Key Points
-
Genome segregation is a fundamental process that all cells must perform with high accuracy and in precise coordination with other cell-cycle events. The molecular mechanisms that underpin plasmid and chromosome segregation in prokaryotes are the subject of intense investigation.
-
The segrosome is the nucleoprotein molecular machine that directs the intracellular movement of plasmids during segregation. Plasmid segregation requires a pair of proteins that interacts with a centromere analogue. One protein is most commonly a member of the ParA superfamily of Walker-type ATPases, whereas the partner protein is a DNA-binding factor that interacts site-specifically with the plasmid centromere analogue.
-
Plasmid centromeres have diverse organizations, although all centromeres contain repeat motifs that are recognized by the DNA-binding protein. The ParA protein does not contact the centromere directly, but is instead recruited into the segrosome complex by the DNA-binding factor.
-
Although their mode of action remains to be fully elucidated, there is growing evidence that ParA proteins can polymerize into extensive filamentous structures. Polymerization is controlled by nucleotide binding and hydrolysis, as well as by the partner protein. ParA polymerization within the segrosome could move plasmids in bipolar orientations during segregation.
-
The tertiary structures of several partition proteins have recently been solved, providing invaluable new insights into segrosome organization and assembly.
Abstract
The genomes of unicellular and multicellular organisms must be partitioned equitably in coordination with cytokinesis to ensure faithful transmission of duplicated genetic material to daughter cells. Bacteria use sophisticated molecular mechanisms to guarantee accurate segregation of both plasmids and chromosomes at cell division. Plasmid segregation is most commonly mediated by a Walker-type ATPase and one of many DNA-binding proteins that assemble on a cis-acting centromere to form a nucleoprotein complex (the segrosome) that mediates intracellular plasmid transport. Bacterial chromosome segregation involves a multipartite strategy in which several discrete protein complexes potentially participate. Shedding light on the basis of genome segregation in bacteria could indicate new strategies aimed at combating pathogenic and antibiotic-resistant bacteria.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament
BMC Biology Open Access 12 October 2016
-
Site-Specific Mobilization of Vinyl Chloride Respiration Islands by a Mechanism Common in Dehalococcoides
BMC Genomics Open Access 02 June 2011
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Gitai, Z. The new bacterial cell biology: moving parts and subcellular architecture. Cell 120, 577–586 (2005).
Hayes, F. The function and organization of plasmids. Methods Mol. Biol. 235, 1–17 (2003).
Bartosik, A. A. & Jagura-Burdzy, G. Bacterial chromosome segregation. Acta Biochim. Pol. 52, 1–34 (2005).
Errington, J., Murray, H. & Wu, L. J. Diversity and redundancy in bacterial chromosome segregation mechanisms. Philos. Trans. R. Soc. Lond. B 360, 497–505 (2005).
Weitao, T., Dasgupta, S. & Nordstrom, K. Plasmid R1 is present as clusters in the cells of Escherichia coli. Plasmid 43, 200–204 (2000).
Pogliano, J., Ho, T. Q., Zhong, Z. & Helinski, D. R. Multicopy plasmids are clustered and localized in Escherichia coli. Proc. Natl Acad. Sci. USA 98, 4486–4491 (2001).
Summers, D. Timing, self-control and a sense of direction are the secrets of multicopy plasmid stability. Mol. Microbiol. 29, 1137–1145 (1998).
Hayes, F. Toxins–antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301, 1496–1499 (2003).
Ogura, T. & Hiraga, S. Partition mechanism of F plasmid: two plasmid gene-encoded products and a cis-acting region are involved in partition. Cell 32, 351–360 (1983). This paper, and references 10 and 11, first described the active partitioning of plasmids.
Austin, S. & Abeles, A. Partition of unit-copy miniplasmids to daughter cells. I. P1 and F miniplasmids contain discrete, interchangeable sequences sufficient to promote equipartition. J. Mol. Biol. 169, 353–372 (1983).
Austin, S. & Abeles, A. Partition of unit-copy miniplasmids to daughter cells. II. The partition region of miniplasmid P1 encodes an essential protein and a centromere-like site at which it acts. J. Mol. Biol. 169, 373–387 (1983).
Gerdes, K. & Molin, S. Partitioning of plasmid R1. Structural and functional analysis of the parA locus. J. Mol. Biol. 190, 269–279 (1986).
Gallie, D. R. & Kado, C. I. Agrobacterium tumefaciens pTAR parA promoter region involved in autoregulation, incompatibility and plasmid partitioning. J. Mol. Biol. 193, 465–478 (1987).
Tabuchi, A. et al. Genetic organization and nucleotide sequence of the stability locus of IncFII plasmid NR1. J. Mol. Biol. 202, 511–525 (1988).
Ludtke, D. N., Eichorn, B. G. & Austin, S. J. Plasmid-partition functions of the P7 prophage. J. Mol. Biol. 209, 393–406 (1989).
Motallebi-Veshareh, M., Rouch, D. A. & Thomas, C. M. A family of ATPases involved in active partitioning of diverse bacterial plasmids. Mol. Microbiol. 4, 1455–1463 (1990). Describes the identification of Walker-like, ATP-binding motifs in ParA proteins and shows that the cell-division factor MinD is a member of the ParA family.
Cerin, H. & Hackett, J. The parVP region of the Salmonella typhimurium virulence plasmid pSLT contains four loci required for incompatibility and partition. Plasmid 30, 30–38 (1993).
Lin, Z. & Mallavia, L. P. The partition region of plasmid QpH1 is a member of a family of two trans-acting factors as implied by sequence analysis. Gene 160, 69–74 (1995).
Taghavi, S., Provoost, A., Mergeay, M. & van der Lelie D. Identification of a partition and replication region in the Alcaligenes eutrophus megaplasmid pMOL28. Mol. Gen. Genet. 250, 169–179 (1996).
Macartney, D. P., Williams, D. R., Stafford, T. & Thomas, C. M. Divergence and conservation of the partitioning and global regulation functions in the central control region of the IncP plasmids RK2 and R751. Microbiology 143, 2167–2177 (1997).
Bartosik, D., Baj, J. & Wlodarczyk, M. Molecular and functional analysis of pTAV320, a repABC-type replicon of the Paracoccus versutus composite plasmid pTAV1. Microbiology 144, 3149–3157 (1998).
Ravin, N. & Lane, D. Partition of the linear plasmid N15: interactions of N15 partition functions with the sop locus of the F plasmid. J. Bacteriol. 181, 6898–6906 (1999).
Inui, M., Roh, J. H., Zahn, K. & Yukawa, H. Sequence analysis of the cryptic plasmid pMG101 from Rhodopseudomonas palustris and construction of stable cloning vectors. Appl. Environ. Microbiol. 66, 54–63 (2000).
Kearney, K., Fitzgerald, G. F. & Seegers, J. F. Identification and characterization of an active plasmid partition mechanism for the novel Lactococcus lactis plasmid pCI2000. J. Bacteriol. 182, 30–37 (2000).
Youngren, B., Radnedge, L., Hu, P., Garcia, E. & Austin, S. A plasmid partition system of the P1-P7par family from the pMT1 virulence plasmid of Yersinia pestis. J. Bacteriol. 182, 3924–3928 (2000).
Hayes, F. The partition system of multidrug resistance plasmid TP228 includes a novel protein that epitomizes an evolutionarily distinct subgroup of the ParA superfamily. Mol. Microbiol. 37, 528–541 (2000).
Kwong, S. M., Yeo, C. C. & Poh, C. L. Molecular analysis of the pRA2 partitioning region: ParB autoregulates parAB transcription and forms a nucleoprotein complex with the plasmid partition site, parS. Mol. Microbiol. 40, 621–633 (2001).
Ebersbach, G. & Gerdes, K. The double par locus of virulence factor pB171: DNA segregation is correlated with oscillation of ParA. Proc. Natl Acad. Sci. USA 98, 15078–15083 (2001).
Lawley, T. D. & Taylor, D. E. Characterization of the double-partitioning modules of R27: correlating plasmid stability with plasmid localization. J. Bacteriol. 185, 3060–3067 (2003).
Soberon, N., Venkova-Canova, T., Ramirez-Romero, M. A., Tellez-Sosa, J. & Cevallos, M. A. Incompatibility and the partitioning site of the repABC basic replicon of the symbiotic plasmid from Rhizobium etli. Plasmid 51, 203–216 (2004).
Fothergill, T. J. G., Barillà, D. & Hayes, F. Protein diversity confers specificity in plasmid segregation. J. Bacteriol. 187, 2651–2661 (2005).
Sergueev, K., Dabrazhynetskaya, A. & Austin, S. Plasmid partition system of the P1par family from the pWR100 virulence plasmid of Shigella flexneri. J. Bacteriol. 187, 3369–3373 (2005).
Gerdes, K., Moller-Jensen, J. & Jensen, R. B. Plasmid and chromosome partitioning: surprises from phylogeny. Mol. Microbiol. 37, 455–466 (2000).
Yamaichi, Y. & Niki, H. Active segregation by the Bacillus subtilis partitioning system in Escherichia coli. Proc. Natl Acad. Sci. USA 97, 14656–14661 (2000).
Bignell, C. & Thomas, C. M. The bacterial ParA-ParB partitioning proteins. J. Biotechnol. 91, 1–34 (2001).
Surtees, J. A. & Funnell, B. E. Plasmid and chromosome traffic control: how ParA and ParB drive partition. Curr. Top. Dev. Biol. 56, 145–180 (2003).
Funnell, B. E. & Slavcev, R. A. in Plasmid Biology (eds Funnell, B. E. & Phillips, G. J.) 81–104 (American Society for Microbiology Press, Washington, DC, 2004).
Friedman, S. A. & Austin, S. J. The P1 plasmid-partition system synthesizes two essential proteins from an autoregulated operon. Plasmid 19, 103–112 (1988).
Hayes, F., Radnedge, L., Davis, M. A. & Austin, S. J. The homologous operons for P1 and P7 plasmid partition are autoregulated from dissimilar operator sites. Mol. Microbiol. 11, 249–260 (1994).
Hirano, M. et al. Autoregulation of the partition genes of the mini-F plasmid and the intracellular localization of their products in Escherichia coli. Mol. Gen. Genet. 257, 392–403 (1998).
Dorokhov, B. D., Lane, D. & Ravin, N. V. Partition operon expression in the linear plasmid prophage N15 is controlled by both Sop proteins and protelomerase. Mol. Microbiol. 50, 713–721 (2003).
Ogasawara, N. & Yoshikawa, H. Genes and their organization in the replication origin region of the bacterial chromosome. Mol. Microbiol. 6, 629–634 (1992). Identification of parAB homologues on a bacterial chromosome.
Kalnin, K., Stegalkina, S. & Yarmolinsky, M. pTAR-encoded proteins in plasmid partitioning. J. Bacteriol. 182, 1889–1894 (2000).
Carmelo, E. et al. The unstructured N-terminal tail of ParG modulates assembly of a quaternary nucleoprotein complex in transcription repression. J. Biol. Chem. 280, 28683–28691 (2005).
Bork, P., Sander, C. & Valencia, A. An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc. Natl Acad. Sci. USA 89, 7290–7294 (1992).
Dam, M. & Gerdes, K. Partitioning of plasmid R1. Ten direct repeats flanking the parA promoter constitute a centromere-like partition site parC, that expresses incompatibility. J. Mol. Biol. 236, 1289–1298 (1994).
Moller-Jensen, J. et al. Bacterial mitosis: ParM of plasmid R1 moves plasmid DNA by an actin-like insertional polymerization mechanism. Mol. Cell 12, 1477–1487 (2003).
Jensen, R. B., Dam, M. & Gerdes, K. Partitioning of plasmid R1. The parA operon is autoregulated by ParR and its transcription is highly stimulated by a downstream activating element. J. Mol. Biol. 236, 1299–1309 (1994).
Yates, P., Lane, D. & Biek, D. P. The F plasmid centromere, sopC, is required for full repression of the sopAB operon. J. Mol. Biol. 290, 627–638 (1999).
Hao, J. J. & Yarmolinsky, M. Effects of the P1 plasmid centromere on expression of P1 partition genes. J. Bacteriol. 184, 4857–4867 (2002).
Biek, D. P. & Shi, J. A single 43-bp sopC repeat of plasmid mini-F is sufficient to allow assembly of a functional nucleoprotein partition complex. Proc. Natl Acad. Sci. USA 91, 8027–8031 (1994).
Williams, D. R., Macartney, D. P. & Thomas, C. M. The partitioning activity of the RK2 central control region requires only incC, korB and KorB-binding site OB3 but other KorB-binding sites form destabilizing complexes in the absence of OB3. Microbiology 144, 3369–3378 (1998).
Hayes, F. & Austin, S. Topological scanning of the P1 plasmid partition site. J. Mol. Biol. 243, 190–198 (1994).
Hoischen, C., Bolshoy, A., Gerdes, K. & Diekmann, S. Centromere parC of plasmid R1 is curved. Nucleic Acids Res. 32, 5907–5915 (2004).
Austin, S., Friedman, S. & Ludtke, D. Partition functions of unit-copy plasmids can stabilize the maintenance of plasmid pBR322 at low copy number. J. Bacteriol. 168, 1010–1013 (1986).
Hayes, F., Davis, M. A. & Austin, S. J. Fine-structure analysis of the P7 plasmid partition site. J. Bacteriol. 175, 3443–3451 (1993).
Dabrazhynetskaya, A., Sergueev, K. & Austin, S. Species and incompatibility determination within the P1par family of plasmid partition elements. J. Bacteriol. 187, 5977–5983 (2005).
Davis, M. A. & Austin, S. J. Recognition of the P1 plasmid centromere analog involves binding of the ParB protein and is modified by a specific host factor. EMBO J. 7, 1881–1888 (1988). This paper, along with reference 63, shows that IHF is required for accurate P1 plasmid segregation.
Funnell, B. E. & Gagnier, L. The P1 plasmid partition complex at parS. II. Analysis of ParB protein binding activity and specificity. J. Biol. Chem. 268, 3616–3624 (1993).
Radnedge, L., Davis, M. A. & Austin, S. J. P1 and P7 plasmid partition: ParB protein bound to its partition site makes a separate discriminator contact with the DNA that determines species specificity. EMBO J. 15, 1155–1162 (1996).
Surtees, J. A. & Funnell, B. E. The DNA binding domains of P1 ParB and the architecture of the P1 plasmid partition complex. J. Biol. Chem. 276, 12385–12394 (2001).
Hayes, F. & Austin, S. J. Specificity determinants of the P1 and P7 plasmid centromere analogs. Proc. Natl Acad. Sci. USA 90, 9228–9232 (1993).
Funnell, B. E. Participation of Escherichia coli integration host factor in the P1 plasmid partition system. Proc. Natl Acad. Sci. USA 85, 6657–6661 (1988).
Funnell, B. E. The P1 plasmid partition complex at parS. The influence of Escherichia coli integration host factor and of substrate topology. J. Biol. Chem. 266, 14328–14337 (1991).
Davis, M. A. et al. The P1 ParA protein and its ATPase activity play a direct role in the segregation of plasmid copies to daughter cells. Mol. Microbiol. 21, 1029–1036 (1996).
Bouet, J. Y. & Funnell, B. E. P1 ParA interacts with the P1 partition complex at parS and an ATP-ADP switch controls ParA activities. EMBO J. 18, 1415–1424 (1999). Shows that nucleotide binding and hydrolysis act as a molecular switch for differential behaviour of the ParA protein in autoregulation and partition.
Fung, E., Bouet, J. Y. & Funnell, B. E. Probing the ATP-binding site of P1 ParA: partition and repression have different requirements for ATP binding and hydrolysis. EMBO J. 20, 4901–4911 (2001).
Easter, J. Jr & Gober, J. W. ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities. Mol. Cell 10, 427–434 (2002).
Davey, M. J. & Funnell, B. E. Modulation of the P1 plasmid partition protein ParA by ATP, ADP, and P1 ParB. J. Biol. Chem. 272, 15286–15292 (1997).
Libante, V., Thion, L. & Lane, D. Role of the ATP-binding site of SopA protein in partition of the F plasmid. J. Mol. Biol. 314, 387–399 (2001).
Erdmann, N., Petroff, T. & Funnell, B. E. Intracellular localization of P1 ParB protein depends on ParA and parS. Proc. Natl Acad. Sci. USA 96, 14905–14910 (1999). Shows that the intracellular positioning of individual components of P1 parABS is dictated by other elements in the complex.
Li, Y. & Austin, S. The P1 plasmid is segregated to daughter cells by a 'capture and ejection' mechanism coordinated with Escherichia coli cell division. Mol. Microbiol. 46, 63–74 (2002).
Li, Y., Dabrazhynetskaya, A., Youngren, B. & Austin, S. The role of Par proteins in the active segregation of the P1 plasmid. Mol. Microbiol. 53, 93–102 (2004).
Mori, H., Kondo, A., Ohshima, A., Ogura, T. & Hiraga, S. Structure and function of the F plasmid genes essential for partitioning. J. Mol. Biol. 192, 1–15 (1986).
Lynch, A. S. & Wang, J. C. SopB protein-mediated silencing of genes linked to the sopC locus of Escherichia coli F plasmid. Proc. Natl Acad. Sci. USA 92, 1896–1900 (1995). Along with reference 76, demonstrates ParB-mediated silencing of genes that flank the centromere.
Rodionov, O., Lobocka, M. & Yarmolinsky, M. Silencing of genes flanking the P1 plasmid centromere. Science 283, 546–549 (1999).
Rodionov, O. & Yarmolinsky, M. Plasmid partitioning and the spreading of P1 partition protein ParB. Mol. Microbiol. 52, 1215–1223 (2004).
Ogura, T. et al. Identification and characterization of gyrB mutants of Escherichia coli that are defective in partitioning of mini-F plasmids. J. Bacteriol. 172, 1562–1568 (1990).
Abeles, A. L., Friedman, S. A. & Austin, S. J. Partition of unit-copy miniplasmids to daughter cells. III. The DNA sequence and functional organisation of the P1 partition region. J. Mol. Biol. 185, 261–272 (1985).
Lemonnier, M., Bouet, J. Y., Libante, V. & Lane, D. Disruption of the F plasmid partition complex in vivo by partition protein SopA. Mol. Microbiol. 38, 493–505 (2000).
Barillà, D. & Hayes, F. Architecture of the ParF–ParG protein complex involved in prokaryotic DNA segregation. Mol. Microbiol. 49, 487–499 (2003).
Jensen, R. B. & Gerdes, K. Partitioning of plasmid R1. The ParM protein exhibits ATPase activity and interacts with the centromere-like ParR–parC complex. J. Mol. Biol. 269, 505–513 (1997).
Mori, H. et al. Purification and characterization of SopA and SopB proteins essential for F plasmid partitioning. J. Biol. Chem. 264, 15535–15541 (1989).
Breuner, A., Jensen, R. B., Dam, M., Pedersen, S. & Gerdes, K. The centromere-like parC locus of plasmid R1. Mol. Microbiol. 20, 581–592 (1996).
Jensen, R. B., Lurz, R. & Gerdes, K. Mechanism of DNA segregation in prokaryotes: replicon pairing by parC of plasmid R1. Proc. Natl Acad. Sci. USA 95, 8550–8555 (1998).
Austin, S. & Nordstrom, K. Partition-mediated incompatibility of bacterial plasmids. Cell 60, 351–354 (1990).
Nordstrom, K., Molin, S. & Aagaard-Hansen, H. Partitioning of plasmid R1 in Escherichia coli. II. Incompatibility properties of the partitioning system. Plasmid 4, 332–339 (1980).
Lin, Z. & Mallavia, L. P. Functional analysis of the active partition region of the Coxiella burnetii plasmid QpH1. J. Bacteriol. 181, 1947–1952 (1999).
Rosche, T. M., Siddique, A., Larsen, M. H. & Figurski, D. H. Incompatibility protein IncC and global regulator KorB interact in active partition of promiscuous plasmid RK2. J. Bacteriol. 182, 6014–6026 (2000).
Grigoriev, P. S. & Lobocka, M. B. Determinants of segregational stability of the linear plasmid-prophage N15 of Escherichia coli. Mol. Microbiol. 42, 355–368 (2001).
Bartosik, D., Szymanik, M. & Wysocka, E. Identification of the partitioning site within the repABC-type replicon of the composite Paracoccus versutus plasmid pTAV1. J. Bacteriol. 183, 6234–6243 (2001).
Ho, T. Q., Zhong, Z., Aung, S. & Pogliano, J. Compatible bacterial plasmids are targeted to independent cellular locations in Escherichia coli. EMBO J. 21, 1864–1872 (2002).
Funnell, B. E. Partition-mediated plasmid pairing. Plasmid 53, 119–125 (2005).
Edgar, R., Chattoraj, D. K. & Yarmolinsky, M. Pairing of P1 plasmid partition sites by ParB. Mol. Microbiol. 42, 1363–1370 (2001).
Treptow, N., Rosenfeld, R. & Yarmolinsky, M. Partition of nonreplicating DNA by the par system of bacteriophage P1. J. Bacteriol. 176, 1782–1786 (1994).
Niki, H. & Hiraga, S. Subcellular distribution of actively partitioning F plasmid during the cell division cycle in E. coli. Cell 90, 951–957 (1997). With reference 97, uses cell biology techniques to demonstrate partition-mediated subcellular localization of plasmids.
Gordon, G. S. et al. Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms. Cell 90, 1113–1121 (1997).
Webb, C. D. et al. Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis. Cell 88, 667–674 (1997).
Glaser, P. et al. Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev. 11, 1160–1168 (1997).
Niki, H. & Hiraga, S. Polar localization of the replication origin and terminus in Escherichia coli nucleoids during chromosome partitioning. Genes Dev. 12, 1036–1045 (1998).
Gordon, S., Rech, J., Lane, D. and Wright, A. Kinetics of plasmid segregation in Escherichia coli. Mol. Microbiol. 51, 461–469 (2004).
Bignell, C. R., Haines, A. S., Khare, D. & Thomas, C. M. Effect of growth rate and incC mutation on symmetric plasmid distribution by the IncP-1 partitioning apparatus. Mol. Microbiol. 34, 205–216 (1999).
Davis, M. A., Martin, K. A. & Austin, S. J. Biochemical activities of the ParA partition protein of the P1 plasmid. Mol. Microbiol. 6, 1141–1147 (1992).
Watanabe, E., Wachi, M., Yamasaki, M. & Nagai, K. ATPase activity of SopA, a protein essential for active partitioning of F plasmid. Mol. Gen. Genet. 234, 346–352 (1992).
Barillà, D., Rosenberg, M. F., Nobbmann, U. & Hayes F. Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF. EMBO J. 24, 1453–1464 (2005). Describes ATP-dependent polymerization of a ParA-type protein.
Leonard, T. A., Butler, P. J. & Lowe, J. Bacterial chromosome segregation: structure and DNA binding of the Soj dimer — a conserved biological switch. EMBO J. 24, 270–282 (2005). Description of the tertiary structure of the ParA homologue, Soj.
Quisel, J. D., Lin, D. C. & Grossman, A. D. Control of development by altered localization of a transcription factor in B. subtilis. Mol. Cell 4, 665–672 (1999).
Marston, A. L. & Errington, J. Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. Mol. Cell 4, 673–682 (1999).
Ebersbach, G. & Gerdes, K. Bacterial mitosis: partitioning protein ParA oscillates in spiral-shaped structures and positions plasmids at mid-cell. Mol. Microbiol. 52, 385–398 (2004).
Shih, Y. L., Le, T. & Rothfield, L. Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc. Natl Acad. Sci. USA 100, 7865–7870 (2003).
Goehring, N. W. & Beckwith, J. Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr. Biol. 15, R514–R526 (2005).
van den Ent, F., Moller-Jensen, J., Amos, L. A., Gerdes, K. & Lowe, J. F-actin-like filaments formed by plasmid segregation protein ParM. EMBO J. 21, 6935–6943 (2002). With reference 113, describes the protofilament organization and crystal structure of the actin homologue ParM.
Moller-Jensen, J., Jensen, R. B., Lowe, J. & Gerdes, K. Prokaryotic DNA segregation by an actin-like filament. EMBO J. 21, 3119–3127 (2002).
Lenart, P. et al. A contractile nuclear actin network drives chromosome congression in oocytes. Nature 436, 812–818 (2005).
Garner, E. C., Campbell, C. S. & Mullins, R. D. Dynamic instability in a DNA-segregating prokaryotic actin homolog. Science 306, 1021–1025 (2004). The first demonstration of dynamic instability in an actin protein.
Jensen, R. B. & Gerdes, K. Mechanism of DNA segregation in prokaryotes: ParM partitioning protein of plasmid R1 co-localizes with its replicon during the cell cycle. EMBO J. 18, 4076–4084 (1999).
Schumacher, M. A. & Funnell, B. E. Structures of ParB bound to DNA reveal mechanism of partition complex formation. Nature 438, 516–519 (2005). Elucidation of the molecular organization of a partition protein bound to its centromere.
Lobocka, M. & Yarmolinsky, M. P1 plasmid partition: a mutational analysis of ParB. J. Mol. Biol. 259, 366–382 (1996).
Lukaszewicz, M. et al. Functional dissection of the ParB homologue (KorB) from IncP-1 plasmid RK2. Nucleic Acids Res. 30, 1046–1055 (2002).
Balzer, D., Ziegelin, G., Pansegrau, W., Kruft, V. & Lanka, E. KorB protein of promiscuous plasmid RP4 recognizes inverted sequence repetitions in regions essential for conjugative plasmid transfer. Nucleic Acids Res. 20, 1851–1858 (1992).
Delbruck, H., Ziegelin, G., Lanka, E. & Heinemann, U. An Src homology 3-like domain is responsible for dimerization of the repressor protein KorB encoded by the promiscuous IncP plasmid RP4. J. Biol. Chem. 277, 4191–4198 (2002).
Ravin, N. V., Rech, J. &, Lane, D. Mapping of functional domains in F plasmid partition proteins reveals a bipartite SopB-recognition domain in SopA. J. Mol. Biol. 329, 875–889 (2003).
Leonard, T. A., Butler, P. J. G. & Lowe, J. Structural analysis of the chromosome segregation protein Spo0J from Thermus thermophilus. Mol. Microbiol. 53, 419–432 (2004).
Surtees, J. A. & Funnell, B. E. P1 ParB domain structure includes two independent multimerization domains. J. Bacteriol. 181, 5898–5908 (1999).
Khare, D., Ziegelin, G., Lanka, E. & Heinemann, U. Sequence-specific DNA binding determined by contacts outside the helix–turn–helix motif of the ParB homolog KorB. Nature Struct. Mol. Biol. 11, 656–663 (2004).
Radnedge, L., Youngren, B., Davis, M. & Austin, S. Probing the structure of complex macromolecular interactions by homolog specificity scanning: the P1 and P7 plasmid partition systems. EMBO J. 17, 6076–6085 (1998).
Golovanov, A. P., Barillà, D., Golovanova, M., Hayes, F. & Lian, L. Y. ParG, a protein required for active partition of bacterial plasmids, has a dimeric ribbon–helix–helix structure. Mol. Microbiol. 50, 1141–1153 (2003).
Hayashi, I., Oyama, T. & Morikawa, K. Structural and functional studies of MinD ATPase: implications for the molecular recognition of the bacterial cell division apparatus. EMBO J. 20, 1819–1828 (2001).
Ebersbach, G., Sherratt, D. J. & Gerdes, K. Partition-associated incompatibility caused by random assortment of pure plasmid clusters. Mol. Microbiol. 56, 1430–1440 (2005).
Acknowledgements
Work in the authors' laboratories is supported by The Wellcome Trust and Biotechnology & Biological Sciences Research Council (F.H.), and the Medical Research Council and Royal Society (D.B.). We thank S. Austin and D. Summers for helpful comments on an early draft of the manuscript.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Related links
DATABASES
Entrez Genome Project
FURTHER INFORMATION
Glossary
- Actin, tubulin and intermediate filaments
-
Cytoskeletal proteins that are involved in a range of biological processes in eukaryotic cells. Ancestral homologues of these proteins are now known to exist in bacteria in which they are implicated in plasmid and chromosome partition, among other functions.
- Segrosome
-
A nucleoprotein complex that mediates genome segregation in bacteria.
- Site-specific recombinases
-
DNA-cleavage and rejoining enzymes required for various DNA transactions, including the resolution of plasmid and chromosome dimers to monomers in bacteria.
- Plasmid multimers
-
More than one copy of a plasmid that are joined together to form a single DNA molecule. This reduces plasmid copy number and can lead to plasmid loss unless reversed by the action of site-specific recombinases.
- Toxin–antitoxin
-
A postsegregational cell-killing system usually composed of a pair of plasmid-encoded proteins that form a complex. If a plasmid-free cell arises, the antitoxin cannot be replenished and the liberated toxin causes cell death or severe growth impairment.
- Walker box ATPase motifs
-
Conserved amino-acid motifs that are found in the Walker-type superfamily of ATPases, and which are implicated in the binding and hydrolysis of ATP.
- Incompatibility
-
The phenomenon whereby plasmids that replicate or segregate using identical or closely related mechanisms cannot coexist in the same cell, resulting in subpopulations that possess only one of the plasmids, but not both.
- Insertional polymerization
-
The growth of actin polymers by the insertion of actin subunits at the leading edge of the elongating filament. Actin polymerization involves growth of the polymers at one end and concomitant disassembly at the opposite end (treadmilling).
- Src homology 3 domain
-
(SH3). A feature of many eukaryotic signalling proteins that show specificity for proline-rich sequences. These domains have many functions, including the promotion of protein–protein interactions.
Rights and permissions
About this article
Cite this article
Hayes, F., Barillà, D. The bacterial segrosome: a dynamic nucleoprotein machine for DNA trafficking and segregation. Nat Rev Microbiol 4, 133–143 (2006). https://doi.org/10.1038/nrmicro1342
Issue Date:
DOI: https://doi.org/10.1038/nrmicro1342
This article is cited by
-
Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament
BMC Biology (2016)
-
Chromosome segregation by the Escherichia coli Min system
Molecular Systems Biology (2013)
-
Site-Specific Mobilization of Vinyl Chloride Respiration Islands by a Mechanism Common in Dehalococcoides
BMC Genomics (2011)
-
Getting organized — how bacterial cells move proteins and DNA
Nature Reviews Microbiology (2008)
-
Segrosome structure revealed by a complex of ParR with centromere DNA
Nature (2007)