Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic footprinting and systems biology: the medium is the message

Key Points

  • The metabolome can be defined as the quantitative complement of low-molecular-weight metabolites present in a cell under a given set of physiological conditions. As changes in a cell's physiology as a result of gene deletion or overexpression are amplified through the hierarchy of the transcriptome and the proteome, it can be argued that such changes are more easily measurable through the metabolome, and that the metabolome is more sensitive to perturbations than is either the transcriptome or proteome.

  • High-throughput measurement of a complete set of intracellular microbial metabolites would require the development of an accurate, simple and rapid method with a broad dynamic range suitable for detecting and quantifying large numbers of metabolites that can be present at different concentrations.

  • Instead, the global exometabolome – or secreted metabolites - can be analysed using metabolic footprinting, a convenient and reproducible technique to monitor metabolites consumed from, and secreted into, the growth medium by batch cultures of yeast using direct-injection mass spectrometry. The principles of the technique, and results obtained using it, are described.

  • Metabolic footprinting can therefore be used to generate metabolomic data, which, in the era of systems biology, should be able to be integrated with transcriptomic and proteomic data. The current available data models and data standards for systems biology, and the need for the metabolomics community to follow the lead of transcriptomics and proteomics researchers, are also discussed.

Abstract

One element of classical systems analysis treats a system as a black or grey box, the inner structure and behaviour of which can be analysed and modelled by varying an internal or external condition, probing it from outside and studying the effect of the variation on the external observables. The result is an understanding of the inner make-up and workings of the system. The equivalent of this in biology is to observe what a cell or system excretes under controlled conditions — the 'metabolic footprint' or exometabolome — as this is readily and accurately measurable. Here, we review the principles, experimental approaches and scientific outcomes that have been obtained with this useful and convenient strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The basis of metabolic footprinting.
Figure 2: Patterns of m/z (mass/charge ratio) values in large-scale gene-knockout metabolic footprinting experiments.
Figure 3: Modern technology applied to metabolic footprinting.

Similar content being viewed by others

References

  1. Oliver, S. G., Winson, M. K., Kell, D. B. & Baganz, F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 16, 373–378 (1998). First use of the term 'metabolome' in the literature.

    Article  CAS  PubMed  Google Scholar 

  2. Fiehn, O., Kloska, S. & Altmann, T. Integrated studies on plant biology using multiparallel techniques. Curr. Opin. Biotechnol. 12, 82–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Fiehn, O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp. Funct. Genomics 2, 155–168 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harrigan, G. G. & Goodacre, R. (eds) Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis (Kluwer Academic Publishers, Boston, 2003). The first book on metabolomics.

    Book  Google Scholar 

  5. Weckwerth, W. Metabolomics in systems biology. Annu. Rev. Plant Biol. 54, 669–689 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Goodacre, R., Vaidyanathan, S., Dunn, W. B., Harrigan, G. G. & Kell, D. B. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol. 22, 245–252 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Nicholson, J. K., Holmes, E., Lindon, J. C. & Wilson, I. D. The challenges of modeling mammalian biocomplexity. Nature Biotechnol. 22, 1268–1274 (2004). Stresses the role of intestinal microorganisms in contributing to the human metabolome.

    Article  CAS  Google Scholar 

  8. van der Greef, J., Stroobant, P. & van der Heijden, R. The role of analytical sciences in medical systems biology. Curr. Opin. Chem. Biol. 8, 559–565 (2004). The importance of analytical sciences to omics and systems biology.

    Article  CAS  PubMed  Google Scholar 

  9. Kell, D. B. Metabolomics and systems biology: making sense of the soup. Curr. Opin. Microbiol. 7, 296–307 (2004). Metabolomic data as an input to systems biology models.

    Article  CAS  PubMed  Google Scholar 

  10. Mendes, P., Kell, D. B. & Westerhoff, H. V. Why and when channeling can decrease pool size at constant net flux in a simple dynamic channel. Biochim. Biophys. Acta 1289, 175–186 (1996).

    Article  PubMed  Google Scholar 

  11. Oliver, S. G. Yeast as a navigational aid in genome analysis. Microbiology 143, 1483–1487 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Raamsdonk, L. M. et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnol. 19, 45–50 (2001).

    Article  CAS  Google Scholar 

  13. ter Kuile, B. H. & Westerhoff, H. V. Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett. 500, 169–171 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Fell, D. A. Understanding the Control of Metabolism (Portland Press, London, 1996). Excellent introduction to metabolic control analysis.

    Google Scholar 

  15. Heinrich, R. & Schuster, S. The Regulation of Cellular Systems (Chapman & Hall, New York, 1996).

    Book  Google Scholar 

  16. Kell, D. B. & Mendes, P. in Technological and Medical Implications of Metabolic Control Analysis (eds Cornish–Bowden, A. & Cárdenas, M. L.) 3–25 (Kluwer Academic Publishers, Dordrecht, 2000).

    Book  Google Scholar 

  17. Urbanczyk-Wochniak, E. et al. Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep. 4, 989–993 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kell, D. B., Kaprelyants, A. S. & Grafen, A. On pheromones, social behaviour and the functions of secondary metabolism in bacteria. Trends Ecol. Evol. 10, 126–129 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. De Koning, W. & van Dam, K. A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal. Biochem. 204, 118–123 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Teusink, B., Baganz, F., Westerhoff, H. V. & Oliver, S. G. in Methods in Microbiology: Yeast Gene Analysis (eds Tuite, M. F. & Brown, A. J. P.) 297–336 (Academic Press, London, 1998).

    Book  Google Scholar 

  21. Gonzalez, B., Francois, J. & Renaud, M. A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13, 1347–1355 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Castrillo, J. I., Hayes, A., Mohammed, S., Gaskell, S. J. & Oliver, S. G. An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochem. 62, 929–937 (2003).

    Article  CAS  Google Scholar 

  23. Lindon, J. C., Nicholson, J. K. & Everett, J. R. NMR spectroscopy of biofluids. Annu. Rep. NMR Spectrosc. 38, 1–88 (1999).

    Article  CAS  Google Scholar 

  24. Soga, T. et al. Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J. Proteome Res. 2, 488–494 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Greenaway, W., May, J., Scaysbrook, T. & Whatley, F. R. Identification by gas chromatography-mass spectrometry of 150 compounds in propolis. Z. Naturforsch. 46, 111–121 (1991). A pioneering paper in plant metabolomics.

    Article  CAS  Google Scholar 

  26. Fiehn, O. et al. Metabolite profiling for plant functional genomics. Nature Biotechnol. 18, 1157–1161 (2000). An important paper that initiated the modern era of plant metabolomics.

    Article  CAS  Google Scholar 

  27. Roessner, U. et al. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13, 11–29 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O'Hagan, S., Dunn, W. B., Brown, M., Knowles, J. D. & Kell, D. B. Closed-loop, multiobjective optimisation of analytical instrumentation: gas-chromatography-time-of-flight mass spectrometry of the metabolomes of human serum and of yeast fermentations. Anal. Chem. 77, 290–303 (2005). Explicit recognition of the need for optimization in metabolomics, and a new way of doing it.

    Article  CAS  PubMed  Google Scholar 

  29. van Eijk, H. M. H., Rooyakkers, D. R., Soeters, P. B. & Deutz, N. E. P. Determination of amino acid isotope enrichment using liquid chromatography-mass spectrometry. Anal. Biochem. 271, 8–17 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Buchholz, A., Takors, R. & Wandrey, C. Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic–electrospray ionization tandem mass spectrometric techniques. Anal. Biochem. 295, 129–137 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Lenz, E. M., Bright, J., Knight, R., Wilson, I. D. & Major, H. A metabonomic investigation of the biochemical effects of mercuric chloride in the rat using 1H NMR and HPLC-TOF/MS: time dependent changes in the urinary profile of endogenous metabolites as a result of nephrotoxicity. Analyst 129, 535–541 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Colón, L. A., Cintron, J. M., Anspach, J. A., Fermier, A. M. & Swinney, K. A. Very high pressure HPLC with 1 mm id columns. Analyst 129, 503–504 (2004).

    Article  PubMed  Google Scholar 

  33. Welch, G. R. & Easterby, J. S. Metabolic channeling versus free diffusion: transition-time analysis. Trends Biochem. Sci. 19, 193–197 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Rashed, M. S. et al. Screening blood spots for inborn errors of metabolism by electrospray tandem mass spectrometry with a microplate batch process and a computer algorithm for automated flagging of abnormal profiles. Clin. Chem. 43, 1129–1141 (1997).

    CAS  PubMed  Google Scholar 

  35. Nicholson, J. K. & Wilson, I. D. Understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nature Rev. Drug Disc. 2, 668–676 (2003).

    Article  CAS  Google Scholar 

  36. Barker, R. L., Gracey, D. E. F., Irwin, A. J., Pipasts, P. & Leiska, E. Liberation of staling aldehydes during storage of beer. J. Inst. Brew. 89, 411–415 (1983).

    Article  CAS  Google Scholar 

  37. Lynch, P. A. & Seo, C. W. Ethylene production in staling beer. J. Food Sci. 52, 1270–1272 (1987).

    Article  CAS  Google Scholar 

  38. Rinas, U., Hellmuth, K., Kang, R. J., Seeger, A. & Schlieker, H. Entry of Escherichia coli into stationary phase is indicated by endogenous and exogenous accumulation of nucleobases. Appl. Env. Microbiol. 61, 4147–4151 (1995).

    CAS  Google Scholar 

  39. Shiga, Y., Mizuno, H. & Akanuma, H. Conditional synthesis and utilization of 1,5-anhydroglucitol in Escherichia coli. J. Bacteriol. 175, 7138–7141 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hayashida, Y., Kuriyama, H., Nishimura, K. & Slaughter, J. C. Production of 4-hydroxyfuranones in simple media by fermentation. Biotechnol. Lett. 21, 505–509 (1999).

    Article  CAS  Google Scholar 

  41. Slaughter, J. C. The naturally occurring furanones: formation and function from pheromone to food. Biol. Rev. Camb. Philos. Soc. 74, 259–276 (1999).

    Article  Google Scholar 

  42. Kaprelyants, A. S. & Kell, D. B. Do bacteria need to communicate with each other for growth? Trends Microbiol. 4, 237–242 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Fuqua, C., Winans, S. C. & Greenberg, E. P. Census and consensus in bacterial ecosystems: the LuxR–LuxI family of quorum-sensing transcriptional regulators. Annu. Rev. Microbiol. 50, 727–751 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Mukamolova, G. V., Kaprelyants, A. S., Young, D. I., Young, M. & Kell, D. B. A bacterial cytokine. Proc. Natl Acad. Sci. USA 95, 8916–8921 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weichart, D. H. & Kell, D. B. Characterization of an autostimulatory substance produced by Escherichia coli. Microbiology 147, 1875–1885 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Firstenberg-Eden, R. & Eden, G. Impedance Microbiology (Research Studies Press, Letchworth, 1984).

    Google Scholar 

  47. Holms, H. Flux analysis and control of the central metabolic pathways in Escherichia coli. FEMS Microbiol. Rev. 19, 85–116 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Wittmann, C. & Heinzle, E. MALDI-TOF MS for quantification of substrates and products in cultivations of Corynebacterium glutamicum. Biotechnol. Bioeng. 72, 642–647 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Devlin, J. P. (ed.) High Throughput Screening: The Discovery of Bioactive Substances (Marcel Dekker, New York, 1997).

    Book  Google Scholar 

  50. Abel, C. B. L. et al. Characterization of metabolites in intact Streptomyces citricolor culture supernatants using high-resolution nuclear magnetic resonance and directly coupled high-pressure liquid chromatography-nuclear magnetic resonance spectroscopy. Anal. Biochem. 270, 220–230 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Bubb, W. A. et al. Heteronuclear NMR studies of metabolites produced by Cryptococcus neoformans in culture media: identification of possible virulence factors. Magn. Res. Med. 42, 442–453 (1999).

    Article  CAS  Google Scholar 

  52. Bachinger, T. & Mandenius, C. F. Searching for process information in the aroma of cell cultures. Trends Biotechnol. 18, 494–500 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Gibson, T. D. et al. Detection and simultaneous identification of microorganisms from headspace samples using an electronic nose. Sens. Actuators B 44, 413–422 (1997).

    Article  CAS  Google Scholar 

  54. Allen, J. K. et al. High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nature Biotechnol. 21, 692–696 (2003). The original paper describing metabolic footprinting.

    Article  CAS  Google Scholar 

  55. Fiehn, O. Metabolomics: the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Neijssel, O. M. & Tempest, D. W. The role of energy-splitting reactions in the growth of Klebsiella aerogenes NCTC 418 in aerobic chemostat culture. Arch. Microbiol. 110, 305–311 (1976).

    Article  CAS  PubMed  Google Scholar 

  57. Lazebnik, Y. Can a biologist fix a radio? — Or, what I learned while studying apoptosis. Cancer Cell 2, 179–182 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Westerhoff, H. V. & Kell, D. B. Matrix method for determining the steps most rate-limiting to metabolic fluxes in biotechnological processes. Biotechnol. Bioeng. 30, 101–107 (1987).

    Article  CAS  PubMed  Google Scholar 

  59. Kaderbhai, N. N., Broadhurst, D. I., Ellis, D. I., Goodacre, R. & Kell, D. B. Functional genomics via metabolic footprinting: monitoring metabolite secretion by Escherichia coli tryptophan metabolism mutants using FT-IR and direct injection electrospray mass spectrometry. Comp. Funct. Genomics 4, 376–391 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Allen, J. et al. Discrimination of modes of action of antifungal substances by use of metabolic footprinting. Appl. Environ. Microbiol. 70, 6157–6165 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Langdon, W. B. Genetic Programming and Data Structures: Genetic Programming + Data Structures = Automatic Programming! (Kluwer Academic Publishers, Boston, 1998).

    Book  Google Scholar 

  62. Kell, D. B. Genotype–phenotype mapping: genes as computer programs. Trends Genet. 18, 555–559 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Koza, J. R. et al. Genetic Programming: Routine Human–Competitive Machine Intelligence (Kluwer Academic Publishers, New York, 2003).

    Google Scholar 

  64. Schreiber, S. L. Chemical genetics resulting from a passion for synthetic organic chemistry. Bioorg. Med. Chem. 6, 1127–1152 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Huang, J. et al. Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc. Natl Acad. Sci. USA 101, 16594–16599 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brown, M. et al. A metabolome pipeline: from concept to data to knowledge. Metabolomics 1, 35–46 (2005).

    Article  CAS  Google Scholar 

  67. Camacho, D., de la Fuente, A. & Mendes, P. The origins of correlations in metabolomics data. Metabolomics 1, 53–63 (2005).

    Article  CAS  Google Scholar 

  68. Kose, F., Weckwerth, W., Linke, T. & Fiehn, O. Visualizing plant metabolomic correlation networks using clique-metabolite matrices. Bioinformatics 17, 1198–1208 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Fiehn, O. Metabolic networks of Cucurbita maxima phloem. Phytochemistry 62, 875–886 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Steuer, R., Kurths, J., Fiehn, O. & Weckwerth, W. Observing and interpreting correlations in metabolomic networks. Bioinformatics 19, 1019–1026 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. & Barabási, A. L. Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Csete, M. E. & Doyle, J. C. Reverse engineering of biological complexity. Science 295, 1664–1669 (2002). Highlights the fact that most systems-biology problems are inverse problems, in which we must move from measured variables to the inference of parameters.

    Article  CAS  PubMed  Google Scholar 

  73. Barabási, A.-L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nature Rev. Genet. 5, 101–113 (2004). Useful review of network biology.

    Article  CAS  PubMed  Google Scholar 

  74. Bruggeman, F. J., Westerhoff, H. V., Hoek, J. B. & Kholodenko, B. N. Modular response analysis of cellular regulatory networks. J. Theor. Biol. 218, 507–520 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Ihmels, J. et al. Revealing modular organization in the yeast transcriptional network. Nature Genet. 31, 370–377 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Han, J. D. et al. Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430, 88–93 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Tanay, A., Sharan, R., Kupiec, M. & Shamir, R. Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc. Natl Acad. Sci. USA 101, 2981–2986 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Featherstone, D. E. & Broadie, K. Wrestling with pleiotropy: genomic and topological analysis of the yeast gene expression network. Bioessays 24, 267–274 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Hayes, A. et al. Hybridization array technology coupled with chemostat culture: tools to interrogate gene expression in Saccharomyces cerevisiae. Methods 26, 281–290 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Vaidyanathan, S., Broadhurst, D. I., Kell, D. B. & Goodacre, R. Explanatory optimisation of protein mass spectrometry via genetic search. Anal. Chem. 75, 6679–6686 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Vaidyanathan, S., Kell, D. B. & Goodacre, R. Selective detection of proteins in mixtures using electrospray ionization mass spectrometry: influence of instrumental settings and implications for proteomics. Anal. Chem. 76, 5024–5032 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. King, R. D. et al. Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252 (2004). The 'robot scientist' strategy for principled and automated scientific hypothesis generation and testing.

    Article  CAS  PubMed  Google Scholar 

  84. Schauer, N. et al. GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett. 579, 1332–1337 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Marriott, P. & Shellie, R. Principles and applications of comprehensive two-dimensional gas chromatography. Trends Anal. Chem. 21, 573–583 (2002).

    Article  CAS  Google Scholar 

  86. Wilson, I. D. & Brinkman, U. A. Hyphenation and hypernation: the practice and prospects of multiple hyphenation. J. Chromatogr. A 1000, 325–356 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Guttman, A., Varoglu, M. & Khandurina, J. Multidimensional separations in the pharmaceutical arena. Drug Discov. Today 9, 136–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Welthagen, W. et al. Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF) for high-resolution metabolomics: biomarker discovery on spleen tissue extracts of obese NZO compared to lean C57BL/6 mice. Metabolomics 1, 65–73 (2005).

    Article  CAS  Google Scholar 

  89. Castrillo, J. I. & Oliver, S. G. Yeast as a touchstone in post-genomic research: strategies for integrative analysis in functional genomics. J. Biochem. Mol. Biol. 37, 93–106 (2004).

    CAS  PubMed  Google Scholar 

  90. Foury, F. Human genetic diseases: a cross-talk between man and yeast. Gene 195, 1–10 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, N. et al. Using yeast to place human genes in functional categories. Gene 303, 121–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Brazma, A. et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nature Genet. 29, 365–371 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Spellman, P. et al. Design and implementation of microarray gene expression markup language (MAGE–ML). Genome Biol. 3, 9 (2002).

    Article  Google Scholar 

  94. Taylor, C. F. et al. A systematic approach to modelling capturing and disseminating proteomics experimental data. Nature Biotechnol. 21, 247–254 (2003).

    Article  CAS  Google Scholar 

  95. Garwood, K. L. et al. Pedro: a configurable data entry tool for XML. Bioinformatics 20, 2463–2465 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Garwood, K. L. et al. PEDRo: a database for storing, searching and disseminating experimental proteomics data. BMC Genomics 5 (2004).

  97. Orchard, S., Hermjakob, H. & Apweiler, R. The proteomics standards initiative. Proteomics 3, 1374–1376 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Jenkins, H. et al. A proposed framework for the description of plant metabolomics experiments and their results. Nature Biotechnol. 22, 1601–1606 (2004). Specific schemas for evolving metabolome data standards.

    Article  CAS  Google Scholar 

  99. Bino, R. J. et al. Potential of metabolomics as a functional genomics tool. Trends Plant Sci. 9, 418–425 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Kopka, J. et al. GMD@CSB. DB: the Golm metabolome database. Bioinformatics (2005).

  101. Pedrioli, P. G. et al. A common open representation of mass spectrometry data and its application to proteomics research. Nature Biotechnol. 22, 1459–1466 (2004).

    Article  CAS  Google Scholar 

  102. Xirasagar, S. et al. CEBS object model for systems biology data, SysBio-OM. Bioinformatics 20, 2004–2015 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Achard, F., Vaysseix, G. & Barillot, E. XML, bioinformatics and data integration. Bioinformatics 17, 115–125 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Li, X. J. et al. in Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis (eds Harrigan, G. G. & Goodacre, R.) 293–309 (Kluwer Academic Publishers, Boston, 2003).

    Book  Google Scholar 

  105. Hucka, M. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003). A starting point for learning about SBML.

    Article  CAS  PubMed  Google Scholar 

  106. Finney, A. & Hucka, M. Systems biology markup language: level 2 and beyond. Biochem. Soc. Trans. 31, 1472–1473 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. von Bertalanffy, L. General System Theory (George Braziller, New York, 1969).

    Google Scholar 

  108. Iberall, A. S. Toward A General Science of Viable Systems (McGraw–Hill, New York, 1972).

    Google Scholar 

  109. Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Henry, C. M. Systems biology. Chem. Eng. News 81, 45–55 (2003).

    Article  Google Scholar 

  111. Hood, L. Systems biology: integrating technology, biology, and computation. Mech. Ageing Dev. 124, 9–16 (2003).

    Article  PubMed  Google Scholar 

  112. Kell, D. B. & Westerhoff, H. V. Metabolic control theory: its role in microbiology and biotechnology. FEMS Microbiol. Rev. 39, 305–320 (1986). Metabolic control analysis as the progenitor of metabolic engineering; why the metabolome is expected to be more discriminatory than the transcriptome or proteome.

    Article  CAS  Google Scholar 

  113. Savageau, M. Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology (Addison–Wesley, Reading, 1976).

    Google Scholar 

  114. Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Orchard, S., Zhu, W., Julian, R. J., Hermjakob, H. & Apweiler, R. Further advances in the development of a data interchange standard for proteomics data. Proteomics 3, 2065–2066 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Orchard, S. et al. Common interchange standards for proteomics data: public availability of tools and schema. Proteomics 4, 490–491 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Kell, D. B. & King, R. D. On the optimization of classes for the assignment of unidentified reading frames in functional genomics programmes: the need for machine learning. Trends Biotechnol. 18, 93–98 (2000). Why supervised learning methods are more useful than unsupervised ones for functional genomics, and which constraints this entails.

    Article  CAS  PubMed  Google Scholar 

  118. Plumb, R. et al. Metabonomic analysis of mouse urine by liquid-chromatography-time of flight mass spectrometry (LC-TOFMS): detection of strain, diurnal and gender differences. Analyst 128, 819–823 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Plumb, R. et al. Ultra-performance liquid chromatography coupled to quadrupole- orthogonal time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 18, 2331–2337 (2004). Very high resolution metabolomics using ultra-performance liquid chromatography.

    Article  CAS  PubMed  Google Scholar 

  120. Bailey, J. E. Toward a science of metabolic engineering. Science 252, 1668–1675 (1991).

    Article  CAS  PubMed  Google Scholar 

  121. Stephanopoulos, G. & Sinskey, A. J. Metabolic engineering — methodologies and future prospects. Trends Biotechnol. 11, 392–396 (1993).

    Article  CAS  PubMed  Google Scholar 

  122. Holms, W. H., Hamilton, I. D. & Mousdale, D. Improvements to microbial productivity by analysis of metabolic fluxes. J. Chem. Technol. Biotechnol. 50, 139–141 (1991).

    Article  CAS  Google Scholar 

  123. Askenazi, M. et al. Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nature Biotechnol. 21, 150–156 (2003).

    Article  CAS  Google Scholar 

  124. Reed, J. L. & Palsson, B. Ø. Thirteen years of building constraint-based in silico models of Escherichia coli. J. Bacteriol. 185, 2692–2699 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Duarte, N. C., Herrgard, M. J. & Palsson, B. O. Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 14, 1298–1309 (2004). A genome-scale metabolic model for Saccharomyces cerevisiae.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kacser, H. The control of enzyme systems in vivo: elasticity analysis of the steady state. Biochem. Soc. Trans. 11, 35–40 (1983).

    Article  CAS  PubMed  Google Scholar 

  127. Pritchard, L. & Kell, D. B. Schemes of flux control in a model of Saccharomyces cerevisiae glycolysis. Eur. J. Biochem. 269, 3894–3904 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Mendes, P. & Kell, D. B. Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14, 869–883 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. van der Greef, J. et al. in Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis (eds Harrigan, G. G. & Goodacre, R.) 171–198 (Kluwer Academic Publishers, Boston, 2003).

    Book  Google Scholar 

  130. McLuhan, M. & Fiore, Q. The Medium is the Massage (Penguin Books, London, 1971).

    Google Scholar 

  131. Koza, J. R. Genetic Programming: on the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, 1992).

    Google Scholar 

  132. Banzhaf, W., Nordin, P., Keller, R. E. & Francone, F. D. Genetic Programming: An Introduction (Morgan Kaufmann, San Francisco, 1998).

    Book  Google Scholar 

  133. Kell, D. B., Darby, R. M. & Draper, J. Genomic computing: explanatory analysis of plant expression profiling data using machine learning. Plant Physiol. 126, 943–951 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kell, D. B. Defence against the flood: a solution to the data mining and predictive modelling challenges of today. Bioinformatics World (part of Scientific Computing News) 1, 16–18 (2002).

    Google Scholar 

  135. Goodacre, R. & Kell, D. B. in Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis (eds Harrigan, G. G. & Goodacre, R.) 239–256 (Kluwer Academic Publishers, Boston, 2003).

    Book  Google Scholar 

  136. Bäck, T., Fogel, D. B. & Michalewicz, Z. (eds) Handbook of Evolutionary Computation (IOP Publishing/Oxford University Press, Oxford, 1997).

    Book  Google Scholar 

  137. Stanislaus, R., Jiang, L., Swartz, M., Arthur, J. & Almeida, J. An XML standard for the dissemination of annotated 2D gel electrophoresis data complemented with mass spectrometry results. BMC Bioinformatics 5 (2004).

  138. Kramer, G., Ruehl, M. & Schafer, R. SpectroML — a markup language for molecular spectrometry data. J. Assoc. Lab. Automat. 6, 76–82 (2001).

    Article  Google Scholar 

  139. Davies, T., Lampen, P., Fiege, M., Richter, T. & Frohlich, T. AnIMLs in the spectroscopic laboratory? Spectroscopy Europe 15, 25–28 (2003).

    Google Scholar 

  140. Shapiro, B. E., Hucka, M., Finney, A. & Doyle, J. MathSBML: a package for manipulating SBML-based biological models. Bioinformatics 20, 2829–2831 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Biotechnology and Biological Sciences Research Council and the Natural Environment Research Council for financial support. D.B.K. is supported by the Royal Society of Chemistry and the Engineering and Physical Sciences Research Council. We thank N. Bukowski, J. Heald and H. Major for assistance with chromatographic and mass spectrometric analyses, and N. Burton for assistance with yeast microbiology and genetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas B. Kell.

Ethics declarations

Competing interests

D.B.K. is a Director of Predictive Solutions Ltd (http://www.abergc.com and http://www.predictivesolutions.co.uk), a company that sells Genetic Programming software.

Related links

Related links

FURTHER INFORMATION

Douglas Kell's laboratory

AGML

AnIML

ArMet

GAML

Java Web Services Developer Pack

MAGE-OM

The Metabolic Control Analysis Web

MIAME

mzXML

PEDRo/PSI

SBML

SysBioOM

XML schemas

Glossary

METABOLOME

Nominally all of the small-molecular-weight metabolites in a sample. For practical reasons, this is rarely, if ever, achieved using a single extraction method, and subsets of metabolites ('metabolic profiles') are more typically obtained.

TRANSCRIPTOME

All the mRNA molecules (transcripts) in a sample.

PROTEOME

Nominally all the proteins in a sample. This measurement is not usually achieved because of poor solubilities, especially of membrane proteins, and sometimes protein digests are used, from which peptides representing the proteome are analysed. The concept of the proteome should also include all the post-translational modifications that might occur.

CE-MS

A technique in which metabolites are separated using capillary electrophoresis and then analysed using mass spectrometry. Two different runs are used for cations and anions, whereas neutral molecules can be separated using techniques that give them an effective charge.

GC-MS

A high-resolution analytical technique in which molecules, typically derivatized to enhance their volatility, are separated and then identified using mass spectrometry.

LC-MS

A technique in which metabolites are separated according to their polarity. In metabolomics, reverse-phase chromatography (in which the column is hydrophobic and an organic solvent such as methanol or acetonitrile is used for elution) is most popular, although polar chromatographies are also used.

METABOLIC FOOTPRINTING

A strategy for analysing the properties of cells or tissues by looking in a high-throughout manner at the metabolites that they excrete or fail to take up from their surroundings.

METABOLIC FINGERPRINTING

Classification of samples on the basis of their biological status or origin, using high-throughput methods, usually spectroscopic.

GENETIC PROGRAMMING

A powerful but simple computational technique with which rules are evolved that can be used to solve classification or regression problems, for instance by using the metabolome or metabolic fingerprinting data as the inputs.

GC-TOF MS

A high-resolution analytical technique in which molecules, typically derivatized to enhance their volatility, are separated and then identified using time-of-flight mass spectrometry.

GC × GC-tof MS

Similar to GC-tof MS, but involving two stages of gas-chromatographic separation in which a sample is taken (split) from the first dimension of the separation (typically carried out using a non-polar stationary-phase material) and effecting further ‘orthogonal’ separation (typically using a more polar stationary phase).

2DE/MS

A proteomics technique in which proteins are separated according to their mass and charge, using two-dimensional gel electrophoresis, and subsequently identified, and sometimes quantified, using mass spectrometric methods.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kell, D., Brown, M., Davey, H. et al. Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3, 557–565 (2005). https://doi.org/10.1038/nrmicro1177

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing