Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Going against the grain: chemotaxis and infection in Vibrio cholerae

Key Points

  • Chemotaxis has long been proposed to be important in helping motile pathogens to locate the appropriate niche for colonization within the host. In the case of many non-invasive enteric pathogens this principle holds true, with one exception — the cholera bacterium Vibrio cholerae.

  • Chemotaxis seems to restrict V. cholerae colonization of the infant-mouse small intestine, the most commonly used model of infection. In the absence of functional chemotaxis, V. cholerae exhibit expanded colonization of the intestinal tract and a concomitant increase in infectivity compared to the wild-type strain.

  • V. cholerae shed from cholera patients have a competitive advantage over their in vitro grown counterparts during the infection of infant mice. This is probably the result of a number of factors, one of which might be a defect in chemotaxis, as suggested by transcriptome analysis. If true, this might have important implications for our understanding of the infectious process.

  • The V. cholerae genome is complex with respect to chemotaxis, having three distinct operons that encode separate chemotaxis systems. Two of these operons are dispensable for chemotaxis in vitro and for infection.

  • The role that chemotaxis and motility play in the environmental stages of V. cholerae has not yet been determined. It is probable that chemotaxis has a role in locating suitable environmental hosts and surfaces. The additional chemotaxis systems might play a role in this aspect of the V. cholerae life cycle by regulating the activity of other functions besides motility.

Abstract

Chemotaxis is the process by which motile cells move in a biased manner both towards favourable and away from unfavourable environments. The requirement of this process for infection has been examined in several bacterial pathogens, including Vibrio cholerae. The single polar flagellum of Vibrio species is powered by a sodium-motive force across the inner membrane, and can rotate to produce speeds of up to 60 cell-body lengths (60μm) per second. Investigating the role of the chemotactic control of rapid flagellar motility during V. cholerae infection has revealed some unexpected and intriguing results.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The life cycle of pathogenic Vibrio cholerae.
Figure 2: Flagellar-based motility.
Figure 3: Architecture of the small intestine.
Figure 4: Model for the effect of chemotaxis in limiting Vibrio cholerae colonization.

References

  1. Meeting on the Potential Role of New Cholera Vaccines in the Prevention and Control of Cholera Outbreaks during Acute Emergencies. in Document CDR/GPV/95. 1 (World Health Organization, Geneva, 1995).

  2. Sack, D. A., Sack, R. B., Nair, G. B. & Siddique, A. K. Cholera. Lancet 363, 223–233 (2004). This review provides an overview of cholera, from the disease itself to its epidemiology and virulence gene regulation.

    Article  CAS  PubMed  Google Scholar 

  3. Wachsmuth, I. K., Blake, P. A. & Olsvik, O. Vibrio cholerae and Cholera: Molecular to Global Perspectives (ASM press, Washington DC, 1994).

    Book  Google Scholar 

  4. Sack, D. A. et al. Validation of a volunteer model of cholera with frozen bacteria as the challenge. Infect. Immun. 66, 1968–1972 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Merrell, D. S. & Camilli, A. The cadA gene of Vibrio cholerae is induced during infection and plays a role in acid tolerance. Mol. Microbiol. 34, 836–849 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Herrington, D. A. et al. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J. Exp. Med. 168, 1487–1492 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Taylor, R. K., Miller, V. L., Furlong, D. B. & Mekalanos, J. J. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc. Natl Acad. Sci. USA 84, 2833–2837 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kirn, T. J., Lafferty, M. J., Sandoe, C. M. & Taylor, R. K. Delineation of pilin domains required for bacterial association into microcolonies and intestinal colonization by Vibrio cholerae. Mol. Microbiol. 35, 896–910 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Gill, D. M. Mechanism of action of cholera toxin. Adv. Cyclic Nucleotide Res. 8, 85–118 (1977).

    CAS  PubMed  Google Scholar 

  10. DiRita, V. J. Co-ordinate expression of virulence genes by ToxR in Vibrio cholerae. Mol. Microbiol. 6, 451–458 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Skorupski, K. & Taylor, R. K. Control of the ToxR virulence regulon in Vibrio cholerae by environmental stimuli. Mol. Microbiol. 25, 1003–1009 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Glass, R. I. & Black, R. E. The epidemiology of cholera. In Current Topics in Infectious Disease: Cholera (eds Barua, D. & Greenough, W. B.) 129–154 (Plenum Publishing Corporation, New York, 1992).

    Google Scholar 

  13. Merrell, D. S. et al. Host-induced epidemic spread of the cholera bacterium. Nature 417, 642–645 (2002). The competitive advantage observed with stool V. cholerae during infection, as well as the stool transcriptome analysis, is shown in this paper.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Colwell, R. R. & Spira, W. M. The ecology of Vibrio cholerae. In Current Topics in Infectious Disease: Cholera (eds Barua, D. & Greenough, W. B.) 107–127 (Plenum Publishing Corporation, New York, 1992).

    Google Scholar 

  15. Huq, A. et al. Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl. Environ. Microbiol. 45, 275–283 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chiavelli, D. A., Marsh, J. W. & Taylor, R. K. The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Appl. Environ. Microbiol. 67, 3220–3225 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Islam, M. S., Drasar, B. S. & Bradley, D. J. Long-term persistence of toxigenic Vibrio cholerae O1 in the mucilaginous sheath of a blue-green alga, Anabaena variabilis. J. Trop. Med. Hyg. 93, 133–139 (1990).

    CAS  PubMed  Google Scholar 

  18. Islam, M. S. et al. Role of cyanobacteria in the persistence of Vibrio cholerae O139 in saline microcosms. Can. J. Microbiol. 50, 127–131 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Broza, M. & Halpern, M. Pathogen reservoirs. Chironomid egg masses and Vibrio cholerae. Nature 412, 40 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Halpern, M., Broza, Y. B., Mittler, S., Arakawa, E. & Broza, M. Chironomid egg masses as a natural reservoir of Vibrio cholerae non-O1 and non-O139 in freshwater habitats. Microb. Ecol. 47, 341–349 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Colwell, R. R. & Huq, A. Vibrios in the environment: viable but nonculturable Vibrio cholerae. In Vibrio cholerae and Cholera (eds Wachsmuth, I. K., Blake, P. A. & Olsvik, Ø.) 117–133 (ASM Press, Washington DC, 1994).

    Chapter  Google Scholar 

  22. Watnick, P. I. & Kolter, R. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol. Microbiol. 34, 586–595 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meibom, K. L. et al. The Vibrio cholerae chitin utilization program. Proc. Natl Acad. Sci. USA 101, 2524–2529 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Watnick, P. I., Lauriano, C. M., Klose, K. E., Croal, L. & Kolter, R. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol. Microbiol. 39, 223–235 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu, J. & Mekalanos, J. J. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev. Cell. 5, 647–656 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Sjoblad, R. D., Emala, C. W. & Doetsch, R. N. Invited review: bacterial flagellar sheaths: structures in search of a function. Cell Motil. 3, 93–103 (1983).

    Article  CAS  PubMed  Google Scholar 

  27. Kojima, S., Yamamoto, K., Kawagishi, I. & Homma, M. The polar flagellar motor of Vibrio cholerae is driven by an Na+ motive force. J. Bacteriol. 181, 1927–1930 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Häse, C. C. & Mekalanos, J. J. Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc. Natl Acad. Sci. USA 96, 3183–3187 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Magariyama, Y. et al. Very fast flagellar rotation. Nature 371, 752 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. McCarter, L. L. Polar flagellar motility of the Vibrionaceae. Microbiol. Mol. Biol. Rev. 65, 445–462 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wall, D. & Kaiser, D. Type IV pili and cell motility. Mol. Microbiol. 32, 1–10 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Mattick, J. S. Type IV pili and twitching motility. Annu. Rev. Microbiol. 56, 289–314 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. McBride, M. J. Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu. Rev. Microbiol. 55, 49–75 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Szurmant, H., Muff, T. J. & Ordal, G. W. Bacillus subtilis CheC and FliY are members of a novel class of CheY-P-hydrolyzing proteins in the chemotactic signal transduction cascade. J. Biol. Chem. 279, 21787–21792 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Kristich, C. J. & Ordal, G. W. Bacillus subtilis CheD is a chemoreceptor modification enzyme required for chemotaxis. J. Biol. Chem. 277, 25356–25362 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Rosario, M. M., Fredrick, K. L., Ordal, G. W. & Helmann, J. D. Chemotaxis in Bacillus subtilis requires either of two functionally redundant CheW homologs. J. Bacteriol. 176, 2736–2739 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heidelberg, J. F. et al. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406, 477–483 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bourret, R. B., Charon, N. W., Stock, A. M. & West, A. H. Bright lights, abundant operons — fluorescence and genomic technologies advance studies of bacterial locomotion and signal transduction: review of the BLAST meeting, Cuernavaca, Mexico, 14 to 19 January 2001. J. Bacteriol. 184, 1–17 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boin, M. A., Austin, M. J. & Häse, C. C. Chemotaxis in Vibrio cholerae. FEMS Microbiol. Lett. 239, 1–8 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Gosink, K. K., Kobayashi, R., Kawagishi, I. & Häse, C. C. Analyses of the roles of the three cheA homologs in chemotaxis of Vibrio cholerae. J. Bacteriol. 184, 1767–1771 (2002). This paper shows that only one of the three chemotaxis operons is required for chemotaxis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, S. H., Butler, S. M. & Camilli, A. Selection for in vivo regulators of bacterial virulence. Proc. Natl Acad. Sci. USA 98, 6889–6894 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang, Z. et al. Myxococcus xanthus dif genes are required for biogenesis of cell surface fibrils essential for social gliding motility. J. Bacteriol. 182, 5793–5798 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun, H., Zusman, D. R. & Shi, W. Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr. Biol. 10, 1143–1146 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Vlamakis, H. C., Kirby, J. R. & Zusman, D. R. The Che4 pathway of Myxococcus xanthus regulates type IV pilus-mediated motility. Mol. Microbiol. 52, 1799–1811 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Kirby, J. R. & Zusman, D. R. Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc. Natl Acad. Sci. USA 100, 2008–2013 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Darzins, A. Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosynthesis and twitching motility: sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus. Mol. Microbiol. 11, 137–153 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Brown, I. I. & Häse, C. C. Flagellum-independent surface migration of Vibrio cholerae and Escherichia coli. J. Bacteriol. 183, 3784–3790 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Josenhans, C. & Suerbaum, S. The role of motility as a virulence factor in bacteria. Int. J. Med. Microbiol. 291, 605–614 (2002). This review covers the topic of motility and its role in virulence in several bacterial pathogens.

    Article  CAS  PubMed  Google Scholar 

  49. Lockman, H. A. & Curtiss, R. Salmonella typhimurium mutants lacking flagella or motility remain virulent in BALB/c mice. Infect. Immun. 58, 137–143 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cossart, P. & Sansonetti, P. J. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304, 242–248 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Forstner, J. F., Oliver, M. G. & Sylvester, F. A. Production, structure, and biologic relevance of gastrointestinal mucins. In Infections of the Gastrointestinal Tract (eds Blaser, M. J., Smith, P. D., Ravdin, J. I., Greenberg H. B. & Guerrant, R. L.) 71–88 (Raven Press, New York, 1995).

    Google Scholar 

  52. Young, G. M., Badger, J. L. & Miller, V. L. Motility is required to initiate host cell invasion by Yersinia enterocolitica. Infect. Immun. 68, 4323–4326 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Blaser, M. J. Ecology of Helicobacter pylori in the human stomach. J. Clin. Invest. 100, 759–762 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, A., O'Rourke, J. L., Barrington, P. J. & Trust, T. J. Mucus colonization as a determinant of pathogenicity in intestinal infection by Campylobacter jejuni: a mouse cecal model. Infect. Immun. 51, 536–546 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Butler, S. M. & Camilli, A. Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. Proc. Natl Acad. Sci. USA 101, 5018–5023 (2004). This paper shows that the competitive advantage associated with non-chemotactic mutants is only observed in the presence of CCW-biased flagellar rotation and that net motility affects the infectivity of this bacterium.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hang, L. et al. Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc. Natl Acad. Sci. USA 100, 8508–8513 (2003). Using the IVIAT technique, this paper identifies proteins that are expressed during infection in cholera patients, five of which are chemotaxis proteins.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Everiss, K. D., Hughes, K. J., Kovach, M. E. & Peterson, K. M. The Vibrio cholerae acfB colonization determinant encodes an inner membrane protein that is related to a family of signal-transducing proteins. Infect. Immun. 62, 3289–3298 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Harkey, C. W., Everiss, K. D. & Peterson, K. M. The Vibrio cholerae toxin-coregulated-pilus gene tcpI encodes a homolog of methyl-accepting chemotaxis proteins. Infect. Immun. 62, 2669–2678 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. O'Toole, R., Milton, D. L. & Wolf-Watz, H. Chemotactic motility is required for invasion of the host by the fish pathogen Vibrio anguillarum. Mol. Microbiol. 19, 625–637 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Millikan, D. S. & Ruby, E. G. Alterations in Vibrio fischeri motility correlate with a delay in symbiosis initiation and are associated with additional symbiotic colonization defects. Appl. Environ. Microbiol. 68, 2519–2528 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. DeLoney-Marino, C. R., Wolfe, A. J. & Visick, K. L. Chemoattraction of Vibrio fischeri to serine, nucleosides, and N-acetylneuraminic acid, a component of squid light-organ mucus. Appl. Environ. Microbiol. 69, 7527–7530 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jones, B. D., Lee, C. A. & Falkow, S. Invasion by Salmonella typhimurium is affected by the direction of flagellar rotation. Infect. Immun. 60, 2475–2480 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Freter, R., Allweiss, B., O'Brien, P. C., Halstead, S. A. & Macsai, M. S. Role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vitro studies. Infect. Immun. 34, 241–249 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Freter, R., O'Brien, P. C. & Macsai, M. S. Role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vivo studies. Infect. Immun. 34, 234–240 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Freter, R. & O'Brien, P. C. Role of chemotaxis in the association of motile bacteria with intestinal mucosa: fitness and virulence of nonchemotactic Vibrio cholerae mutants in infant mice. Infect. Immun. 34, 222–233 (1981). This is the first time that non-chemotactic mutants were shown to have a competitive advantage during experimental infection. The authors show that wild-type V. cholerae penetrate into the intestinal crypts, whereas non-chemotactic mutants remain confined to the luminal half of the villi.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ouellette, A. J. Defensin-mediated innate immunity in the small intestine. Best Pract. Res. Clin. Gastroenterol. 18, 405–419 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Ouellette, A. J. et al. Developmental regulation of cryptdin, a corticostatin/defensin precursor mRNA in mouse small intestinal crypt epithelium. J. Cell Biol. 108, 1687–1695 (1989).

    Article  CAS  PubMed  Google Scholar 

  68. Worku, M. L., Karim, Q. N., Spencer, J. & Sidebotham, R. L. Chemotactic response of Helicobacter pylori to human plasma and bile. J. Med. Microbiol. 53, 807–811 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. O'Toole, R. et al. The chemotactic response of Vibrio anguillarum to fish intestinal mucus is mediated by a combination of multiple mucus components. J. Bacteriol. 181, 4308–4317 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Prouty, A. M. et al. Transcriptional regulation of Salmonella enterica serovar Typhimurium genes by bile. FEMS Immunol. Med. Microbiol. 41, 177–185 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Gupta, S. & Chowdhury, R. Bile affects production of virulence factors and motility of Vibrio cholerae. Infect. Immun. 65, 1131–1134 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Schuhmacher, D. A. & Klose, K. E. Environmental signals modulate ToxT-dependent virulence factor expression in Vibrio cholerae. J. Bacteriol. 181, 1508–1514 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ottemann, K. M. & Miller, J. F. Roles for motility in bacterial-host interactions. Mol. Microbiol. 24, 1109–1117 (1997). An overview of motility and infection is given in this review.

    Article  CAS  PubMed  Google Scholar 

  74. Giron, J. A., Torres, A. G., Freer, E. & Kaper, J. B. The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol. Microbiol. 44, 361–379 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Jones, G. W. & Freter, R. Adhesive properties of Vibrio cholerae: nature of the interaction with isolated rabbit brush border membranes and human erythrocytes. Infect. Immun. 14, 240–245 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Freter, R. & Jones, G. W. Adhesive properties of Vibrio cholerae: nature of the interaction with intact mucosal surfaces. Infect. Immun. 14, 246–256 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Richardson, K. Roles of motility and flagellar structure in pathogenicity of Vibrio cholerae: analysis of motility mutants in three animal models. Infect. Immun. 59, 2727–2736 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Gardel, C. L. & Mekalanos, J. J. Alterations in Vibrio cholerae motility phenotypes correlate with changes in virulence factor expression. Infect. Immun. 64, 2246–2255 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Klose, K. E. & Mekalanos, J. J. Distinct roles of an alternative σ factor during both free-swimming and colonizing phases of the Vibrio cholerae pathogenic cycle. Mol. Microbiol. 28, 501–520 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Mekalanos, J. J. & Sadoff, J. C. Cholera vaccines: fighting an ancient scourge. Science 265, 1387–1389 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Kenner, J. R. et al. Peru-15, an improved live attenuated oral vaccine candidate for Vibrio cholerae O1. J. Infect. Dis. 172, 1126–1129 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Coster, T. S. et al. Safety, immunogenicity, and efficacy of live attenuated Vibrio cholerae O139 vaccine prototype. Lancet 345, 949–952 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Mekalanos, J. J. et al. Live cholera vaccines: perspectives on their construction and safety. Bull. Inst. Pasteur 93, 255–262 (1995).

    Article  Google Scholar 

  84. Goodier, R. I. & Ahmer, B. M. SirA orthologs affect both motility and virulence. J. Bacteriol. 183, 2249–2258 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ellermeier, C. D. & Slauch, J. M. RtsA and RtsB coordinately regulate expression of the invasion and flagellar genes in Salmonella enterica serovar Typhimurium. J. Bacteriol. 185, 5096–5108 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Akerley, B. J., Monack, D. M., Falkow, S. & Miller, J. F. The bvgAS locus negatively controls motility and synthesis of flagella in Bordetella bronchiseptica. J. Bacteriol. 174, 980–990 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. McCarter, L., Hilmen, M. & Silverman, M. Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus. Cell 54, 345–351 (1988).

    Article  CAS  PubMed  Google Scholar 

  88. Kawagishi, I., Imagawa, M., Imae, Y., McCarter, L. & Homma, M. The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression. Mol. Microbiol. 20, 693–699 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Lauriano, C. M., Ghosh, C., Correa, N. E. & Klose, K. E. The sodium-driven flagellar motor controls exopolysaccharide expression in Vibrio cholerae. J. Bacteriol. 186, 4864–4874 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Häse, C. C. Analysis of the role of flagellar activity in virulence gene expression in Vibrio cholerae. Microbiology 147, 831–837 (2001). This work disproves the earlier hypothesis that the V. cholerae flagellum acts as a mechanosensor that is involved in regulating virulence gene expression.

    Article  PubMed  Google Scholar 

  91. Bina, J. et al. ToxR regulon of Vibrio cholerae and its expression in vibrios shed by cholera patients. Proc. Natl Acad. Sci. USA 100, 2801–2806 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Klose, K. E. The suckling mouse model of cholera. Trends Microbiol. 8, 189–191 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Lee, S. H., Hava, D. L., Waldor, M. K. & Camilli, A. Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell 99, 625–634 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Pennisi, E. Cholera strengthened by trip through gut. Science 296, 1783–1784 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Bourret, R. B. & Stock, A. M. Molecular information processing: lessons from bacterial chemotaxis. J. Biol. Chem. 277, 9625–9628 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Manson, M. D., Armitage, J. P., Hoch, J. A. & Macnab, R. M. Bacterial locomotion and signal transduction. J. Bacteriol. 180, 1009–1022 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bren, A. & Eisenbach, M. How signals are heard during bacterial chemotaxis: protein–protein interactions in sensory signal propagation. J. Bacteriol. 182, 6865–6873 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Szurmant, H. & Ordal, G. W. Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol. Mol. Biol. Rev. 68, 301–319 (2004). This review covers chemotaxis components present in B. subtilis , but absent from E. coli , that are also shared by V. cholerae.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lux, R. & Shi, W. Chemotaxis-guided movements in bacteria. Crit. Rev. Oral Biol. Med. 15, 207–220 (2004).

    Article  PubMed  Google Scholar 

  100. Wadhams, G. H. & Armitage, J. P. Making sense of it all: bacterial chemotaxis. Nature Rev. Mol. Cell Biol. 5, 1024–1037 (2004). This review covers bacterial chemotaxis, with a focus on the E. coli literature.

    Article  CAS  Google Scholar 

  101. Berg, H. C. & Brown, D. A. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239, 500–504 (1972).

    Article  CAS  PubMed  Google Scholar 

  102. Falke, J. J. & Hazelbauer, G. L. Transmembrane signaling in bacterial chemoreceptors. Trends Biochem. Sci. 26, 257–265 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wadhams, G. H. et al. TlpC, a novel chemotaxis protein in Rhodobacter sphaeroides, localizes to a discrete region in the cytoplasm. Mol. Microbiol. 46, 1211–1221 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Maddock, J. R. & Shapiro, L. Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259, 1717–1723 (1993).

    Article  CAS  PubMed  Google Scholar 

  105. Sourjik, V. & Berg, H. C. Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions. Mol. Microbiol. 37, 740–751 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Sourjik, V. & Berg, H. C. Receptor sensitivity in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 99, 123–127 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Mao, H., Cremer, P. S. & Manson, M. D. A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc. Natl Acad. Sci. USA 100, 5449–5454 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bray, D., Levin, M. D. & Morton-Firth, C. J. Receptor clustering as a cellular mechanism to control sensitivity. Nature 393, 85–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Bourret, R. B., Davagnino, J. & Simon, M. I. The carboxy-terminal portion of the CheA kinase mediates regulation of autophosphorylation by transducer and CheW. J. Bacteriol. 175, 2097–2101 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kim, K. K., Yokota, H. & Kim, S. H. Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 400, 787–792 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Li, J., Swanson, R. V., Simon, M. I. & Weis, R. M. The response regulators CheB and CheY exhibit competitive binding to the kinase CheA. Biochemistry 34, 14626–14636 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Bren, A. & Eisenbach, M. The N terminus of the flagellar switch protein, FliM, is the binding domain for the chemotactic response regulator, CheY. J. Mol. Biol. 278, 507–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Bren, A. & Eisenbach, M. Changing the direction of flagellar rotation in bacteria by modulating the ratio between the rotational states of the switch protein FliM. J. Mol. Biol. 312, 699–709 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Hess, J. F., Oosawa, K., Kaplan, N. & Simon, M. I. Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis. Cell 53, 79–87 (1988).

    Article  CAS  PubMed  Google Scholar 

  115. Springer, W. R. & Koshland, D. E. Jr. Identification of a protein methyltransferase as the cheR gene product in the bacterial sensing system. Proc. Natl Acad. Sci. USA 74, 533–537 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yonekawa, H., Hayashi, H. & Parkinson, J. S. Requirement of the cheB function for sensory adaptation in Escherichia coli. J. Bacteriol. 156, 1228–1235 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Anand, G. S., Goudreau, P. N. & Stock, A. M. Activation of methylesterase CheB: evidence of a dual role for the regulatory domain. Biochemistry 37, 14038–14047 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Yao, R., Burr, D. H. & Guerry, P. CheY-mediated modulation of Campylobacter jejuni virulence. Mol. Microbiol. 23, 1021–1031 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. Hendrixson, D. R. & DiRita, V. J. Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol. Microbiol. 52, 471–484 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Foynes, S. et al. Helicobacter pylori possesses two CheY response regulators and a histidine kinase sensor, CheA, which are essential for chemotaxis and colonization of the gastric mucosa. Infect. Immun. 68, 2016–2023 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Andermann, T. M., Chen, Y. T. & Ottemann, K. M. Two predicted chemoreceptors of Helicobacter pylori promote stomach infection. Infect. Immun. 70, 5877–5881 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Guo, B. P. & Mekalanos, J. J. Rapid genetic analysis of Helicobacter pylori gastric mucosal colonization in suckling mice. Proc. Natl Acad. Sci. USA 99, 8354–8359 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dons, L. et al. Role of flagellin and the two-component CheA/CheY system of Listeria monocytogenes in host cell invasion and virulence. Infect. Immun. 72, 3237–3244 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Burall, L. S. et al. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect. Immun. 72, 2922–2938 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Stecher, B. et al. Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice. Infect. Immun. 72, 4138–4150 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Halpern, M., Gancz, H., Broza, M. & Kashi, Y. Vibrio cholerae hemagglutinin/protease degrades chironomid egg masses. Appl. Environ. Microbiol. 69, 4200–4204 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Angelichio for the scanning electron micrographs of Vibrio cholerae during infection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Camilli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Bacillus subtilis

Bordetella bronchiseptica

Campylobacter jejuni

Escherichia coli

Helicobacter pylori

Myxococcus xanthus

Pseudomonas aeruginosa

Salmonella enterica serovar Typhimurium

Vibrio cholerae

Vibrio fischeri

Yersinia enterocolitica

FURTHER INFORMATION

Andrew Camilli's laboratory

Glossary

BIOFILM

Microbial biofilms are populations of microorganisms that are concentrated at an interface (usually solid–liquid) and typically surrounded by an extracellular polymeric substance matrix. Aggregates of cells that are not attached to a surface are sometimes termed 'flocs' and have many of the characteristics of biofilms.

PLANKTONIC CELLS

Single cells in suspension, instead of in a biofilm.

PERISTALSIS

Successive contractions of the muscular walls of the gut that move gut contents along.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Butler, S., Camilli, A. Going against the grain: chemotaxis and infection in Vibrio cholerae. Nat Rev Microbiol 3, 611–620 (2005). https://doi.org/10.1038/nrmicro1207

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1207

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing