Mobile genetic elements: the agents of open source evolution

Key Points

  • Prokaryotes transfer DNA between cells by three processes: transformation, transduction and conjugation. Transduction and conjugation depend on specialized mobile genetic elements (MGEs), which include most large plasmids and certain bacteriophages (phages).

  • Prokaryotes also possess a third class of MGEs called transposons. These elements can move and rearrange chromosomal DNA in the cell. Transposons move from cell to cell through plasmids, phages, or their derivatives called integrative conjugative elements (ICEs).

  • MGEs can mediate intra- or intercellular DNA trafficking because they have unique (core or backbone) genes that allow them to replicate independently of the cellular chromosome, to engage in homologous or non-homologous recombination, and to extrude (plasmid) or package (phage) DNA for efficient movement between cells.

  • In addition to their core genes, MGEs typically carry several different accessory genes that provide their host cell with a selective advantage, such as antibiotic resistance, virulence factors, or unusual metabolic pathways. Indeed, most medically and economically important bacterial phenotypes are encoded by MGEs.

  • Although MGEs are the main agents of horizontal gene transfer (HGT), relatively few have been sequenced and analysis of their genomic and phylogenetic properties lags behind that of organismal chromosomes. Specifically, the major databases do not curate plasmid and phage nucleic acid or protein sequences. Sequencing MGE genomes presents unique challenges because phages require suitable hosts for propagation and plasmids must be physically separated from each other and from the host chromosomal DNA. The relatively small size of MGEs (5–500 kb) and their varied GC content thwart current automated annotation algorithms.

  • These challenges can be viewed as an opportunity to devise technical and bioinformatics tools for high throughput analysis of MGEs. This is important because understanding prokaryotic evolution requires knowledge of the agents that mediate this process. Such knowledge is essential for controlling problems such as the emergence of highly virulent antibiotic multi-resistant strains.


Horizontal genomics is a new field in prokaryotic biology that is focused on the analysis of DNA sequences in prokaryotic chromosomes that seem to have originated from other prokaryotes or eukaryotes. However, it is equally important to understand the agents that effect DNA movement: plasmids, bacteriophages and transposons. Although these agents occur in all prokaryotes, comprehensive genomics of the prokaryotic mobile gene pool or 'mobilome' lags behind other genomics initiatives owing to challenges that are distinct from cellular chromosomal analysis. Recent work shows promise of improved mobile genetic element (MGE) genomics and consequent opportunities to take advantage — and avoid the dangers — of these 'natural genetic engineers'. This review describes MGEs, their properties that are important in horizontal gene transfer, and current opportunities to advance MGE genomics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Transfer of DNA between bacterial cells.
Figure 2: Signature proteins of conjugative systems in Gram-negative bacteria.
Figure 3: Genes and components of tailed phages.


  1. 1

    Burrus, V. & Waldor, M. K. Shaping bacterial genomes with integrative and conjugative elements. Res. Microbiol. 155, 376–386 (2004). A useful review of the role of ICEs in bacterial evolution.

    CAS  PubMed  Google Scholar 

  2. 2

    Scott, J. R. & Churchward, G. G. Conjugative transposition. Annu. Rev. Microbiol. 49, 367–397 (1995).

    CAS  PubMed  Google Scholar 

  3. 3

    Toussaint, A. & Merlin, C. Mobile elements as a combination of functional modules. Plasmid 47, 26–35 (2002).

    CAS  PubMed  Google Scholar 

  4. 4

    Lawrence, J. G. & Hendrickson, H. Lateral gene transfer: when will adolescence end? Mol. Microbiol. 50, 739–749 (2003). A succinct framing of important questions in horizontal genomics research.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Chaconas, G. & Chen, C. W. in The Bacterial Chromosome (ed. Higgins, P. N.) 525–539 (ASM Press, Washington DC, 2004).

    Google Scholar 

  6. 6

    Stewart, P. E., Byram, R., Grimm, D., Tilly, K. & Rosa, P. A. The plasmids of Borrelia burgdorferi: essential genetic elements of a pathogen. Plasmid 53, 1–13 (2005).

    CAS  PubMed  Google Scholar 

  7. 7

    Hinnebusch, J. & Tilly, K. Linear plasmids and chromosomes in bacteria. Mol. Microbiol. 10, 917–922 (1993).

    CAS  PubMed  Google Scholar 

  8. 8

    Lilley, A., Young, P. & Bailey, M. J. in The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread (ed. Thomas, C. M.) 287–300 (Harwood Academic, Amsterdam, Netherlands, 2000).

    Google Scholar 

  9. 9

    Dahlberg, C. & Chao, L. Amelioration of the cost of conjugative plasmid carriage in Eschericha coli K12. Genetics 165, 1641–1649 (2003). A discussion of the cost of maintaining plasmids: why do bacteria tolerate them?

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Bradley, D. E., Taylor, D. E. & Cohen, D. R. Specification of surface mating systems among conjugative drug resistance plasmids in Escherichia coli K-12. J. Bacteriol. 143, 1466–1470 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Novick, R. P. Plasmid incompatibility. Microbiol. Rev. 51, 381–395 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Couturier, M., Bex, F., Bergquist, P. L. & Maas, W. K. Identification and classification of bacterial plasmids. Microbiol. Rev. 52, 375–395 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Helinski, D.R. in The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread (ed. Thomas, C. M.) 1–21 (Harwood Academic, Amsterdam, Netherlands, 2000).

    Google Scholar 

  14. 14

    Redfield, R. J. et al. A novel CRP-dependent regulon controls expression of competence genes in Haemophilus influenzae. J. Mol. Biol. 347, 735–747 (2005).

    CAS  PubMed  Google Scholar 

  15. 15

    Gomis-Ruth, F. X., Sola, M., de la Cruz, F. & Coll, M. Coupling factors in macromolecular type-IV secretion machineries. Curr. Pharm. Des. 10, 1551–1565 (2004).

    CAS  PubMed  Google Scholar 

  16. 16

    Schroder, G. et al. TraG-like proteins of DNA transfer systems and of the Helicobacter pylori type IV secretion system: inner membrane gate for exported substrates? J. Bacteriol. 184, 2767–2779 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Frost, L. S. in Conjugation (ed. Clewell, D. B.) 189–221 (Plenum, New York, 1993).

    Google Scholar 

  18. 18

    Possoz, C., Ribard, C., Gagnat, J., Pernodet, J. L. & Guerineau, M. The integrative element pSAM2 from Streptomyces: kinetics and mode of conjugal transfer. Mol. Microbiol. 42, 159–66 (2001).

    CAS  PubMed  Google Scholar 

  19. 19

    Pettis, G. S. & Cohen, S. N. Unraveling the essential role in conjugation of the Tra protein of Streptomyces lividans plasmid pIJ101. Antonie Van Leeuwenhoek 79, 247–250 (2001).

    CAS  PubMed  Google Scholar 

  20. 20

    Garret, R. A. et al. in Plasmid Biology (eds Funnell, B. E. & Phillips, G. J.) 377–392 (ASM Press, Washington DC, 2004).

    Google Scholar 

  21. 21

    Wang, J., Parsons, L. M. & Derbyshire, K. M. Unconventional conjugal DNA transfer in mycobacteria. Nature Genet. 34, 80–84 (2003).

    CAS  PubMed  Google Scholar 

  22. 22

    Lybarger, S. R. & Sandkvist, M. Microbiology. A hitchhiker's guide to type IV secretion. Science 304, 1122–1123 (2004).

    CAS  PubMed  Google Scholar 

  23. 23

    Chen, I. & Dubnau, D. DNA uptake during bacterial transformation. Nature Rev. Microbiol. 2, 241–249 (2004).

    CAS  Google Scholar 

  24. 24

    Gomis-Ruth, F. X. et al. The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409, 637–641 (2001).

    CAS  PubMed  Google Scholar 

  25. 25

    Zechner, E. L. et al. in The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread (ed. Thomas, C. M.) 87–174 (Harwood Academic, Amsterdam, Netherlands, 2000).

    Google Scholar 

  26. 26

    Cascales, E. & Christie, P. J. The versatile bacterial type IV secretion systems. Nature Rev. Microbiol. 1, 137–149 (2003).

    CAS  Google Scholar 

  27. 27

    Lawley, T. D., Wilkins, B. M. & Frost, L. S. in Plasmid Biology (eds Funnell, B. E. & Phillips, G. J.) 203–226 (ASM Press, Washington DC, 2004).

    Google Scholar 

  28. 28

    Lawley, T. D., Klimke, W. A., Gubbins, M. J. & Frost, L. S. F factor conjugation is a true type IV secretion system. FEMS Microbiol. Lett. 224, 1–15 (2003). Defines the relationship of F-like T4SSs to P-like T4SSs.

    CAS  PubMed  Google Scholar 

  29. 29

    Boltner, D. & Osborn, A. M. Structural comparison of the integrative and conjugative elements R391, pMERPH, R997, and SXT. Plasmid 51, 12–23 (2004).

    CAS  PubMed  Google Scholar 

  30. 30

    Peabody, C. R. et al. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149, 3051–3072 (2003).

    CAS  PubMed  Google Scholar 

  31. 31

    He, S. Y., Nomura, K. & Whittam, T. S. Type III protein secretion mechanism in mammalian and plant pathogens. Biochim. Biophys. Acta 1694, 181–206 (2004).

    CAS  PubMed  Google Scholar 

  32. 32

    Planet, P. J., Kachlany, S. C., DeSalle, R. & Figurski, D. H. Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc. Natl Acad. Sci. USA 98, 2503–2508 (2001).

    CAS  Google Scholar 

  33. 33

    Savvides, S. N. et al. VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J. 22, 1969–1980 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Kim, S. R. & Komano, T. The plasmid R64 thin pilus identified as a type IV pilus. J. Bacteriol. 179, 3594–3603 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Model, P. & Russel, M. Prokaryotic secretion. Cell 61, 739–741 (1990).

    CAS  PubMed  Google Scholar 

  36. 36

    Macnab, R. M. Type III flagellar protein export and flagellar assembly. Biochim. Biophys. Acta 1694, 207–217 (2004).

    CAS  Google Scholar 

  37. 37

    Averhoff, B. DNA transport and natural transformation in mesophilic and thermophilic bacteria. J. Bioenerg. Biomembr. 36, 25–33 (2004).

    CAS  PubMed  Google Scholar 

  38. 38

    Cascales, E. & Christie, P. J. Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304, 1170–1173 (2004). Immunoprecipitation of Vir protein–DNA complexes defines the path of the DNA through the conjugative pore.

    CAS  PubMed  Google Scholar 

  39. 39

    Hamilton, H. L., Dominguez, N. M., Schwartz, K. J., Hackett, K. T. & Dillard, J. P. Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system. Mol. Microbiol. 55, 1704–1721 (2005).

    CAS  PubMed  Google Scholar 

  40. 40

    Cascales, E. & Christie, P. J. Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc. Natl Acad. Sci. USA 101, 17228–17233 (2004). VirB10 has TonB-like properties indicating that it is involved in signalling between the outer and inner membranes.

    CAS  PubMed  Google Scholar 

  41. 41

    Christie, P. J. Type IV secretion:the Agrobacterium VirB/D4 and related conjugation systems. Biochim. Biophys. Acta 1694, 219–234 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Kalkum, M., Eisenbrandt, R. & Lanka, E. Protein circlets as sex pilus subunits. Curr. Protein Pept. Sci. 5, 417–424 (2004).

    CAS  PubMed  Google Scholar 

  43. 43

    Lai, E. M., Eisenbrandt, R., Kalkum, M., Lanka, E. & Kado, C. I. Biogenesis of T pili in Agrobacterium tumefaciens requires precise VirB2 propilin cleavage and cyclization. J. Bacteriol. 184, 327–330 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Clewell, D. B. & Francia, M. V. in Plasmid Biology (eds. Funnell, B. E. & Phillips, G. J.) 227–256 (ASM Press, Washington DC, 2004).

    Google Scholar 

  45. 45

    Salyers, A. A., Shoemaker, N. B., Stevens, A. M. & Li, L. Y. Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol. Rev. 59, 579–90 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Charlebois, R. L., She, Q., Sprott, D. P., Sensen, C. W. & Garrett, R. A. Sulfolobus genome: from genomics to biology. Curr. Opin. Microbiol. 1, 584–588 (1998).

    CAS  PubMed  Google Scholar 

  47. 47

    Wilkins, B. M. & Frost, L. S. in Molecular Medical Microbiology (ed. Sussman, M.) 355–400 (Academic, London, 2001).

    Google Scholar 

  48. 48

    Papke, R. T., Koenig, J. E., Rodriguez-Valera, F. & Doolittle, W. F. Frequent recombination in a saltern population of Halorubrum. Science 306, 1928–1929 (2004).

    CAS  PubMed  Google Scholar 

  49. 49

    Ramirez-Arcos, S., Fernandez-Herrero, L. A., Marin, I. & Berenguer, J. Anaerobic growth, a property horizontally transferred by an Hfr-like mechanism among extreme thermophiles. J. Bacteriol. 180, 3137–3143 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Fiers, W. et al. Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature 260, 500–507 (1976). The first published genome sequence, which predates the advent of DNA sequencing techniques.

    CAS  PubMed  Google Scholar 

  51. 51

    Sanger, F., Coulson, A. R., Hong, G. F., Hill, D. F. & Petersen, G. B. Nucleotide sequence of bacteriophage lambda DNA. J. Mol. Biol. 162, 729–773 (1982).

    CAS  Google Scholar 

  52. 52

    Canchaya, C., Fournous, G. & Brussow, H. The impact of prophages on bacterial chromosomes. Mol. Microbiol. 53, 9–18 (2004).

    CAS  PubMed  Google Scholar 

  53. 53

    Canchaya, C., Fournous, G., Chibani-Chennoufi, S., Dillmann, M. L. & Brussow, H. Phage as agents of lateral gene transfer. Curr. Opin. Microbiol. 6, 417–424 (2003). A good perspective on how bacterial genomics reveals the main impact of phages on bacterial chromosome evolution.

    CAS  PubMed  Google Scholar 

  54. 54

    Pedulla, M. L. et al. Origins of highly mosaic mycobacteriophage genomes. Cell 113, 171–182 (2003).

    CAS  PubMed  Google Scholar 

  55. 55

    Merril, C. R., Scholl, D. & Adhya, S. L. The prospect for bacteriophage therapy in Western medicine. Nature Rev. Drug Discov. 2, 489–497 (2003).

    CAS  Google Scholar 

  56. 56

    Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnol. 21, 1171–1178 (2003).

    CAS  Google Scholar 

  57. 57

    Lwoff, A. Lysogeny. Bacteriol. Rev. 17, 269–337 (1953).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Freeman, V. J. Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J. Bacteriol. 61, 675–688 (1951).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Hendrix, R. W. Bacteriophage genomics. Curr. Opin. Microbiol. 6, 506–511 (2003).

    CAS  PubMed  Google Scholar 

  60. 60

    Zinder, N. D. & Lederberg, J. Genetic exchange in Salmonella. J. Bacteriol. 64, 679–699 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Mizuuchi, K. & Baker, T. in Mobile DNA II (eds. Craig, N. L., Craigie, R., Gellert, M. & Lambowitz, A.) 12–23 (ASM press, Washington DC, 2002).

    Google Scholar 

  62. 62

    Hughes, V. M. & Datta, N. Conjugative plasmids in bacteria of the pre-antibiotic era. Nature 302, 725–726 (1983).

    CAS  PubMed  Google Scholar 

  63. 63

    Mazel, D. & Davies, J. Antibiotic resistance in microbes. Cell. Mol. Life Sci. 56, 742–754. (1999).

    CAS  PubMed  Google Scholar 

  64. 64

    Bennett, P. M. Genome plasticity: insertion sequence elements, transposons and integrons, and DNA rearrangement. Methods Mol. Biol. 266, 71–113 (2004).

    CAS  PubMed  Google Scholar 

  65. 65

    Hall, R. M. Mobile gene cassettes and integrons: moving antibiotic resistance genes in Gram-negative bacteria. Ciba Found. Symp. 207, 192–202; discussion 202–205 (1997).

    CAS  PubMed  Google Scholar 

  66. 66

    Liebert, C. A., Hall, R. M. & Summers, A. O. Transposon Tn21, flagship of the floating genome. Microbiol. Mol. Biol. Rev. 63, 507–522 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Novick, R. P. Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococcus aureus. Plasmid 49, 93–105 (2003).

    CAS  PubMed  Google Scholar 

  68. 68

    Shipley, P. L., Gyles, C. L. & Falkow, S. Characterization of plasmids that encode for the K88 colonization antigen. Infect. Immun. 20, 559–566 (1978). Early recognition of role for plasmids in the bacterial colonization of animal hosts.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Schell, J. et al. Interactions and DNA transfer between Agrobacterium tumefaciens, the Ti-plasmid and the plant host. Proc. R. Soc. Lond., B, Biol. Sci. 204, 251–266 (1979). Early demonstration of pathogenesis that involves plasmid-directed transfer of DNA from a bacterium to a plant.

    CAS  PubMed  Google Scholar 

  70. 70

    Brussow, H., Canchaya, C. & Hardt, W. D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68, 560–602, (2004).

    PubMed  PubMed Central  Google Scholar 

  71. 71

    Banks, D. J., Beres, S. B. & Musser, J. M. The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. Trends Microbiol. 10, 515–521 (2002).

    CAS  PubMed  Google Scholar 

  72. 72

    Boyd, E. F. & Brussow, H. Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol. 10, 521–529 (2002).

    CAS  PubMed  Google Scholar 

  73. 73

    Koehler, T. M. Bacillus anthracis genetics and virulence gene regulation. Curr. Top. Microbiol. Immunol. 271, 143–164 (2002).

    CAS  PubMed  Google Scholar 

  74. 74

    Okinaka, R. T. et al. Sequence and organization of pXO1, the large Bacillus anthracis plasmid harbouring the anthrax toxin genes. J. Bacteriol. 181, 6509–6515 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Crossman, L. C. Plasmid replicons of Rhizobium. Biochem. Soc. Trans. 33, 157–158 (2005).

    CAS  PubMed  Google Scholar 

  76. 76

    Sullivan, J. T. et al. Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J. Bacteriol. 184, 3086–3095 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Paul, J. H. & Sullivan, M. B. Marine phage genomics: what have we learned? Curr. Opin. Biotechnol. 16, 299–307 (2005).

    CAS  PubMed  Google Scholar 

  78. 78

    Wade, N. Court says lab-made life can be patented. Science 208, 1445 (1980).

    CAS  PubMed  Google Scholar 

  79. 79

    Kellogg, S. T., Chatterjee, D. K. & Chakrabarty, A. M. Plasmid-assisted molecular breeding: new technique for enhanced biodegradation of persistent toxic chemicals. Science 214, 1133–1135 (1981).

    CAS  PubMed  Google Scholar 

  80. 80

    Lindstrom, J. E. et al. Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez oil spill. Appl. Environ. Microbiol. 57, 2514–2522 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    von Canstein, H., Li, Y. & Wagner-Dobler, I. Long-term performance of bioreactors cleaning mercury-contaminated wastewater and their response to temperature and mercury stress and mechanical perturbation. Biotechnol. Bioeng. 74, 212–219 (2001).

    CAS  PubMed  Google Scholar 

  82. 82

    van der Meer, J. R. & Sentchilo, V. Genomic islands and the evolution of catabolic pathways in bacteria. Curr. Opin. Biotechnol. 14, 248–254 (2003).

    CAS  PubMed  Google Scholar 

  83. 83

    Schluter, A. et al. The 64,508 bp IncP-1b antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1b group. Microbiology 149, 3139–3153 (2003).

    CAS  PubMed  Google Scholar 

  84. 84

    Gogarten, J. P., Doolittle, W. F. & Lawrence, J. G. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol. 19, 2226–2238 (2002).

    CAS  PubMed  Google Scholar 

  85. 85

    Frank, A. C., Amiri, H. & Andersson, S. G. Genome deterioration: loss of repeated sequences and accumulation of junk DNA. Genetica 115, 1–12 (2002).

    PubMed  Google Scholar 

  86. 86

    Mira, A., Ochman, H. & Moran, N. A. Deletional bias and the evolution of bacterial genomes. Trends Genet. 17, 589–596 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Botstein, D. A theory of modular evolution for bacteriophages. Ann. N. Y. Acad. Sci. 354, 484–490 (1980). A seminal paper on the mosaic nature of lambdoid phages, which is now clearly applicable to several other phage families.

    CAS  PubMed  Google Scholar 

  88. 88

    Casjens, S., Hatfull, G. & Hendrix, R. Evolution of the dsDNA tailed-bacteriophage genomes. Semin. Virol. 3, 383–397 (1992).

    CAS  Google Scholar 

  89. 89

    Canchaya, C., Proux, C., Fournous, G., Bruttin, A. & Brussow, H. Prophage genomics. Microbiol. Mol. Biol. Rev. 67, 238–276 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Burge, C. B. & Karlin, S. Finding the genes in genomic DNA. Curr. Opin. Struct. Biol. 8, 346–354 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Claverie, J. M. Computational methods for exon detection. Mol. Biotechnol. 10, 27–48 (1998).

    CAS  PubMed  Google Scholar 

  92. 92

    Guigo, R., Agarwal, P., Abril, J. F., Burset, M. & Fickett, J. W. An assessment of gene prediction accuracy in large DNA sequences. Genome Res. 10, 1631–1642 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Guigo, R., Knudsen, S., Drake, N. & Smith, T. Prediction of gene structure. J. Mol. Biol. 226, 141–157 (1992).

    CAS  PubMed  Google Scholar 

  94. 94

    Borodovsky, M. & McIninch, J. Recognition of genes in DNA sequence with ambiguities. Biosystems 30, 161–171 (1993).

    CAS  PubMed  Google Scholar 

  95. 95

    Snyder, E. E. & Stormo, G. D. Identification of protein coding regions in genomic DNA. J. Mol. Biol. 248, 1–18 (1995).

    CAS  PubMed  Google Scholar 

  96. 96

    Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).

    CAS  Google Scholar 

  97. 97

    Lukashin, A. V. & Borodovsky, M. GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res. 26, 1107–1115 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Delcher, A. L., Harmon, D., Kasif, S., White, O. & Salzberg, S. L. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 27, 4636–4641 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Fischer, D. & Eisenberg, D. Finding families for genomic ORFans. Bioinformatics 15, 759–762 (1999).

    CAS  PubMed  Google Scholar 

  100. 100

    Amiri, H., Davids, W. & Andersson, S. G. Birth and death of orphan genes in Rickettsia. Mol. Biol. Evol. 20, 1575–1587 (2003).

    CAS  PubMed  Google Scholar 

  101. 101

    Domazet-Loso, T. & Tautz, D. An evolutionary analysis of orphan genes in Drosophila. Genome Res. 13, 2213–2219 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Daubin, V. & Ochman, H. Bacterial genomes as new gene homes: the genealogy of ORFans in E. coli. Genome Res. 14, 1036–1042 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Morgenstern, B. et al. Exon discovery by genomic sequence alignment. Bioinformatics 18, 777–787 (2002).

    CAS  PubMed  Google Scholar 

  104. 104

    Meyer, I. M. & Durbin, R. Comparative ab initio prediction of gene structures using pair HMMs. Bioinformatics 18, 1309–1318 (2002).

    CAS  PubMed  Google Scholar 

  105. 105

    Crollius, H. R. et al. Characterization and repeat analysis of the compact genome of the freshwater pufferfish Tetraodon nigroviridis. Genome Res. 10, 939–949 (2000).

    PubMed  PubMed Central  Google Scholar 

  106. 106

    Badger, J. H. & Olsen, G. J. CRITICA: coding region identification tool invoking comparative analysis. Mol. Biol. Evol. 16, 512–524 (1999).

    CAS  PubMed  Google Scholar 

  107. 107

    Wiehe, T., Gebauer-Jung, S., Mitchell-Olds, T. & Guigo, R. SGP-1: prediction and validation of homologous genes based on sequence alignments. Genome Res. 11, 1574–1583 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 30, 276–280 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Gough, J. & Chothia, C. SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments. Nucleic Acids Res. 30, 268–272 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Andreeva, A. et al. SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res. 32, D226–D229 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Berriman, M. & Rutherford, K. Viewing and annotating sequence data with Artemis. Brief. Bioinformatics 4, 124–132 (2003).

    CAS  PubMed  Google Scholar 

  112. 112

    Delcher, A. L., Phillippy, A., Carlton, J. & Salzberg, S. L. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 30, 2478–2483 (2002).

    PubMed  PubMed Central  Google Scholar 

  113. 113

    Harris, M. A. et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32, D258–D261 (2004).

    CAS  Google Scholar 

  114. 114

    Leplae, R., Hebrant, A., Wodak, S. J. & Toussaint, A. ACLAME: a CLAssification of Mobile genetic Elements. Nucleic Acids Res 32 (Database issue), D45–D49 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Eddy, S. R. A model of the statistical power of comparative genome sequence analysis. PLoS Biol. 3, e10 (2005).

    PubMed  PubMed Central  Google Scholar 

  116. 116

    Eckhardt, T. A rapid method for the identification of plasmid desoxyribonucleic acid in bacteria. Plasmid 1, 584–588 (1978).

    CAS  PubMed  Google Scholar 

  117. 117

    Williams, L., Miller, D., Summers, A. O. & Detter, C. Fast, cheap, and easy preparation of library-quality DNA from 100+ kb, low copy eubacterial plasmids. Plasmid 53, 45–46 (2005).

    Google Scholar 

  118. 118

    Guo, X. H., Huff, E. J. & Schwartz, D. C. Sizing of large DNA molecules by hook formation in a loose matrix. J. Biomol. Struct. Dyn. 11, 1–10 (1993).

    CAS  PubMed  Google Scholar 

  119. 119

    Funnell, B. E. & Phillips, G. J. (eds) Plasmid Biology (ASM Press, Washington DC, 2004).

    Google Scholar 

  120. 120

    Craig, N. L., Craigie, R., Gellert, M. & Lambowitz, A. M. (eds) Mobile DNA II (ASM Press, Washington DC, 2002).

    Google Scholar 

  121. 121

    Molbak, L. et al. The plasmid genome database. Microbiology 149, 3043–3045 (2003)

    CAS  PubMed  Google Scholar 

  122. 122

    Chandler, M. & Mahillon, J. in Mobile DNA II (eds. Craig, N. L., Craigie, R., Gellert, M. & Lambowitz, A. M.) 305–366 (ASM Press, Washington DC, 2003).

    Google Scholar 

  123. 123

    Mantri, Y. & Williams, K. P. Islander: a database of integrative islands in prokaryotic genomes, the associated integrases and their DNA site specificities. Nucleic Acids Res. 32 (Database issue), D55–D58 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Dong, X., Stothard, P., Forsythe, I. J. & Wishart, D. S. PlasMapper: a web server for drawing and auto-annotating plasmid maps. Nucleic Acids Res. W365–W371 (2004).

  125. 125

    Galperin, M.Y. The molecular biology database collection. Nucleic Acids Res. 33, (Database issue) Entry no. 750 (2005).

Download references


We thank M. Syvanen for the public domain software metaphor for MGEs and the reviewers for their thoughtful critiques. Work in the laboratories of R.L. and A.T. is supported by the Fonds National de la Recherche Scientifique, the Université Libre de Bruxelles, Belgium, and the European Space Agency. L.S.F. acknowledges support from the Canadian Institutes of Health Research and Natural Sciences and Engineering Research Council of Canada. A.O.S. acknowledges support from the US Department of Energy (DOE) Genomes-To-Life Program, the assistance of L. Williams, the staff of the DOE Joint Genome Institute, Walnut Creek, California and Oak Ridge National Laboratory, Tennessee.

Author information



Corresponding author

Correspondence to Anne O. Summers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links




Gene Ontology


National Center for Biotechnology Information

Plasmid Genome Database






Laura Frost's laboratory

Raphael Leplae's laboratory

Anne Summers' laboratory

Ariane Toussaint's laboratory

Bacteriophage Names 2000

Database of Plasmid Replicons



Gene transfer that is mediated by the uptake of free DNA.


Gene transfer that is mediated by certain plasmids or ICEs with relevant transfer genes. Cell–cell contact is required for conjugation, unlike transduction or transformation.


Gene transfer that is mediated by certain types of bacteriophage.


(ICEs). Together with conjugative transposons (CTns) and genomic islands, these are chromosomally located gene clusters that encode phage-linked integrases and conjugation proteins as well as other genes associated with an observable phenotype such as virulence or symbiosis. ICEs and CTns are gene clusters that can be transferred between cells, whereas genomic islands have not been shown to transfer. Although these gene clusters have some phage-like genes, they do not lyse the cell or form extracellular particles.


DNA recombination that requires extensive sequence similarity in the involved DNA segments. It is usually effected by chromosomally encoded genes, but some phages also have orthologues of such chromosomal genes.


Transfer by a conjugative element of a plasmid or part of the bacterial cellular chromosome that cannot effect self transfer. Mediated by the trans-acting proteins of the conjugative plasmid that function on cognate mobilization (oriT) sites in the mobilized plasmid to direct it to the conjugation pore built by the conjugative element.


A genetic element that encodes an integrase enzyme, which can assemble tandem arrays of genes or gene fragments and provide them with a promoter for expression. Often associated with antibiotic multi-resistance.


DNA recombination that requires little or no similarity between the DNA segments involved. This process is carried out by specialized enzymes that are encoded by transposons and phages.


Sequencing of a clone library derived from the total DNA purified from a complex microbial ecosystem. This is followed by computer assembly of the reads into multiple linkage groups assumed to represent the organisms present in the community, including those that cannot be cultured.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Frost, L., Leplae, R., Summers, A. et al. Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3, 722–732 (2005).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing