Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Viral metagenomics


Viruses, most of which infect microorganisms, are the most abundant biological entities on the planet. Identifying and measuring the community dynamics of viruses in the environment is complicated because less than one percent of microbial hosts have been cultivated. Also, there is no single gene that is common to all viral genomes, so total uncultured viral diversity cannot be monitored using approaches analogous to ribosomal DNA profiling. Metagenomic analyses of uncultured viral communities circumvent these limitations and can provide insights into the composition and structure of environmental viral communities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Comparison of viral metagenomic libraries to the GenBank non-redundant database.
Figure 2: The Phage Proteomic Tree.
Figure 3: Metagenomics and viral diversity, community structure and ecology.


  1. 1

    Sanger, F. et al. Nucleotide sequence of bacteriophage ΦX174 DNA. Nature 265, 687–695 (1977).

    CAS  Article  Google Scholar 

  2. 2

    Breitbart, M. et al. Genomic analysis of uncultured marine viral communities. Proc. Natl Acad. Sci. USA 99, 14250–14255 (2002).

    CAS  Article  Google Scholar 

  3. 3

    Wommack, K. E., Ravel, J., Hill, R. T., Chun, J. & Colwell, R. R. Population dynamics of Chesapeake Bay virioplankton: total-community analysis by pulsed-field gel electrophoresis. Appl. Environ. Microbiol. 65, 231–240 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Steward, G., Montiel, J. & Azam, F. Genome size distributions indicate variability and similarities among marine viral assemblages from diverse environments. Limnol. Oceanogr. 45, 1697–1706 (2000).

    Article  Google Scholar 

  5. 5

    DeFlaun, M., Paul, J. & Jeffrey, W. Distribution and molecular weight of dissolved DNA in subtropical estuarine and oceanic environments. Mar. Ecol. Prog. Ser. 38, 65–73 (1987).

    CAS  Article  Google Scholar 

  6. 6

    DeFlaun, M. F., Paul, J. H. & Davis, D. Simplified method for dissolved DNA determination in aquatic environments. Appl. Environ. Microbiol. 52, 654–659 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Wang, I., Smith, D. & Young, R. Holins: the protein clocks of bacteriophage infections. Annu. Rev. Microbiol. 54, 799–825 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Warren, R. Modified bases in bacteriophage DNAs. Annu. Rev. Microbiol. 34, 137–158 (1980).

    CAS  Article  Google Scholar 

  9. 9

    Breitbart, M. et al. Diversity and population structure of a nearshore marine sediment viral community. Proc. Biol. Sci. 271, 565–574 (2004).

    Article  Google Scholar 

  10. 10

    Breitbart, M. et al. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 85, 6220–6223 (2003).

    Article  Google Scholar 

  11. 11

    Cann, A., Fandrich, S. & Heaphy, S. Analysis of the virus population present in equine faeces indicates the presence of hundreds of uncharacterized virus genomes. Virus Genes 30, 151–156 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Pedulla, M. L. et al. Origins of highly mosaic mycobacteriophage genomes. Cell 113, 171–182 (2003).

    CAS  Article  Google Scholar 

  13. 13

    Rohwer, F. et al. The complete genomic sequence of the marine phage Roseophage SIO1 shares homology with non-marine phages. Limnol. Oceanogr. 42, 408–418 (2000).

    Article  Google Scholar 

  14. 14

    Chen, F. & Lu, J. Genomic sequence and evolution of marine cyanophage P60: a new insight on lytic and lysogenic phages. Appl. Environ. Microbiol. 68, 2589–2594 (2002).

    CAS  Article  Google Scholar 

  15. 15

    Tyson, G. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Venter, J. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Daubin, V. & Ochman, H. Bacterial genomes as new gene homes: the genealogy of ORFans in E. coli. Genome Res. 14, 1036–1042 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Rohwer, F. & Edwards, R. The Phage Proteomic Tree: a genome based taxonomy for phage. J. Bacteriol. 184, 4529–4535 (2002).

    CAS  Article  Google Scholar 

  19. 19

    Büchen-Osmond, C. ICTVdB: The universal virus database. Index of Viruses [online], <> (2002).

    Google Scholar 

  20. 20

    Nelson, D. Phage taxonomy: we agree to disagree. J. Bacteriol. 186, 7029–7031 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Dorigo, U., Jacquet, S. & Humbert, J. Cyanophage diversity, inferred from g20 gene analyses, in the largest natural lake in France, Lake Bourget. Appl. Environ. Microbiol. 70, 1017–1022 (2004).

    CAS  Article  Google Scholar 

  22. 22

    Zhong, Y., Chen, F., Wilhelm, S. W., Poorvin, L. & Hodson, R. E. Phylogenetic diversity of marine cyanophage isolates and natural virus communities as revealed by sequences of viral capsid assembly protein gene g20. Appl. Environ. Microbiol. 68, 1576–1584 (2002).

    CAS  Article  Google Scholar 

  23. 23

    Fuller, N. J., Wilson, W. H., Joint, I. R. & Mann, N. H. Occurence of a sequence in marine cyanophages similar to that of T4 g20 and its application to PCR-based detection and quantification techniques. Appl. Environ. Microbiol. 64, 2051–2060 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Chen, F., Suttle, C. A. & Short, S. M. Genetic diversity in marine algal virus communities as revealed by sequence analysis of DNA polymerase genes. Appl. Environ. Microbiol. 62, 2869–2874 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Chen, F. & Suttle, C. A. Evolutionary relationships among large double-stranded DNA viruses that infect microalgae and other organisms as inferred from DNA polymerase genes. Virology 219, 170–178 (1996).

    CAS  Article  Google Scholar 

  26. 26

    Short, S. M. & Suttle, C. A. Sequence analysis of marine cirus communities reveals that groups of related algal viruses are widely distributed in nature. Appl. Environ. Microbiol. 68, 1290–1296 (2002).

    CAS  Article  Google Scholar 

  27. 27

    Short, C. & Suttle, C. Nearly identical bacteriophage structural gene sequences are widely distributed in marine and freshwater environments. Appl. Environ. Microbiol. 71, 480–486 (2005).

    CAS  Article  Google Scholar 

  28. 28

    Hambly, E. et al. A conserved genetic module that encodes the major virion components in both the coliphage T4 and the marine cyanophage S-PM2. Proc. Natl Acad. Sci. USA 98, 11411–11416 (2001).

    CAS  Article  Google Scholar 

  29. 29

    Breitbart, M. & Rohwer, F. Global distribution of nearly identical phage-encoded DNA sequences. FEMS Microbiol. Lett. 236, 245–252 (2004).

    Article  Google Scholar 

  30. 30

    Lawrence, J. G., Hatfull, G. F. & Hendrix, R. W. The imbroglios of viral taxonomy: genetic exchange and the failings of phenetic approaches. J. Bacteriol. 184, 4891–4905 (2002).

    CAS  Article  Google Scholar 

  31. 31

    Schippers, A. et al. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433, 861–864 (2005).

    CAS  Article  Google Scholar 

  32. 32

    Whitman, W., Coleman, D. & Wiebe, W. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).

    CAS  Article  Google Scholar 

  33. 33

    Danovaro, R., Manini, E. & Dell'Anno, A. Higher abundance of bacteria than viruses in deep Mediterranean sediments. Appl. Environ. Microbiol. 66, 1857–1861 (2002).

    Article  Google Scholar 

  34. 34

    Danovaro, R. & Serresi, M. Viral density and virus-to-bacterium ratio in deep-sea sediments of the Eastern Mediterranean. Appl. Environ. Microbiol. 66, 1857–1861 (2000).

    CAS  Article  Google Scholar 

  35. 35

    Martin, A. Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl. Environ. Microbiol. 68, 3673–3682 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Casjens, S. Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol. 49, 277–300 (2003).

    CAS  Article  Google Scholar 

  37. 37

    Lander, E. S. & Waterman, M. S. Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2, 231–239 (1988).

    CAS  Article  Google Scholar 

  38. 38

    Angly, F. et al. PHACCS, an online tool for estimating the structure and diversity of uncultured viral communities using metagenomic information. BMC Bioinformatics 6, 41 (2005).

    Article  Google Scholar 

  39. 39

    Bak, P. How Nature Works: The Science of Self-Organized Criticality (Springer–Verlag, New York, 1996).

    Book  Google Scholar 

  40. 40

    Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114. (2000).

    CAS  Article  Google Scholar 

  41. 41

    Paul, J., Jeffrey, W. & DeFlaun, M. Dynamics of extracellular DNA in the marine environment. Appl. Environ. Microbiol. 53, 170–179 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Paul, J., Jiang, S. & Rose, J. Concentration of viruses and dissolved DNA from aquatic environments by vortex flow filtration. Appl. Environ. Microbiol. 57, 2197–2204 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Simon, M. & Azam, F. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51, 201–213 (1989).

    CAS  Article  Google Scholar 

  44. 44

    Rohwer, F. Construction and analyses of linker-amplified shotgun libraries (LASLs) [online], <> (2002).

    Google Scholar 

  45. 45

    Blaisdell, B. E., Campbell, A. M. & Karlin, S. Similarities and dissimilarities of phage genomes. Proc. Natl Acad. Sci. USA 93, 5854–5859 (1996).

    CAS  Article  Google Scholar 

Download references


Support from the National Science Foundation and Moore Foundation is gratefully acknowledged.

Author information



Corresponding author

Correspondence to Forest Rohwer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links




Streptococcus pyogenes strain MGAS315

Xylella fastidiosa strain Temecula1


Forest Rohwer's laboratory





Phrap computer program

Phred computer program




An important ecosystem type, usually used to describe a distinctive primary producer assemblage such as a temperate forest.


Comparisons of sequences with databases are commonly done with BLAST and/or FASTA. Both programs allow comparison of either a nucleotide or protein query sequence with either a nucleotide or protein database.


A group of different populations within a specific area.


The relative abundance of different populations in relation to each other, often graphed as a rank–abundance curve.


A parameter that describes the number of hits that would be 'expected' to occur by chance when searching a sequence database of a particular size. An E-value of 1 means that it would be expected to find a match with a similar score simply by chance. The lower the E-value, the more significant the match.


Open reading frames (ORFs) are essentially the same as genes. They are also referred to as protein-coding regions. ORFs are identified in genomes by several algorithms, most of which search for stretches of DNA sequence without stop codons.


A virus that infects bacteria. Because bacteria are the most common targets on a global scale, most environmental viruses are phages.


The total count of individuals belonging to one species in a specific area.


Graphs of community structure. In these graphs, the most abundant species has a rank of 1, the next most abundant is 2, and so on, on the x-axis. The y-axis represents the abundance of each species.


The geological zone below the surface of the Earth. It is not exposed to the Earth's surface.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Edwards, R., Rohwer, F. Viral metagenomics. Nat Rev Microbiol 3, 504–510 (2005).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing