Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deinococcus radiodurans — the consummate survivor

Key Points

  • Deinococcus radiodurans is distinguished by its extraordinary capacity to survive high levels of ionizing radiation, and the DNA double-strand breaks that result from exposure to this type of radiation.

  • There are radiation-resistant bacteria in several phyla, including members of the Archaea.

  • Radiation resistance seems to be mediated by passive and active (enzymatic) mechanisms.

  • Passive mechanisms include the presence of multiple genome copies, a highly condensed nucleoid organization that prevents diffusion of DNA fragments generated during irradiation, and an accumulation of Mn(II) ions that might prevent the generation of reactive oxygen species.

  • Enzymatic mechanisms of radiation resistance include conventional DNA-repair processes as well as novel functions.

  • Mechanisms for limiting the extent of DNA degradation post-irradiation seem to facilitate genome preservation and enhance radiation resistance.

  • There are several enzymatic pathways for the repair of double-strand breaks, including RecA-dependent and RecA-independent processes.

Abstract

Relatively little is known about the biochemical basis of the capacity of Deinococcus radiodurans to endure the genetic insult that results from exposure to ionizing radiation and can include hundreds of DNA double-strand breaks. However, recent reports indicate that this species compensates for extensive DNA damage through adaptations that allow cells to avoid the potentially detrimental effects of DNA strand breaks. It seems that D. radiodurans uses mechanisms that limit DNA degradation and that restrict the diffusion of DNA fragments that are produced following irradiation, to preserve genetic integrity. These mechanisms also increase the efficiency of the DNA-repair proteins.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Potential contributions to the recovery from radiation damage in Deinococcus radiodurans.
Figure 2: A 16S-rRNA-gene-sequence-based phylogeny of the main lineages of the domain Bacteria.
Figure 3: A tetrad of Deinococcus radiodurans.
Figure 4: Synthesis-dependent strand annealing.
Figure 5: Inverse DNA-strand exchange promoted by the Deinococcus radiodurans RecA protein.
Figure 6: A proposed mechanism that might contribute to the tolerance of radiation damage in Deinococcus radiodurans.

References

  1. 1

    Anderson, A. W., Nordon, H. C., Cain, R. F., Parrish, G. & Duggan, D. Studies on a radio-resistant micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to γ radiation. Food Technol. 10, 575–578 (1956).

    Google Scholar 

  2. 2

    Hensel, R., Demharter, W., Kandler, O., Kroppenstedt, R. M. & Stackebrandt, E. Chemotaxonomic and molecular-genetic studies of the genus Thermus: evidence for a phylogenetic relationship of Thermus aquaticus and Thermus ruber to the genus Deinococcus. Int. J. Syst. Bacteriol. 36, 444–453 (1986).

    Article  CAS  Google Scholar 

  3. 3

    Murray, R. G. E. in Bergey's Manual of Systematic Bacteriology (eds Sneath, P. H. A., Mair, N. S., Sharpe, M. E. & Holt, J. G.) 1035–1043 (Williams & Wilkins, Baltimore, 1986).

    Google Scholar 

  4. 4

    Rainey, F. A., Nobre, M. F., Schumann, P., Stackebrandt, E. & da Costa, M. S. Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int. J. Syst. Bacteriol. 47, 510–514 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. 5

    Weisburg, W. G., Giovannoni, S. J. & Woese, C. R. The Deinococcus–Thermus phylum and the effect of rRNA composition on phylogenetic tree construction. Syst. Appl. Microbiol. 11, 128–134 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Woese, C. R., Stackebrandt, E., Macke, T. J. & Fox, G. E. A phylogenetic definition of the major eubacterial taxa. Syst. Appl. Microbiol. 61, 143–151 (1985).

    Article  Google Scholar 

  8. 8

    Brooks, B. W. & Murray, R. G. E. Nomenclature for “Micrococcus radiodurans” and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int. J. Syst. Bacteriol. 31, 353–360 (1981).

    Article  Google Scholar 

  9. 9

    United Nations Scientific Committee on the Effects of Atomic Radiation. Effects of atomic radiation. Report A/RES/37/87. (New York, 1982).

  10. 10

    Mattimore, V. & Battista, J. R. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J. Bacteriol. 178, 633–637 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Billi, D., Friedmann, E. I., Hofer, K. G., Caiola, M. G. & Ocampo-Friedmann, R. Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl. Environ. Microbiol. 66, 1489–1492 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    DiRuggiero, J., Santangelo, N., Nackerdien, Z., Ravel, J. & Robb, F. T. Repair of extensive ionizing-radiation DNA damage at 95 degrees C in the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 179, 4643–4645 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Jolivet, E., Corre, E., L'Haridon, S., Forterre, P. & Prieur, D. Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 8, 219–227 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Jolivet, E., L'Haridon, S., Corre, E., Forterre, P. & Prieur, D. Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int. J. Syst. Evol. Microbiol. 53, 847–851 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Jolivet, E. et al. Physiological responses of the hyperthermophilic archaeon “Pyrococcus abyssi” to DNA damage caused by ionizing radiation. J. Bacteriol. 185, 3958–3961 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Battista, J. R. & Rainey, F. A. in Bergey's Manual of Systematic Bacteriology (eds Boone, D. R. & Castenholz, R. W.) 395–414 (Springer, New York, 2001).

    Google Scholar 

  17. 17

    Hirsch, P. et al. Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst. Appl. Microbiol. 27, 636–645 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Suresh, K., Reddy, G. S., Sengupta, S. & Shivaji, S. Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. Int. J. Syst. Evol. Microbiol. 54, 457–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Corrections and Clarifications, Science 303, 766 (2004).

  20. 20

    White, O. et al. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286, 1571–1517 (1999). The description of the D. radiodurans R1 genome sequence; it has served as a reference for almost all research on the species since 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Lin, J. et al. Whole-genome shotgun optical mapping of Deinococcus radiodurans. Science 285, 1558–1562 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Hansen, M. T. Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans. J. Bacteriol. 134, 71–75 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Harsojo, Kitayama, S. & Matsuyama, A. Genome multiplicity and radiation resistance in Micrococcus radiodurans. J. Biochem. (Tokyo) 90, 877–880 (1981).

    Article  CAS  Google Scholar 

  24. 24

    Moseley, B. E. & Mattingly, A. Repair of irradiation transforming deoxyribonucleic acid in wild type and a radiation-sensitive mutant of Micrococcus radiodurans. J. Bacteriol. 105, 976–983 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Krasin, F. & Hutchinson, F. Repair of DNA double-strand breaks in Escherichia coli, which requires recA function and the presence of a duplicate genome. J. Mol. Biol. 116, 81–98 (1977).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    Burrell, A. D., Feldschreiber, P. & Dean, C. J. DNA-membrane association and the repair of double breaks in X-irradiated Micrococcus radiodurans. Biochim. Biophys. Acta 247, 38–53 (1971).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Daly, M. J. et al. Accumulation of Mn(II) in Deinococcus radiodurans facilitates γ-radiation resistance. Science 306, 1025–1028 (2004). The authors show that Mn(II) is necessary for the ionizing-radiation resistance of D. radiodurans and provide evidence that elevated intracellular Mn might also protect other species.

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Gerard, E., Jolivet, E., Prieur, D. & Forterre, P. DNA protection mechanisms are not involved in the radioresistance of the hyperthermophilic archaea Pyrococcus abyssi and P. furiosus. Mol. Genet. Genomics 266, 72–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Daly, M. J., Ling, O. & Minton, K. W. Interplasmidic recombination following irradiation of the radioresistant bacterium Deinococcus radiodurans. J. Bacteriol. 176, 7506–7515 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Daly, M. J. & Minton, K. W. Interchromosomal recombination in the extremely radioresistant bacterium Deinococcus radiodurans. J. Bacteriol. 177, 5495–5505 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Daly, M. J. & Minton, K. W. An alternative pathway of recombination of chromosomal fragments precedes recA-dependent recombination in the radioresistant bacterium Deinococcus radiodurans. J. Bacteriol. 178, 4461–4471 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Daly, M. J. & Minton, K. W. Recombination between a resident plasmid and the chromosome following irradiation of the radioresistant bacterium Deinococcus radiodurans. Gene 187, 225–259 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Daly, M. J., Ouyang, L., Fuchs, P. & Minton, K. W. In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans. J. Bacteriol. 176, 3508–3517 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Minton, K. W. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol. Microbiol. 13, 9–15 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Minton, K. W. Repair of ionizing-radiation damage in the radiation resistant bacterium Deinococcus radiodurans. Mutat. Res. 363, 1–7 (1996).

    Article  PubMed  Google Scholar 

  36. 36

    Minton, K. W. & Daly, M. J. A model for repair of radiation-induced DNA double-strand breaks in the extreme radiophile Deinococcus radiodurans. Bioessays 17, 457–464 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Mortimer, R. K. Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae. Radiat. Res. 66, 158–169 (1958).

    Google Scholar 

  38. 38

    Akerlund, T., Nordstrom, K. & Bernander, R. Analysis of cell size and DNA content in exponentially growing and stationary-phase batch cultures of Escherichia coli. J. Bacteriol. 177, 6791–6797 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Maldonado, R., Jimenez, J. & Casadesus, J. Changes of ploidy during the Azotobacter vinelandii growth cycle. J. Bacteriol. 176, 3911–3919 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Levin-Zaidman, S. et al. Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance? Science 299, 254–256 (2003). The first formal discussion of the unusual nucleoid architecture associated with this species. Some of the conclusions have been controversial, stimulating several subsequent studies.

    Article  CAS  PubMed  Google Scholar 

  41. 41

    Zimmerman, J. M. & Battista, J. R. A ring-like nucleoid is not necessary for radioresistance in the Deinococcaceae. BMC Microbiol. 5, 17 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Archibald, F. S. & Fridovich, I. Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. J. Bacteriol. 146, 928–936 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Archibald, F. S. & Fridovich, I. Manganese and defenses against oxygen toxicity in Lactobacillus plantarum. J. Bacteriol. 145, 442–451 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Ghosal, D. et al. How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. FEMS Microbiol. Rev. 29, 361–375 (2005).

    CAS  PubMed  Google Scholar 

  45. 45

    Englander, J. et al. DNA toroids: framework for DNA repair in Deinococcus radiodurans and in germinating bacterial spores. J. Bacteriol. 186, 5973–5977 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Wilson, R. W. & Bloomfield, V. A. Counterion-induced condesation of deoxyribonucleic acid. a light-scattering study. Biochemistry 18, 2192–2196 (1979).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Dean, C. J., Feldschreiber, P. & Lett, J. T. Repair of X-ray damage to the deoxyribonucleic acid in Micrococcus radiodurans. Nature 209, 49–52 (1966).

    Article  CAS  Google Scholar 

  48. 48

    Lett, J. T., Feldschreiber, P., Little, J. G., Steele, K. & Dean, C. J. The repair of X-ray damage to the deoxyribonucleic acid in Micrococcus radiodurans: a study of the excision process. Proc. R. Soc. Lond. B Biol. Sci. 167, 184–201 (1967).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Moseley, B. E. & Copland, H. J. R. Involvement of a recombination repair function in disciplined cell division of Micrococcus radiodurans. J. Gen. Microbiol. 86, 343–357 (1975).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Kastan, M. B. & Bartek, J. Cell-cycle checkpoints and cancer. Nature 432, 316–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Tanaka, M. et al. Deinococcus radiodurans' transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance. Genetics 168, 21–33 (2004). This manuscript identifies five 'hypothetical proteins' that contribute significantly to D. radiodurans radioresistance in RecA-dependent and RecA-independent processes, indicating that this species uses novel mechanisms to facilitate DNA repair.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Harris, D. R. et al. Preserving genome integrity: the DdrA protein of Deinococcus radiodurans R1. PLoS Biol. 2, 1629–1639 (2004). The DdrA protein protects the 3′ ends of DNA fragments in vitro and in vivo . This manuscript provides evidence that mechanisms that limit DNA degradation post-irradiation contribute to radioresistance in this species.

    Article  Google Scholar 

  53. 53

    Iyer, L. M., Koonin, E. V. & Aravind, L. Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52. BMC Genomics 3, 8 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54

    Weller, G. R. et al. Identification of a DNA nonhomologous end-joining complex in bacteria. Science 297, 1686–1689 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. 55

    Lecointe, F., Shevelev, I. V., Bailone, A., Sommer, S. & Hubscher, U. Involvement of an X family DNA polymerase in double-stranded break repair in the radioresistant organism Deinococcus radiodurans. Mol. Microbiol. 53, 1721–1730 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    Narumi, I. et al. PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol. Microbiol. 54, 278–285 (2004). PprA is a protein of unknown function that is necessary for radioresistance in D. radiodurans . The protein will bind to the ends of double-stranded DNA and stimulate DNA ligation. The authors suggest that PprA helps mediate NHEJ in this species.

    Article  CAS  PubMed  Google Scholar 

  57. 57

    Haber, J. E. Partners and pathways repairing a double-strand break. Trends Genet. 16, 259–264 (2000).

    Article  CAS  Google Scholar 

  58. 58

    Kim, J. I. et al. RecA protein from the extremely radioresistant bacterium Deinococcus radiodurans: expression, purification, and characterization. J. Bacteriol. 184, 1649–1660 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Kim, J. I. & Cox, M. M. The RecA proteins of Deinococcus radiodurans and Escherichia coli promote DNA strand exchange via inverse pathways. Proc. Natl Acad. Sci. USA 99, 7917–7921 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Satoh, K. et al. Characterization of RecA424 and RecA670 proteins from Deinococcus radiodurans. J. Biochem. (Tokyo) 131, 121–129 (2002).

    Article  CAS  Google Scholar 

  61. 61

    Lipton, M. S. et al. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc. Natl Acad. Sci. USA 99, 11049–11054 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Liu, Y. et al. Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc. Natl Acad. Sci. USA 100, 4191–4196 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Makarova, K. S. et al. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev. 65, 44–79 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Eggington, J. M., Haruta, N., Wood, E. A. & Cox, M. M. The single-stranded DNA-binding protein of Deinococcus radiodurans. BMC Microbiol. 4, 2 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65

    Bernstein, D. A. et al. Crystal structure of the Deinococcus radiodurans single-stranded DNA-binding protein suggests a mechanism for coping with DNA damage. Proc. Natl Acad. Sci. USA 101, 8575–8580 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. 66

    Wang, J. & Julin, D. A. DNA helicase activity of the RecD protein from Deinococcus radiodurans. J. Biol. Chem. 279, 52024–52032 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. 67

    Makharashvili, N., Koroleva, O., Bera, S., Grandgenett, D. P. & Korolev, S. A novel structure of DNA repair protein RecO from Deinococcus radiodurans. Structure (Camb.) 12, 1881–1889 (2004).

    Article  CAS  Google Scholar 

  68. 68

    Leiros, I., Timmins, J., Hall, D. R. & McSweeney, S. Crystal structure and DNA-binding analysis of RecO from Deinococcus radiodurans. EMBO J. 24, 906–918 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Makarova, K. S., Wolf, Y. I., White, O., Minton, K. & Daly, M. J. Short repeats and IS elements in the extremely radiation-resistant bacterium Deinococcus radiodurans and comparison to other bacterial species. Res. Microbiol. 150, 711–724 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. 70

    Cobbe, N. & Heck, M. M. Review: SMCs in the world of chromosome biology — from prokaryotes to higher eukaryotes. J. Struct. Biol. 129, 123–143 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. 71

    Jessberger, R. SMC proteins at the crossroads of diverse chromosomal processes. IUBMB Life 55, 643–652 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. 72

    Volkov, A., Mascarenhas, J., Andrei-Selmer, C., Ulrich, H. D. & Graumann, P. L. A prokaryotic condensin/cohesin-like complex can actively compact chromosomes from a single position on the nucleoid and binds to DNA as a ring-like structure. Mol. Cell. Biol. 23, 5638–5650 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Lisby, M. & Rothstein, R. DNA repair: keeping it together. Curr. Biol. 14, R994–R996 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. 74

    Freifelder, D. & Trumbo, B. Matching of single-strand breaks to form double-strand breaks in DNA. Biopolymers 7, 681–693 (1969).

    Article  CAS  Google Scholar 

  75. 75

    Lewis, L. K., Kirchner, J. M. & Resnick, M. A. Requirement for end-joining and checkpoint functions, but not RAD52-mediated recombination, after EcoRI endonuclease cleavage of Saccharomyces cerevisiae DNA. Mol. Cell. Biol. 18, 1891–1902 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Lewis, L. K. & Resnick, M. A. Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae. Mutat. Res. 451, 71–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. 77

    Lewis, L. K., Westmoreland, J. W. & Resnick, M. A. Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining. Genetics 152, 1513–1529 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Haber, J. E. & Leung, W. Y. Lack of chromosome territoriality in yeast: promiscuous rejoining of broken chromosome ends. Proc. Natl Acad. Sci. USA 93, 13949–13954 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. 79

    Heitman, J., Zinder, N. D. & Model, P. Repair of the Escherichia coli chromosome after in vivo scission by the EcoRI endonuclease. Proc. Natl Acad. Sci. USA 86, 2281–2285 (1989).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Green, P. N. & Bousfield, I. J. Emendation of Methylobacterium (Patt, Cole, and Hanson 1976); Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov. corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov. Int. J. Syst. Bacteriol. 33, 875–877 (1983).

    Article  Google Scholar 

  81. 81

    Ito, H. & Iizuka, H. Taxonomic studies on a radio-resistant Pseudomonas. XII. Studies on the microorganisms of cereal grain. Agric. Biol. Chem. 35, 1566–1571 (1971).

    Google Scholar 

  82. 82

    Nishimura, Y., Uchida, K., Tanaka, K., Ino, T. & Ito, H. Radiation sensitivities of Acinetobacter strains isolated from clinical sources. J. Basic Microbiol. 34, 357–360 (1994).

    Article  CAS  PubMed  Google Scholar 

  83. 83

    Phillips, R. W. et al. Kineococcus radiotolerans sp. nov., a radiation-resistant, Gram-positive bacterium. Int. J. Syst. Evol. Microbiol. 52, 933–938 (2002).

    CAS  PubMed  Google Scholar 

  84. 84

    Collins, M. D., Hutson, R. A., Grant, I. R. & Patterson, M. F. Phylogenetic characterization of a novel radiation-resistant bacterium from irradiated pork: description of Hymenobacter actinosclerus sp. nov. Int. J. Syst. Evol. Microbiol. 50, 731–734 (2000).

    Article  PubMed  Google Scholar 

  85. 85

    Ferreira, A. C. et al. Characterization and radiation resistance of new isolates of Rubrobacter radiotolerans and Rubrobacter xylanophilus. Extremophiles 3, 235–238 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Ito, H., Watanabe, H., Takeshia, M. & Iizuka, H. Isolation and identification of radiation-resistant cocci belonging to the genus Deinococcus from sewage sludges and animal feeds. Agric. Biol. Chem. 47, 1239–1247 (1983).

    CAS  Google Scholar 

Download references

Acknowledgements

Work on genome repair in Deinococcus radiodurans in the Battista and Cox laboratories is supported a grant from the National Institutes of Health. The authors thank F.A. Rainey for producing the phylogenetic tree in Figure 2. We also thank J. Haber for helpful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to John R. Battista.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Azotobacter vinelandii

Bacillus subtilis

Deinococcus geothermalis

Deinococcus radiodurans strain R1

E. coli K12

Kineococcus radiotolerans

Lactobacillus plantarum

Rubrobacter xylanophilus

SwissProt

DNA polymerase I

D. radiodurans RecA

D. radiodurans SSB

E. coli RecA

E. coli SSB

PprA

RecR

FURTHER INFORMATION

John Battista's laboratory

Michael Cox's laboratory

Speculation on the origins of D. radiodurans

TIGR Comprehensive Microbial Resource database

Glossary

IONIZING RADIATION

Any electromagnetic or particulate radiation powerful enough to strip electrons from atoms to produce ions.

HYPERTHERMOPHILIC

Organisms that have an optimal growth temperature above 80°C.

EPISTASIS GROUP

This occurs when two or more genes control a phenotype. The combined effect of mutations in these genes on a phenotype deviates from the sum of their individual effects.

NON-HOMOLOGOUS END JOINING

One of several pathways that can be used to repair chromosomal double-strand DNA breaks. The process is non-homologous because adjacent broken strands are fused by direct end-to-end contact without regard to sequence homology. Therefore, non-homologous end joining is error-prone because it results in joining of the breaks without a template.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cox, M., Battista, J. Deinococcus radiodurans — the consummate survivor. Nat Rev Microbiol 3, 882–892 (2005). https://doi.org/10.1038/nrmicro1264

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing