Review

Deinococcus radiodurans — the consummate survivor

  • Nature Reviews Microbiology 3, 882892 (2005)
  • doi:10.1038/nrmicro1264
  • Download Citation
Published online:

Abstract

Relatively little is known about the biochemical basis of the capacity of Deinococcus radiodurans to endure the genetic insult that results from exposure to ionizing radiation and can include hundreds of DNA double-strand breaks. However, recent reports indicate that this species compensates for extensive DNA damage through adaptations that allow cells to avoid the potentially detrimental effects of DNA strand breaks. It seems that D. radiodurans uses mechanisms that limit DNA degradation and that restrict the diffusion of DNA fragments that are produced following irradiation, to preserve genetic integrity. These mechanisms also increase the efficiency of the DNA-repair proteins.

  • Subscribe to Nature Reviews Microbiology for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    , , , & Studies on a radio-resistant micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to γ radiation. Food Technol. 10, 575–578 (1956).

  2. 2.

    , , , & Chemotaxonomic and molecular-genetic studies of the genus Thermus: evidence for a phylogenetic relationship of Thermus aquaticus and Thermus ruber to the genus Deinococcus. Int. J. Syst. Bacteriol. 36, 444–453 (1986).

  3. 3.

    in Bergey's Manual of Systematic Bacteriology (eds Sneath, P. H. A., Mair, N. S., Sharpe, M. E. & Holt, J. G.) 1035–1043 (Williams & Wilkins, Baltimore, 1986).

  4. 4.

    , , , & Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int. J. Syst. Bacteriol. 47, 510–514 (1997).

  5. 5.

    , & The Deinococcus–Thermus phylum and the effect of rRNA composition on phylogenetic tree construction. Syst. Appl. Microbiol. 11, 128–134 (1989).

  6. 6.

    Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).

  7. 7.

    , , & A phylogenetic definition of the major eubacterial taxa. Syst. Appl. Microbiol. 61, 143–151 (1985).

  8. 8.

    & Nomenclature for “Micrococcus radiodurans” and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int. J. Syst. Bacteriol. 31, 353–360 (1981).

  9. 9.

    United Nations Scientific Committee on the Effects of Atomic Radiation. Effects of atomic radiation. Report A/RES/37/87. (New York, 1982).

  10. 10.

    & Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J. Bacteriol. 178, 633–637 (1996).

  11. 11.

    , , , & Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl. Environ. Microbiol. 66, 1489–1492 (2000).

  12. 12.

    , , , & Repair of extensive ionizing-radiation DNA damage at 95 degrees C in the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 179, 4643–4645 (1997).

  13. 13.

    , , , & Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 8, 219–227 (2004).

  14. 14.

    , , , & Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int. J. Syst. Evol. Microbiol. 53, 847–851 (2003).

  15. 15.

    et al. Physiological responses of the hyperthermophilic archaeon “Pyrococcus abyssi” to DNA damage caused by ionizing radiation. J. Bacteriol. 185, 3958–3961 (2003).

  16. 16.

    & in Bergey's Manual of Systematic Bacteriology (eds Boone, D. R. & Castenholz, R. W.) 395–414 (Springer, New York, 2001).

  17. 17.

    et al. Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst. Appl. Microbiol. 27, 636–645 (2004).

  18. 18.

    , , & Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. Int. J. Syst. Evol. Microbiol. 54, 457–461 (2004).

  19. 19.

    Corrections and Clarifications, Science 303, 766 (2004).

  20. 20.

    et al. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286, 1571–1517 (1999). The description of the D. radiodurans R1 genome sequence; it has served as a reference for almost all research on the species since 1999.

  21. 21.

    et al. Whole-genome shotgun optical mapping of Deinococcus radiodurans. Science 285, 1558–1562 (1999).

  22. 22.

    Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans. J. Bacteriol. 134, 71–75 (1978).

  23. 23.

    , & Genome multiplicity and radiation resistance in Micrococcus radiodurans. J. Biochem. (Tokyo) 90, 877–880 (1981).

  24. 24.

    & Repair of irradiation transforming deoxyribonucleic acid in wild type and a radiation-sensitive mutant of Micrococcus radiodurans. J. Bacteriol. 105, 976–983 (1971).

  25. 25.

    & Repair of DNA double-strand breaks in Escherichia coli, which requires recA function and the presence of a duplicate genome. J. Mol. Biol. 116, 81–98 (1977).

  26. 26.

    , & DNA-membrane association and the repair of double breaks in X-irradiated Micrococcus radiodurans. Biochim. Biophys. Acta 247, 38–53 (1971).

  27. 27.

    et al. Accumulation of Mn(II) in Deinococcus radiodurans facilitates γ-radiation resistance. Science 306, 1025–1028 (2004). The authors show that Mn(II) is necessary for the ionizing-radiation resistance of D. radiodurans and provide evidence that elevated intracellular Mn might also protect other species.

  28. 28.

    , , & DNA protection mechanisms are not involved in the radioresistance of the hyperthermophilic archaea Pyrococcus abyssi and P. furiosus. Mol. Genet. Genomics 266, 72–78 (2001).

  29. 29.

    , & Interplasmidic recombination following irradiation of the radioresistant bacterium Deinococcus radiodurans. J. Bacteriol. 176, 7506–7515 (1994).

  30. 30.

    & Interchromosomal recombination in the extremely radioresistant bacterium Deinococcus radiodurans. J. Bacteriol. 177, 5495–5505 (1995).

  31. 31.

    & An alternative pathway of recombination of chromosomal fragments precedes recA-dependent recombination in the radioresistant bacterium Deinococcus radiodurans. J. Bacteriol. 178, 4461–4471 (1996).

  32. 32.

    & Recombination between a resident plasmid and the chromosome following irradiation of the radioresistant bacterium Deinococcus radiodurans. Gene 187, 225–259 (1997).

  33. 33.

    , , & In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans. J. Bacteriol. 176, 3508–3517 (1994).

  34. 34.

    DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol. Microbiol. 13, 9–15 (1994).

  35. 35.

    Repair of ionizing-radiation damage in the radiation resistant bacterium Deinococcus radiodurans. Mutat. Res. 363, 1–7 (1996).

  36. 36.

    & A model for repair of radiation-induced DNA double-strand breaks in the extreme radiophile Deinococcus radiodurans. Bioessays 17, 457–464 (1995).

  37. 37.

    Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae. Radiat. Res. 66, 158–169 (1958).

  38. 38.

    , & Analysis of cell size and DNA content in exponentially growing and stationary-phase batch cultures of Escherichia coli. J. Bacteriol. 177, 6791–6797 (1995).

  39. 39.

    , & Changes of ploidy during the Azotobacter vinelandii growth cycle. J. Bacteriol. 176, 3911–3919 (1994).

  40. 40.

    et al. Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance? Science 299, 254–256 (2003). The first formal discussion of the unusual nucleoid architecture associated with this species. Some of the conclusions have been controversial, stimulating several subsequent studies.

  41. 41.

    & A ring-like nucleoid is not necessary for radioresistance in the Deinococcaceae. BMC Microbiol. 5, 17 (2005).

  42. 42.

    & Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. J. Bacteriol. 146, 928–936 (1981).

  43. 43.

    & Manganese and defenses against oxygen toxicity in Lactobacillus plantarum. J. Bacteriol. 145, 442–451 (1981).

  44. 44.

    et al. How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. FEMS Microbiol. Rev. 29, 361–375 (2005).

  45. 45.

    et al. DNA toroids: framework for DNA repair in Deinococcus radiodurans and in germinating bacterial spores. J. Bacteriol. 186, 5973–5977 (2004).

  46. 46.

    & Counterion-induced condesation of deoxyribonucleic acid. a light-scattering study. Biochemistry 18, 2192–2196 (1979).

  47. 47.

    , & Repair of X-ray damage to the deoxyribonucleic acid in Micrococcus radiodurans. Nature 209, 49–52 (1966).

  48. 48.

    , , , & The repair of X-ray damage to the deoxyribonucleic acid in Micrococcus radiodurans: a study of the excision process. Proc. R. Soc. Lond. B Biol. Sci. 167, 184–201 (1967).

  49. 49.

    & Involvement of a recombination repair function in disciplined cell division of Micrococcus radiodurans. J. Gen. Microbiol. 86, 343–357 (1975).

  50. 50.

    & Cell-cycle checkpoints and cancer. Nature 432, 316–323 (2004).

  51. 51.

    et al. Deinococcus radiodurans' transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance. Genetics 168, 21–33 (2004). This manuscript identifies five 'hypothetical proteins' that contribute significantly to D. radiodurans radioresistance in RecA-dependent and RecA-independent processes, indicating that this species uses novel mechanisms to facilitate DNA repair.

  52. 52.

    et al. Preserving genome integrity: the DdrA protein of Deinococcus radiodurans R1. PLoS Biol. 2, 1629–1639 (2004). The DdrA protein protects the 3′ ends of DNA fragments in vitro and in vivo. This manuscript provides evidence that mechanisms that limit DNA degradation post-irradiation contribute to radioresistance in this species.

  53. 53.

    , & Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52. BMC Genomics 3, 8 (2002).

  54. 54.

    et al. Identification of a DNA nonhomologous end-joining complex in bacteria. Science 297, 1686–1689 (2002).

  55. 55.

    , , , & Involvement of an X family DNA polymerase in double-stranded break repair in the radioresistant organism Deinococcus radiodurans. Mol. Microbiol. 53, 1721–1730 (2004).

  56. 56.

    et al. PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol. Microbiol. 54, 278–285 (2004). PprA is a protein of unknown function that is necessary for radioresistance in D. radiodurans. The protein will bind to the ends of double-stranded DNA and stimulate DNA ligation. The authors suggest that PprA helps mediate NHEJ in this species.

  57. 57.

    Partners and pathways repairing a double-strand break. Trends Genet. 16, 259–264 (2000).

  58. 58.

    et al. RecA protein from the extremely radioresistant bacterium Deinococcus radiodurans: expression, purification, and characterization. J. Bacteriol. 184, 1649–1660 (2002).

  59. 59.

    & The RecA proteins of Deinococcus radiodurans and Escherichia coli promote DNA strand exchange via inverse pathways. Proc. Natl Acad. Sci. USA 99, 7917–7921 (2002).

  60. 60.

    et al. Characterization of RecA424 and RecA670 proteins from Deinococcus radiodurans. J. Biochem. (Tokyo) 131, 121–129 (2002).

  61. 61.

    et al. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc. Natl Acad. Sci. USA 99, 11049–11054 (2002).

  62. 62.

    et al. Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc. Natl Acad. Sci. USA 100, 4191–4196 (2003).

  63. 63.

    et al. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev. 65, 44–79 (2001).

  64. 64.

    , , & The single-stranded DNA-binding protein of Deinococcus radiodurans. BMC Microbiol. 4, 2 (2004).

  65. 65.

    et al. Crystal structure of the Deinococcus radiodurans single-stranded DNA-binding protein suggests a mechanism for coping with DNA damage. Proc. Natl Acad. Sci. USA 101, 8575–8580 (2004).

  66. 66.

    & DNA helicase activity of the RecD protein from Deinococcus radiodurans. J. Biol. Chem. 279, 52024–52032 (2004).

  67. 67.

    , , , & A novel structure of DNA repair protein RecO from Deinococcus radiodurans. Structure (Camb.) 12, 1881–1889 (2004).

  68. 68.

    , , & Crystal structure and DNA-binding analysis of RecO from Deinococcus radiodurans. EMBO J. 24, 906–918 (2005).

  69. 69.

    , , , & Short repeats and IS elements in the extremely radiation-resistant bacterium Deinococcus radiodurans and comparison to other bacterial species. Res. Microbiol. 150, 711–724 (1999).

  70. 70.

    & Review: SMCs in the world of chromosome biology — from prokaryotes to higher eukaryotes. J. Struct. Biol. 129, 123–143 (2000).

  71. 71.

    SMC proteins at the crossroads of diverse chromosomal processes. IUBMB Life 55, 643–652 (2003).

  72. 72.

    , , , & A prokaryotic condensin/cohesin-like complex can actively compact chromosomes from a single position on the nucleoid and binds to DNA as a ring-like structure. Mol. Cell. Biol. 23, 5638–5650 (2003).

  73. 73.

    & DNA repair: keeping it together. Curr. Biol. 14, R994–R996 (2004).

  74. 74.

    & Matching of single-strand breaks to form double-strand breaks in DNA. Biopolymers 7, 681–693 (1969).

  75. 75.

    , & Requirement for end-joining and checkpoint functions, but not RAD52-mediated recombination, after EcoRI endonuclease cleavage of Saccharomyces cerevisiae DNA. Mol. Cell. Biol. 18, 1891–1902 (1998).

  76. 76.

    & Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae. Mutat. Res. 451, 71–89 (2000).

  77. 77.

    , & Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining. Genetics 152, 1513–1529 (1999).

  78. 78.

    & Lack of chromosome territoriality in yeast: promiscuous rejoining of broken chromosome ends. Proc. Natl Acad. Sci. USA 93, 13949–13954 (1996).

  79. 79.

    , & Repair of the Escherichia coli chromosome after in vivo scission by the EcoRI endonuclease. Proc. Natl Acad. Sci. USA 86, 2281–2285 (1989).

  80. 80.

    & Emendation of Methylobacterium (Patt, Cole, and Hanson 1976); Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov. corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov. Int. J. Syst. Bacteriol. 33, 875–877 (1983).

  81. 81.

    & Taxonomic studies on a radio-resistant Pseudomonas. XII. Studies on the microorganisms of cereal grain. Agric. Biol. Chem. 35, 1566–1571 (1971).

  82. 82.

    , , , & Radiation sensitivities of Acinetobacter strains isolated from clinical sources. J. Basic Microbiol. 34, 357–360 (1994).

  83. 83.

    et al. Kineococcus radiotolerans sp. nov., a radiation-resistant, Gram-positive bacterium. Int. J. Syst. Evol. Microbiol. 52, 933–938 (2002).

  84. 84.

    , , & Phylogenetic characterization of a novel radiation-resistant bacterium from irradiated pork: description of Hymenobacter actinosclerus sp. nov. Int. J. Syst. Evol. Microbiol. 50, 731–734 (2000).

  85. 85.

    et al. Characterization and radiation resistance of new isolates of Rubrobacter radiotolerans and Rubrobacter xylanophilus. Extremophiles 3, 235–238 (1999).

  86. 86.

    , , & Isolation and identification of radiation-resistant cocci belonging to the genus Deinococcus from sewage sludges and animal feeds. Agric. Biol. Chem. 47, 1239–1247 (1983).

Download references

Entrez

  1. Azotobacter vinelandii

    • Bacillus subtilis

      • Deinococcus geothermalis

        • Deinococcus radiodurans strain R1

          • E. coli K12

            • Kineococcus radiotolerans

              • Lactobacillus plantarum

                • Rubrobacter xylanophilus

                  • DNA polymerase I

                    • D. radiodurans RecA

                      • D. radiodurans SSB

                        • E. coli RecA

                          • E. coli SSB

                            • PprA

                              • RecR

                                Acknowledgements

                                Work on genome repair in Deinococcus radiodurans in the Battista and Cox laboratories is supported a grant from the National Institutes of Health. The authors thank F.A. Rainey for producing the phylogenetic tree in Figure 2. We also thank J. Haber for helpful discussions.

                                Author information

                                Affiliations

                                1. Department of Biochemistry, University of Wisconsin–Madison, Wisconsin 53706-1544, USA.

                                  • Michael M. Cox
                                2. Department of Biological Sciences, Louisiana State University and A&M College, Baton Rouge, Louisiana 70803, USA.

                                  • John R. Battista

                                Authors

                                1. Search for Michael M. Cox in:

                                2. Search for John R. Battista in:

                                Competing interests

                                The authors declare no competing financial interests.

                                Corresponding author

                                Correspondence to John R. Battista.

                                Glossary

                                IONIZING RADIATION

                                Any electromagnetic or particulate radiation powerful enough to strip electrons from atoms to produce ions.

                                HYPERTHERMOPHILIC

                                Organisms that have an optimal growth temperature above 80°C.

                                EPISTASIS GROUP

                                This occurs when two or more genes control a phenotype. The combined effect of mutations in these genes on a phenotype deviates from the sum of their individual effects.

                                NON-HOMOLOGOUS END JOINING

                                One of several pathways that can be used to repair chromosomal double-strand DNA breaks. The process is non-homologous because adjacent broken strands are fused by direct end-to-end contact without regard to sequence homology. Therefore, non-homologous end joining is error-prone because it results in joining of the breaks without a template.