fungal hypha: a test of the hyphoid model. Exp. Mycol. 19, 153–159 (1995).

    Article  CAS  Google Scholar 

  41. Girbardt, M. Der Spitzenkörper von Polystictus versicolor. Planta 50, 47–59 (1957).

    Article  Google Scholar 

  42. Morris, N. R. A temperature-sensitive mutant of Aspergillus nidulans reversibly blocked in nuclear division. Exp. Cell Res. 98, 204–210 (1976).

    Article  CAS  Google Scholar 

  43. Pearson, C. L. et al. MesA, a novel fungal protein required for the stabilization of polarity axes in Aspergillus nidulans. Mol. Biol. Cell 15, 3658–3672 (2004).

    Article  CAS  Google Scholar 

  44. Seiler, S. & Plamann, M. The genetic basis of cellular morphogenesis in the filamentous fungus Neurospora crassa. Mol. Biol. Cell 14, 4352–4364 (2003).

    Article  CAS  Google Scholar 

  45. Lin, X. & Momany, M. Identification and complementation of abnormal hyphal branch mutants ahbA1 and ahbB1 in Aspergillus nidulans. Fungal Genet. Biol. 41, 998–1006 (2004).

    Article  CAS  Google Scholar 

  46. Knechtle, P., Dietrich, F. & Philippsen, P. Maximal polar growth potential depends on the polarisome component AgSpa2 in the filamentous fungus Ashbya gossypii. Mol. Biol. Cell 14, 4140–4154 (2003).

    Article  CAS  Google Scholar 

  47. Soll, D. R. & Mitchell, L. H. Filament ring formation in the dimorphic yeast Candida albicans. J. Cell Biol. 96, 486–493 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank H.-P. Schmitz, H. Helfer and P. Knechtle in P. Philippsen's group at the University of Basel for many interesting discussions about septins and formins.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Ashbya gossypii

Aspergillus nidulans

Candida albicans

Neurospora crassa

Saccharomyces cerevisiae

Schizosaccharomyces pombe

Ustilago maydis

FURTHER INFORMATION

Amy Gladfelter's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gladfelter, A. Control of filamentous fungal cell shape by septins and formins. Nat Rev Microbiol 4, 223–229 (2006). https://doi.org/10.1038/nrmicro1345

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1345

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing