Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mechanisms of, and Barriers to, Horizontal Gene Transfer between Bacteria

Key Points

  • Mutation and horizontal gene transfer (HGT) continually give rise to new bacterial genotypes. Infrequently, such new bacterial genotypes establish and spread in the larger population through either positive selection or random genetic drift. Therefore, bacterial genomes are in a constant state of flux, and any segment of DNA in a large bacterial population might have the opportunity to be horizontally transferred.

  • Three main mechanisms of HGT have been described: natural transformation, the uptake of free DNA in competent bacteria, exhibited by about 1% of validly described bacterial species; transduction, the transfer of bacterial DNA between a bacteriophage-infected bacterium and a bacteriophage-susceptible bacterium; and conjugation, the transfer of mobile genetic elements by pili structures assembled between two adjacently located bacteria.

  • A number of factors limit the transfer, uptake and stabilization of foreign DNA molecules acquired by bacteria. These include limited release and stability of adaptive DNA in the environment; limits on competence development; limits on host range of the transfer and maintenance mechanism of mobile genetic elements; recipient restriction enzyme activity; and limited ability of foreign DNA to integrate into a replicating genetic element owing to a lack of DNA sequence similarity.

  • Homologous recombination depends on the incoming DNA containing regions between 25 and 200 bp in length, depending on the system, of high similarity to the recipient genome. Dependence on DNA sequence similarity for recombination between species is relaxed in some mutator strains. DNA acquisition through double-stranded breaks and end-joining — illegitimate recombination — applies more to integration of circular DNA than linear fragments.

  • Most of the understanding of the processes facilitating HGT and their frequencies of occurrence have come from well designed laboratory studies of a few model bacterial species. These studies have proven suited to resolve the basic biological mechanisms involved, but fail to encompass the environmental variables involved. We have still to develop a quantitative and qualitative understanding of ongoing gene-transfer processes occurring under natural conditions. Biologically significant gene-transfer processes might occur at temporospatial scales that current methodology do not allow us to monitor.

Abstract

Bacteria evolve rapidly not only by mutation and rapid multiplication, but also by transfer of DNA, which can result in strains with beneficial mutations from more than one parent. Transformation involves the release of naked DNA followed by uptake and recombination. Homologous recombination and DNA-repair processes normally limit this to DNA from similar bacteria. However, if a gene moves onto a broad-host-range plasmid it might be able to spread without the need for recombination. There are barriers to both these processes but they reduce, rather than prevent, gene acquisition.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The process of horizontal gene transfer.
Figure 2: The natural transformation of recipient bacteria and selection of transformants.
Figure 3: Overview of plasmids and conjugative transfer in the horizontal spread of genes.

References

  1. Griffith, F. The significance of pneumococcal types. J. Hyg. 27, 113–159 (1928).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Thomas, C. M. (ed.) The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread (Harwood Academic Publishers, Amsterdam, 2000).

    Book  Google Scholar 

  3. Nakamura, Y., Itoh, T., Matsuda, H. & Gojobori, T. Biased function of horizontally transferred genes in prokaryotic genomes. Nature Genet. 36, 760–766 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Jain, R., Rivera, M. C. & Lake, J. A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl Acad. Sci. USA 96, 3801–3806 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nielsen, K. M. & Townsend, J. P. Monitoring and modeling horizontal gene transfer. Nature Biotechnol. 22, 1110–1114 (2004).

    Article  CAS  Google Scholar 

  6. Cohan, F. M., Roberts, M. S. & King, E. C. The potential for genetic exchange by transformation within a natural population of Bacillus subtilis. Evolution 45, 1383–1421 (1991).

    Article  Google Scholar 

  7. Jonas, D. A. et al. Safety considerations of DNA in food. Ann. Nutr. Metab. 45, 235–254 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Paget, E. & Simonet, P. On the track of natural transformation in soil. FEMS Microbiol. Ecol. 15, 109–117 (1994).

    Article  CAS  Google Scholar 

  9. Lorenz, M. G. & Wackernagel, W. Bacterial gene-transfer by natural genetic-transformation in the environment. Microbiol. Rev. 58, 563–602 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moscoso, M. & Claverys, J. P. Release of DNA into the medium by competent Streptococcus pneumoniae: kinetics, mechanism and stability of the liberated DNA. Mol. Microbiol. 54, 783–794 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Lorenz, M. G., Gerjets, D. & Wackernagel, W. Release of transforming plasmid and chromosomal DNA from 2 cultured soil bacteria. Arch. Microbiol. 156, 319–326 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Ueda, S. & Hara, T. Studies on nucleic acid production and application. I. production of extracellular DNA by Pseudomonas sp. KYU-1. J. Appl. Biochem. 3, 1–10 (1981).

    CAS  Google Scholar 

  13. Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C. & Mattick, J. S. Extracellular DNA required for bacterial biofilm formation. Science 295, 1487–1487 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Palmen, R. & Hellingwerf, K. J. Acinetobacter calcoaceticus liberates chromosomal DNA during induction of competence by cell lysis. Curr. Microbiol. 30, 7–10 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Friedlander, A. M. DNA release as a direct measure of microbial killing. J. Immunol. 115, 1404–1408 (1975).

    CAS  PubMed  Google Scholar 

  16. Connolly, J. H., Herriott, R. M. & Gupta, S. Deoxyribonuclease in human blood and platelets. Br. J. Exp. Pathol. 43, 392–408 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rozenberg-Arska, M., Salters, E. C., Vanstrijp, J. A., Hoekstra, W. P. M. & Verhoef, J. Degradation of Escherichia coli chromosomal and plasmid DNA in serum. J. Gen. Microbiol. 130, 217–222 (1984).

    CAS  PubMed  Google Scholar 

  18. Doerfler, W. Foreign DNA in Mammalian Systems. (Wiley-VCH Verlag GmbH, Weinheim, 2000).

    Google Scholar 

  19. Worthey, A. L., Kane, J. F. & Orvos, D. R. Fate of pBR322 DNA in a wastewater matrix. J. Ind. Microbiol. Biotechnol. 22, 164–166 (1999).

    Article  CAS  Google Scholar 

  20. Widmer, F., Seidler, R. J. & Watrud, L. S. Sensitive detection of transgenic plant marker gene persistence in soil microcosms. Mol. Ecol. 5, 603–613 (1996).

    Article  CAS  Google Scholar 

  21. Widmer, F., Seidler, R. J., Donegan, K. K. & Reed, G. L. Quantification of transgenic plant marker gene persistence in the field. Mol. Ecol. 6, 1–7 (1997).

    Article  CAS  Google Scholar 

  22. Romanowski, G., Lorenz, M. G., Sayler, G. S. & Wackernagel, W. Persistence of free plasmid DNA in soil monitored by various methods, including a transformation assay. Appl. Environ. Microbiol. 58 3012–3019 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Romanowski, G., Lorenz, M. G. & Wackernagel, W. Plasmid DNA in a groundwater aquifer microcosm — adsorption, DNAase resistance and natural genetic transformation of Bacillus subtilis. Mol. Ecol. 2, 171–181 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Landweber, L. in Genetics and the Extinction of Species: DNA and the Conservation of Biodiversity. (eds Landweber, L. & Dobson, A. P.) 163–186 (Princeton University Press, Princeton, 1999).

    Book  Google Scholar 

  25. Hofreiter, M., Serre, D., Poinar, H. N., Kuch, M. & Paabo, S. Ancient DNA. Nature Rev. Genet. 2, 353–359 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Ogram, A., Sayler, G. S. & Barkay, T. The extraction and purification of microbial DNA from sediments. J. Microbiol. Methods 7, 57–66 (1987).

    Article  CAS  Google Scholar 

  27. DeFlaun, M. F. & Paul, J. H. Detection of exogenous gene sequences in dissolved DNA from aquatic environments. Microb. Ecol. 18, 21–28 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Karl, D. M. & Bailiff, M. D. The measurement and distribution of dissolved nucleic acids in aquatic environments. Limnol. Oceanogr. 34, 543–558 (1989).

    Article  CAS  Google Scholar 

  29. Schubbert, R., Renz, D., Schmitz, B. & Doerfler, W. Foreign (M13) DNA ingested by mice reaches peripheral leukocytes, spleen, and liver via the intestinal wall mucosa and can be covalently linked to mouse DNA. Proc. Natl Acad. Sci. USA 94, 961–966 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Einspanier, R. et al. The fate of forage plant DNA in farm animals: a collaborative case-study investigating cattle and chicken fed recombinant plant material. Eur. Food Res. Technol. 212, 129–134 (2001).

    Article  CAS  Google Scholar 

  31. Chiter, A., Forbes, J. M. & Blair, G. E. DNA stability in plant tissues: implications for the possible transfer of genes from genetically modified food. FEBS Lett. 481, 164–168 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Paget, E., Lebrun, M., Freyssinet, G. & Simonet, P. The fate of recombinant plant DNA in soil. Eur. J. Soil Biol. 34, 81–88 (1998).

    Article  CAS  Google Scholar 

  33. Gebhard, F. & Smalla, K. Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. FEMS Microbiol. Ecol. 28, 261–272 (1999).

    Article  CAS  Google Scholar 

  34. Ceccherini, M. et al. Degradation and transformability of DNA from transgenic leaves. Appl. Environ. Microbiol. 69, 673–678 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Graham, J. B. & Istock, C. A. Gene exchange and natural selection cause Bacillus subtilis to evolve in soil culture. Science 204, 637–639 (1979).

    Article  CAS  PubMed  Google Scholar 

  36. Nielsen, K. M., Bones, A. M. & van Elsas, J. D. Induced natural transformation of Acinetobacter calcoaceticus in soil microcosms. Appl. Environ. Microbiol. 63, 3972–3977 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Frischer, M. E., Stewart, G. J. & Paul, J. H. Plasmid transfer to indigenous marine bacterial-populations by natural transformation. FEMS Microbiol. Ecol. 15, 127–135 (1994).

    Article  CAS  Google Scholar 

  38. Baur, B., Hanselman, K., Schlimme, W. & Jenni, B. Genetic transformation in freshwater: Escherichia coli is able to develop natural competence. Appl. Environ. Microbiol. 62, 3673–3678 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mercer, D. K., Scott, K. P., Melville, C. M., Glover, L. A. & Flint, H. J. Transformation of an oral bacterium via chromosomal integration of free DNA in the presence of human saliva. FEMS Microbiol. Lett. 200, 163–167 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Duggan, P. S., Chambers, P. A., Heritage, J. & Forbes, J. M. Survival of free DNA encoding antibiotic resistance from transgenic maize and the transformation activity of DNA in ovine saliva, ovine rumen fluid and silage effluent. FEMS Microbiol. Lett. 191, 71–77 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Brautigaum, M., Hertel, C. & Hammes, W. P. Evidence for natural transformation of Bacillus subtilis in foodstuffs. FEMS Microbiol. Lett. 155, 93–98 (1997).

    Article  Google Scholar 

  42. Bauer, F., Hertel, C. & Hammes, W. P. Transformation of Escherichia coli in foodstuffs. Syst. Appl. Microbiol. 22 (1999).

  43. Palmen, R. & Hellingwerf, K. J. Uptake and processing of DNA by Acinetobacter calcoaceticus — a review. Gene 192, 179–190 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Dubnau, D. DNA uptake in bacteria. Annu. Rev. Microbiol. 53, 217–244 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Dreiseikelmann, B. Translocation of DNA across bacterial-membranes. Microbiol. Rev. 58, 293–316 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Puyet, A., Greenberg, B. & Lacks, S. A. Genetic and structural characterization of EndA — a membrane-bound nuclease required for transformation of Streptococcus pneumoniae. J. Mol. Biol. 213, 727–738 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Chen, I. & Dubnau, D. DNA uptake during natural transformation. Nature Rev. Microbiol. 2, 241–249 (2004).

    Article  CAS  Google Scholar 

  48. Nielsen, K. M. et al. Natural transformation and availability of transforming DNA to Acinetobacter calcoaceticus in soil microcosms. Appl. Environ. Microbiol. 63, 1945–1952 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mejean, V. & Claverys, J. P. DNA processing during entry in transformation of Streptococcus pneumoniae. J. Biol. Chem. 268, 5594–5599 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Berndt, C., Meier, P. & Wackernagel, W. DNA restriction is a barrier to natural transformation in Pseudomonas stutzeri JM300. Microbiology 149, 895–901 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Maynard Smith, J., Feil, E. J. & Smith, N. H. Population structure and evolutionary dynamics of pathogenic bacteria. BioEssays 22, 1115–1122 (2000).

    Article  Google Scholar 

  52. Feil, E. J. & Spratt, B. G. Recombination and the population structures of bacterial pathogens. Annu. Rev. Microbiol. 55, 561–590 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Townsend, J. P., Nielsen, K. M., Fisher, D. S. & Hartl, D. L. Horizontal acquisition of divergent chromosomal DNA in bacteria: effects of mutator phenotypes. Genetics 164, 13–21 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Matic, I. et al. Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science 277, 1833–1834 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Vulic, M., Dionisio, F., Taddei, F. & Radman, M. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc. Natl Acad. Sci. USA 94, 9763–9767 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. de Vries, J., Meier, P. & Wackernagel, W. The natural transformation of the soil bacteria Pseudomonas stutzeri and Acinetobacter sp by transgenic plant DNA strictly depends on homologous sequences in the recipient cells. FEMS Microbiol. Lett. 195, 211–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Majewski, J. & Cohan, F. M. The effect of mismatch repair and heteroduplex formation on sexual isolation in Bacillus. Genetics 148, 13–18 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Majewski, J., Zawadzki, P., Pickerill, P., Cohan, F. M. & Dowson, C. G. Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J. Bacteriol. 182, 1016–1023 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Heinemann, J. A. & Traavik, T. Problems in monitoring horizontal gene transfer in field trials of transgenic plants. Nature Biotechnol. 22, 1105–1109 (2004).

    Article  CAS  Google Scholar 

  60. Ikeda, H., Shiraishi, K. & Ogata, Y. Illegitimate recombination mediated by double-strand break and end-joining in Escherichia coli. Adv. Biophys. 38, 3–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Ehrlich, S. D. et al. Mechanisms of illegitimate recombination. Gene 135, 161–166 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Nielsen, K. M. An assessment of factors affecting the likelihood of horizontal transfer of recombinant plant DNA to bacterial recipients in the soil and rhizosphere. Collection of Biosafety Reviews (Italy) 1, 96–149 (2003).

    Google Scholar 

  63. Kurland, C. G. What tangled web: barriers to rampant horizontal gene transfer. BioEssays 27, 741–747 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Dempsey, L. A. & Dubnau, D. A. Identification of plasmid and Bacillus subtilis chromosomal recombination sites used for pE194 integration. J. Bacteriol. 171, 2856–2865 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lovett, S. T., Hurley, R. L., Sutera, V. A., Aubuchon, R. H. & Lebedeva, M. A. Crossing over between regions of limited homology in Escherichia coli: RecA-dependent and RecA-independent pathways. Genetics 160, 851–859 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shen, P. & Huang, H. V. Homologous recombination in Escherichia coli — dependence on substrate length and homology. Genetics 112, 441–457 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Majewski, J. & Cohan, F. M. DNA sequence similarity requirements for interspecific recombination in Bacillus. Genetics 153, 1525–1533 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Meier, P. & Wackernagel, W. Mechanisms of homology-facilitated illegitimate recombination for foreign DNA acquisition in transformable Pseudomonas stutzeri. Mol. Microbiol. 48, 1107–1118 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. de Vries, J., Herzfeld, T. & Wackernagel, W. Transfer of plastid DNA from tobacco to the soil bacterium Acinetobacter sp. by natural transformation. Mol. Microbiol. 53, 323–334 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. de Vries, J. & Wackernagel, W. Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc. Natl Acad. Sci. USA 99, 2094–2099 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Prudhomme, M., Libante, V. & Claverys, J. P. Homologous recombination at the border: insertion-deletions and the trapping of foreign DNA in Streptococcus pneumoniae. Proc. Natl Acad. Sci. USA 99, 2100–2105 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nielsen, K. M., van Elsas, J. D. & Smalla, K. Transformation of Acinetobacter sp. strain BD413(pFG4 Delta nptII) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants. Appl. Environ. Microbiol. 66, 1237–1242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kay, E., Vogel, T. M., Bertolla, F., Nalin, R. & Simonet, P. In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Appl. Environ. Microbiol. 68, 3345–3351 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Funchain, P., Yeung, A., Stewart, J., Clendenin, W. M. & Miller, J. H. Amplification of mutator cells in a population as a result of horizontal transfer. J. Bacteriol. 183, 3737–3741 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Feng, G., Tsui, H. C. T. & Winkler, M. E. Depletion of the cellular amounts of the MutS and MutH methyl-directed mismatch repair proteins in stationary-phase Escherichia coli K-12 cells. J. Bacteriol. 178, 2388–2396 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. LeClerc, J. E., Li, B. G., Payne, W. L. & Cebula, T. A. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274, 1208–1211 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Richardson, A. R., Yu, Z., Popovic, T. & Stojiljkovic, I. Mutator clones of Neisseria meningitidis in epidemic serogroup A disease. Proc. Natl Acad. Sci. USA 99, 6103–6107 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Young, D. M. & Ornston, L. N. Functions of the mismatch repair gene mutS from Acinetobacter sp strain ADP1. J. Bacteriol. 183, 6822–6831 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Burrus, V., Pavlovic, G., Decaris, B. & Guedon, G. Conjugative transposons: the tip of the iceberg. Mol. Microbiol. 46, 601–610 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Flores, M. et al. Prediction, identification, and artificial selection of DNA rearrangements in Rhizobium: Toward a natural genomic design. Proc. Natl Acad. Sci. USA 97, 9138–9143 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mavingui, P. et al. Dynamics of genome architecture in Rhizobium sp strain NGR234. J. Bacteriol. 184, 171–176 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mahillon, J. & Chandler, M. Insertion sequences. Microbiol. Mol. Biol. Rev. 62, 725–774. (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reimmann, C. & Haas, D. Mode of replicon fusion mediated by the duplicated insertion-sequence IS21 in Escherichia coli. Genetics 115, 619–625 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Reimmann, C. et al. Genetic structure, function and regulation of the transposable element IS21. Mol. Gen. Genetics 215, 416–424 (1989).

    Article  CAS  Google Scholar 

  85. Bao, T. H., Betermier, M., Polard, P. & Chandler, M. Assembly of a strong promoter following IS911 circularization and the role of circles in transposition. EMBO J. 16, 3357–3371 (1997).

    Article  Google Scholar 

  86. Duval-Valentin, G., Marty-Cointin, B. & Chandler, M. Requirement of IS911 replication before integration defines a new bacterial transposition pathway. EMBO J. 23, 3897–3906 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Duval-Valentin, G., Normand, C., Khemici, V., Marty, B. & Chandler, M. Transient promoter formation: a new feedback mechanism for regulation of IS911 transposition. EMBO J. 20, 5802–5811 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. McGrath, B. M. & Pembroke, J. T. Detailed analysis of the insertion site of the mobile elements R997, pMERPH, R392, R705 and R391 in E. coli K12. FEMS Microbiol. Lett. 237, 19–26 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Mateos, L. M., Schafer, A., Kalinowski, J., Martin, J. F. & Puhler, A. Integration of narrow-host-range vectors from Escherichia coli into the genomes of amino acid-producing Corynebacteria after intergeneric conjugation. J. Bacteriol. 178, 5768–5775 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ikeda, H., Shimizu, H., Ukita, T. & Kumagai, M. A novel assay for illegitimate recombination in Escherichia coli — stimulation of λ-bio transducing phage formation by ultraviolet-light and its independence from RecA function. Adv. Biophys. 31, 197–208 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Shiraishi, K., Hanada, K., Iwakura, Y. & Ikeda, H. Roles of recJ, RecO, and RecR in RecET-mediated illegitimate recombination in Escherichia coli. J. Bacteriol. 184, 4715–4721 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chiu, C.-M. & Thomas, C. M. Evidence for the past integration of IncP-1 plasmids into bacterial chromosomes. FEMS Lett. 241, 163–169 (2004).

    Article  CAS  Google Scholar 

  93. Cascales, E. & Christie, P. J. The versatile bacterial type IV secretion systems. Nature Rev. Microbiol. 1, 137–149 (2003).

    Article  CAS  Google Scholar 

  94. Anthony, K. G., Sherburne, C., Sherburne, R. & Frost, L. S. The role of the pilus in recipient cell recognition during bacterial conjugation mediated by F-like plasmids. Mol. Microbiol. 13, 939–953 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Ishiwa, A. & Komano, T. PilV adhesins of plasmid R64 thin pili specifically bind to the lipopolysaccharides of recipient cells. J. Mol. Biol. 343, 615–625 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Samuels, A. L., Lanka, E. & Davies, J. E. Conjugative junctions in RP4-mediated mating of Escherichia coli. J. Bacteriol. 182, 2709–2715 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kelly, B. A. & Kado, C. I. Agrobacterium-mediated T-DNA transfer and integration into the chromosome of Streptomyces lividans. Mol. Plant Pathol. 3, 125–134 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Giebelhaus, L. A. et al. The Tra2 core of the IncP alpha plasmid RP4 is required for intergeneric mating between Escherichia coli and Streptomyces lividans. J. Bacteriol. 178, 6378–6381 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bingle, L. E. H., Zatyka, M., Manzoor, S. E. & Thomas, C. M. Co-operative interactions control conjugative transfer of broad host-range plasmid RK2: full effect of minor changes in TrbA operator depends on KorB. Mol. Microbiol. 49, 1095–1108 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Grohmann, E., Muth, G. & Espinosa, M. Conjugative plasmid transfer in Gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67, 277–301 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hirt, H., Schlievert, P. M. & Dunny, G. M. In vivo induction of virulence and antibiotic resistance transfer in Enterococcus faecalis mediated by the sex pheromone-sensing system of pCF10. Infect. Immun. 70, 716–723 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chandler, J. R. & Dunny, G. M. Enterococcal peptide sex pheromones: synthesis and control of biological activity. Peptides 25, 1377–1388 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Waters, C. M. & Dunny, G. M. Analysis of functional domains of the Enterococcus faecalis pheromone-induced surface protein aggregation substance. J. Bacteriol. 183, 5659–5667 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Flannagan, S. E. & Clewell, D. B. Identification and characterization of genes encoding sex pheromone cAM373 activity in Enterocccus faecalis and Staphylococcus aureus. Mol. Microbiol. 44, 803–817 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Clewell, D. B., Francia, M. V., Flannagan, S. E. & An, F. Y. Enterococcal plasmid transfer: sex pheromones, transfer origins, relaxases, and the Staphylococcus aureus issue. Plasmid 48, 193–201 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Kurenbach, B. R. et al. Intergeneric transfer of the Enterococcus faecalis plasmid pIP501 to Escherichia coli and Streptomyces lividans and sequence analysis of its tra region. Plasmid 50, 86–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Maas, R. M., Gotz, J., Wohlleben, W. & Muth, G. The conjugative plasmid pSG5 from Streptomyces ghanaensis DSM 2932 differs in its transfer functions from other Streptomyces rolling-circle-type plasmids. Microbiology 144, 2809–2817 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Pettis, G. S. & Cohen, S. N. Mutational analysis of the tra locus of the broad-host-range Streptomyces plasmid pIJ101. J. Bacteriol. 182, 4500–4504 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bentley, S. D. et al. SCP1, a 356,023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol. Microbiol. 51, 1615–1628 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Haug, I. et al. Streptomyces coelicolor A3(2) plasmid SCP2*: deductions from the complete sequence. Microbiology 149, 505–513 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Stecker, C., Johann, A., Herzberg, C., Averhoff, B. & Gottschalk, G. Complete nucleotide sequence and genetic organization of the 210-kilobase linear plasmid of Rhodococcus erythropolis BD2. J. Bacteriol. 185, 5269–5274 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cabezon, E., Sastre, J. I. & de la Cruz, F. Genetic evidence of a coupling role for the TraG protein family in bacterial conjugation. Mol. Gen. Genet. 254, 400–406 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Llosa, M., Zunzunegui, S. & de la Cruz, F. Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc. Natl Acad. Sci. USA 100, 10465–10470 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Frost, L. S., Ippen-Ihler, K. & Skurray, R. A. Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol. Rev. 58, 162–210 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Haase, J., Kalkum, M. & Lanka, E. TrbK, a small cytoplasmic membrane lipoprotein, functions in entry exclusion of the IncP alpha plasmid RP4. J. Bacteriol. 178, 6720–6729 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hochhut, B., Beaber, J. W., Woodgate, R. & Waldor, M. K. Formation of chromosomal tandem arrays of the SXT element and R391, two conjugative chromosomally integrating elements that share an attachment site. J. Bacteriol. 183, 1124–1132 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pohlman, R. F., Genetti, H. D. & Winans, S. C. Entry exclusion of the IncN plasmid-pKM101 is mediated by a single hydrophilic protein containing a lipid attachment motif. Plasmid 31, 158–165 (1994).

    Article  CAS  PubMed  Google Scholar 

  118. Possoz, C., Gagnat, J., Sezonov, G., Guerineau, M. & Pernodet, J. L. Conjugal immunity of Streptomyces strains carrying the integrative element pSAM2 is due to the pif gene (pSAM2 immunity factor). Mol. Microbiol. 47, 1385–1393 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Boyd, E. F., Hill, C. W., Rich, S. M. & Hartl, D. L. Mosaic structure of plasmids from natural populations of Escherichia coli. Genetics 143, 1091–1100 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schluter, A. et al. The 64 508 bp IncP-1β antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1β group. Microbiology 149, 3139–3153 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Peters, J. E., Bartoszyk, I. M., Dheer, S. & Benson, S. A. Redundant homosexual F transfer facilitates selection-induced reversion of plasmid mutations. J. Bacteriol. 178, 3037–3043 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ghigo, J. M. Natural conjugative plasmids induce bacterial biofilm development. Nature 412, 442–445 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Reisner, A., Haagensen, J. A. J., Schembri, M. A., Zechner, E. L. & Molin, S. Development and maturation of Escherichia coli K-12 biofilms. Mol. Microbiol. 48, 933–946 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Sukulpovi, S. & O'Connor, C. D. TraT lipoprotein, a plasmid-specified mediator of interactions between Gram-negative bacteria and their environment. Microbiol. Rev. 54, 331–341 (1990).

    Article  Google Scholar 

  125. Jeltsch, A. Maintenance of species identity and controlling speciation of bacteria: a new function for restriction/modification systems? Gene 317, 13–16 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Lacks, S. A. & Springhorn, S. S. Transfer of recombinant plasmids containing the gene for DpnII DNA methylase into strains of Streptococcus pneumoniae that produce DpnI or DpnII restirction endonucleases. J. Bacteriol. 158, 905–909 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Moser, D. P., Zarka, D. & Kallas, T. Characterization of a restriction barrier and electrotransformation of the Cyanobacterium nostoc Pcc-7121. Arch. Microbiol. 160, 229–237 (1993).

    CAS  PubMed  Google Scholar 

  128. Purdy, D. et al. Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile through circumvention of the restriction barrier. Mol. Microbiol. 46, 439–452 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Pinedo, C. A. & Smets, B. F. Conjugal TOL transfer from Pseudomonas putida to Pseudomonas aeruginosa: effects of restriction porificiency, toxicant exposure, cell density ratios, and conjugation detection method on observed transfer efficiencies. Appl. Environ. Microbiol. 71, 51–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Wilkins, B. M., Chilley, P. M., Thomas, A. T. & Pocklington, M. J. Distribution of restriction enzyme recognition sequences on broad host range plasmid RP4: molecular and evolutionary implications. J. Mol. Biol. 258, 447–456 (1996).

    Article  CAS  PubMed  Google Scholar 

  131. Bassett, C. L. & Janisiewicz, W. J. Electroporation and stable maintenance of plasmid DNAs in a biocontrol strain of Pseudomonas syringae. Biotechnol. Lett. 25, 199–203 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Belogurov, A. A., Delver, E. P. & Rodzevich, O. V. IncN plasmid pKM101 and IncI1 plasmid ColIb-P9 encode homologous antirestriction proteins in their leading regions. J. Bacteriol. 174, 5079–5085 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Belogurov, A. A., Delver, E. P. & Rodzevich, O. V. Plasmid pKM101 encodes 2 nonhomologous antirestriction proteins (ArdA and ArdB) whose expression is controlled by homologous regulatory sequences. J. Bacteriol. 175, 4843–4850 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Belogurov, A. A. et al. Antirestriction protein ard (TypeC) encoded by IncW plasmid pSa has a high similarity to the “protein transport” domain of the TraC1 primase of promiscous plasmid RP4. J. Mol. Biol. 296, 969–977 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Chilley, P. M. & Wilkins, B. M. Distribution of the ArdA family of antirestriction gene on conjugative plasmids. Microbiology 141, 2157–2164 (1995).

    Article  CAS  PubMed  Google Scholar 

  136. Larsen, M. H. & Figurski, D. H. Structure, expression, and regulation of the kilC operon of promiscuous IncP-α plasmids. J. Bacteriol. 176, 5022–5032 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Thorsted, P.A et al. Complete sequence of the IncP β plasmid R751: implications for evolution and organisation of the IncP. backbone. J. Mol. Biol. 282, 969–990 (1998).

    Article  CAS  PubMed  Google Scholar 

  138. Kobayashi, I. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res. 29, 3742–3756 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Nakayama, Y. & Kobayashi, I. Restriction-modification gene complexes as selfish gene entities: roles of a regulatory system in their establishment, maintenance, and apoptotic mutual exclusion. Proc. Natl Acad. Sci. USA 95, 6442–6447 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Adamczyk, M. & Jagura-Burdzy, G. Spread and survival of promiscuous IncP-1 plasmids. Acta Biochim. Pol. 50, 425–453 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Rawlings, D. E. & Tietze, E. Comparative biology of IncQ and IncQ-like plasmids. Microbiol. Mol. Biol. Rev. 65, 481–496 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Scherzinger, E., Haring, V., Lurz, R. & Otto, S. Plasmid RSF1010 DNA-replication in vitro promoted by purified RSF1010 RepA, RepB and RepC proteins. Nucleic Acids Res. 19, 1203–1211 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Becker, E. C. & Meyer, R. J. Acquisition of resistance genes by the IncQ plasmid R1162 is limited by its high copy number and lack of a partitioning mechanism. J. Bacteriol. 179, 5947–5950 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Haines, A. S., Jones, K., Cheung, M. & Thomas, C. M. The IncP-6 plasmid Rms149 consists of a small mobilizable backbone with multiple large insertions. J. Bacteriol. 187, 4728–4738 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kramer, M. G., Espinosa, M., Misra, T. K. & Khan, S. A. Lagging strand replication of rolling-circle plasmids: specific recognition of the ssoA-type origins in different Gram-positive bacteria. Proc. Natl Acad. Sci. USA 95, 10505–10510 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Anand, S. P., Mitra, P., Naqvi, A. & Khan, S. A. Bacillus anthracis and Bacillus cereus PcrA helicases can support DNA unwinding and in vitro rolling-circle replication of plasmid pT181 of Staphylococcus aureus. J. Bacteriol. 186, 2195–2199 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Doran, K. S., Helinski, D. R. & Konieczny, I. Host-dependent requirement for specific DnaA boxes for plasmid RK2 replication. Mol. Microbiol. 33, 490–498 (1999).

    Article  CAS  PubMed  Google Scholar 

  148. Caspi, R. et al. A broad host range replicon with different requirements for replication initiation in three bacterial species. EMBO J. 20, 3262–3271 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhong, Z. P., Helinski, D. & Toukdarian, A. A specific region in the N terminus of a replication initiation protein of plasmid RK2 is required for recruitment of Pseudomonas aeruginosa DnaB helicase to the plasmid origin. J. Biol. Chem. 278, 45305–45310 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Jiang, Y., Pacek, M., Helinski, D. R., Konieczny, I. & Toukdarian, A. A multifunctional plasmid-encoded replication initiation protein both recruits and positions an active helicase at the replication origin. Proc. Natl Acad. Sci. USA 100, 8692–8697 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bignell, C. R., Haines, A. S., Khare, D. & Thomas, C. M. Effect of growth rate and incC mutation on symmetric plasmid distribution by the IncP-1 partitioning apparatus. Mol. Microbiol. 34, 205–216 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Siddique, A. & Figurski, D. H. The active partition gene incC of IncP plasmids is required for stable maintenance in a broad range of hosts. J. Bacteriol. 184, 1788–1793 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhong, Z. P., Helinski, D. & Toukdarian, A. Plasmid host-range: restrictions to F replication in Pseudomonas. Plasmid 54, 48–56 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Maestro, B. et al. Modulation of pPS10 host range by DnaA. Mol. Microbiol. 46, 223–234 (2002).

    Article  CAS  PubMed  Google Scholar 

  155. Maestro, B., Sanz, J. M., Diaz-Orejas, R. & Fernandez-Tresguerres, E. Modulation of pPS10 host range by plasmid-encoded RepA initiator protein. J. Bacteriol. 185, 1367–1375 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Greated, A., Titok, M., Krasowiak, R., Fairclough, R. J. & Thomas, C. M. The replication and stable-inheritance functions of IncP-9 plasmid pM3. Microbiology 146, 2249–2258 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Sevastsyanovich, Y. R., Titok, M. A., Krasowiak, R., Bingle, L. E. H. & Thomas, C. M. Ability of IncP-9 plasmid pM3 to replicate in E. coli is dependent on both rep and par functions. Mol. Microbiol. 57, 819–833 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Wu, L. T. & Tseng, Y. H. Characterization of the IncW cryptic plasmid pXV2 from Xanthomonas campestris pv. vesicatoria. Plasmid 44, 163–172 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Nielsen, K. M. Barriers to horizontal gene transfer by natural transformation in soil bacteria. APMIS Suppl. 84, 77–84 (1998).

    Article  CAS  PubMed  Google Scholar 

  160. Nielsen, K. M., Bones, A. M., Smalla, K. & van Elsas, J. D. Horizontal gene transfer from plants to terrestrial bacteria — a rare event? FEMS Microbiol. Rev. 22, 79–103 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Current work related to this review in the laboratory of C.M.T. is supported by The Wellcome Trust, INTAS, BBSRC and the Darwin Trust of Edinburgh. K.M.N. acknowledge support from The Research Council of Norway.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Bacillus subtilis

Neisseria gonorrheae

Escherichia coli

Haemophilus influenzae

Pseudomonas putida

Pseudomonas syringae

Rms149

RSF1010

Staphylococcus aureus

Streptococcus pneumoniae

FURTHER INFORMATION

Christopher Thomas' homepage

Kaare Nielsen's homepage

Glossary

COMPETENCE

The ability of bacteria to take up extracellular DNA.

TRANSFORMATION FREQUENCY

The number of bacteria carrying the horizontally acquired DNA divided by the total number of bacteria exposed, per given time unit.

HOMOLOGOUS RECOMBINATION

Recombination that depends on extensive segments of high sequence similarity between two DNA molecules.

INSERTION SEQUENCE

A transposable DNA segment that normally only encodes the enzymes that mediate its own transposition and has no phenotypic marker.

TRANSPOSASE

The enzyme that promotes cutting the DNA at the ends of a transposable element and joining to the DNA molecule into which the element is to be inserted.

PHAGE

An abbreviation of bacteriophage — a virus that specifically infects bacteria.

SPECIALIZED TRANSDUCING PHAGE

A bacteriophage that integrates into a host-cell chromosome and then is excised again, bringing with it (as part of the phage genome) part of the host chromosome that can be transferred across to a new host.

PILUS

The proteinaceous fibre made from multiple subunits of a protein called pilin that mediates contact between donor and recipient bacteria prior to conjugative transfer.

PHEROMONE

A diffusible small molecule that can act as a chemical signal.

HYPHAE

The tube-like cellular growth associated with mycelial organisms.

MOBILIZATION

The process of a non-self-transmissible element being allowed to tranfer by the presence of a self-transmissible element.

RELAXASOME

The protein–DNA complex at the transfer origin that results in nicking of the DNA when the proteins are denatured chemically or cleaved proteolytically.

SURFACE EXCLUSION

The reduction of transfer frequency during conjugative transfer to recipients already carrying a related plasmid.

PARALOGUES

Homologous genes in the same organism that have evolved from a gene duplication and a subsequent divergence of function.

ORTHOLOGUES

Homologues that are related to each other through a speciation event.

HELICASE

Enzyme that unwinds DNA duplexes.

LAGGING-STRAND SYNTHESIS

Discontinuous synthesis on the strand running back from the replication fork, dependent on regular synthesis of primers by a primase and other primosome proteins.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thomas, C., Nielsen, K. Mechanisms of, and Barriers to, Horizontal Gene Transfer between Bacteria. Nat Rev Microbiol 3, 711–721 (2005). https://doi.org/10.1038/nrmicro1234

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1234

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing