Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Insights into host responses against pathogens from transcriptional profiling

Key Points

  • We have re-analysed and compared microarray data from 32 published studies and uncovered a common host-transcriptional-response to pathogens.

  • Sub-clusters of functionally-related genes are preferentially induced by different host cell types.

  • Toll-like receptors (TLRs) are responsible for both common and pathogen-specific programmes of gene expression.

  • Some pathogens actively repress portions of the host transcriptional response and such activities can be correlated with pathogen virulence and disease severity.

  • The use of material from the clinic and from animal models provides information about the dynamics of infection and its resolution in vivo.

  • Gene expression profiling of pathogen-associated cancers provides clues about the mechanisms of tumorigenesis.

Abstract

DNA microarrays have allowed us to monitor the effects of pathogens on host-cell gene expression programmes in great depth and on a broad scale. The comparison of results that have been generated by these studies is complex, and such a comparison has not previously been attempted in a systematic manner. In this review, we have collated and compared published transcriptional-profiling data from 32 studies that involved 77 different host–pathogen interactions, and have defined a common host-transcriptional-response. We outline gene expression patterns in the context of Toll-like receptor and pathogen-mediated signalling pathways, and summarize the contributions that transcriptional-profiling studies have made to our understanding of the infectious disease process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A common host-transcriptional-response to pathogens.
Figure 2: The cellular response to infection.
Figure 3: Regulation of common and distinct sets of genes by TLRs.
Figure 4: Gene expression programmes induced by HIV-1 Tat and Nef.

Similar content being viewed by others

References

  1. Der, S. D., Zhou, A., Williams, B. R. & Silverman, R. H. Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays. Proc. Natl Acad. Sci. USA 95, 15623–15628 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhu, H., Cong, J. P., Mamtora, G., Gingeras, T. & Shenk, T. Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc. Natl Acad. Sci. USA 95, 14470–14475 (1998). This was the first study to use microarrays to monitor the host response to infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boldrick, J. C. et al. Stereotyped and specific gene expression programs in human innate immune responses to bacteria. Proc. Natl Acad. Sci. USA 99, 972–977 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nau, G. J. et al. Human macrophage activation programs induced by bacterial pathogens. Proc. Natl Acad. Sci. USA 99, 1503–1508 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kobayashi, S. D. et al. Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc. Natl Acad. Sci. USA 100, 10948–10953 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang, Q. et al. The plasticity of dendritic cell responses to pathogens and their components. Science 294, 870–875 (2001). References 3, 4 and 6 demonstrate that human immune cells respond to pathogens with both common and pathogen-specific responses and that individual pathogen components can recapitulate these gene expression changes.

    Article  CAS  PubMed  Google Scholar 

  7. Izmailova, E. et al. HIV-1 Tat reprograms immature dendritic cells to express chemoattractants for activated T cells and macrophages. Nature Med. 9, 191–197 (2003). This paper revealed how an HIV protein selectively induces only part of the normal DC response to pathogens, which results in the recruitment of T cells in the absence of DC activation.

    Article  CAS  PubMed  Google Scholar 

  8. Hertzog, P. J., O'Neill, L. A. & Hamilton, J. A. The interferon in TLR signaling: more than just antiviral. Trends Immunol. 24, 534–539 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Hooper, L. V. et al. Molecular analysis of commensal host–microbial relationships in the intestine. Science 291, 881–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Chaussabel, D. et al. Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites. Blood 102, 672–681 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Beutler, B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430, 257–263 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Doyle, S. et al. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17, 251–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Taniguchi, T. & Takaoka, A. The interferon-α/β system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr. Opin. Immunol. 14, 111–116 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Geiss, G. et al. A comprehensive view of regulation of gene expression by double-stranded RNA-mediated cell signaling. J. Biol. Chem. 276, 30178–30182 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Rosenberger, C. M., Scott, M. G., Gold, M. R., Hancock, R. E. & Finlay, B. B. Salmonella typhimurium infection and lipopolysaccharide stimulation induce similar changes in macrophage gene expression. J. Immunol. 164, 5894–5904 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Palliser, D. et al. A role for toll-like receptor 4 in dendritic cell activation and cytolytic CD8+ T cell differentiation in response to a recombinant heat shock fusion protein. J. Immunol. 172, 2885–2893 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Weighardt, H. et al. Identification of a TLR4- and TRIF-dependent activation program of dendritic cells. Eur. J. Immunol. 34, 558–564 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Rogers, P. D. et al. Pneumolysin-dependent and-independent gene expression identified by cDNA microarray analysis of THP-1 human mononuclear cells stimulated by Streptococcus pneumoniae. Infect. Immun. 71, 2087–2094 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Malley, R. et al. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc. Natl Acad. Sci. USA 100, 1966–1971 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kurt-Jones, E. A. et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nature Immunol. 1, 398–401 (2000).

    Article  CAS  Google Scholar 

  22. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Zeng, H. et al. Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella. J. Immunol. 171, 3668–3674 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Nau, G. J., Schlesinger, A., Richmond, J. F. & Young, R. A. Cumulative Toll-like receptor activation in human macrophages treated with whole bacteria. J. Immunol. 170, 5203–5209 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Toshchakov, V. et al. TLR4, but not TLR2, mediates IFN-β-induced STAT1α/β-dependent gene expression in macrophages. Nature Immunol. 3, 392–398 (2002).

    Article  CAS  Google Scholar 

  26. Lund, J. M. et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl Acad. Sci. USA 101, 5598–5603 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Underhill, D. M. & Ozinsky, A. Toll-like receptors: key mediators of microbe detection. Curr. Opin. Immunol. 14, 103–110 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Simmen, K. A. et al. Global modulation of cellular transcription by human cytomegalovirus is initiated by viral glycoprotein B. Proc. Natl Acad. Sci. USA 98, 7140–7145 (2001). This paper identified the specific virus protein that is responsible for initiating the host transcriptional response against a virus and defined this response as being mediated by IFN.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boehme, K. W., Singh, J., Perry, S. T. & Compton, T. Human cytomegalovirus elicits a coordinated cellular antiviral response via envelope glycoprotein B. J. Virol. 78, 1202–1211 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Compton, T. et al. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J. Virol. 77, 4588–4596 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, X., Huong, S. M., Chiu, M. L., Raab-Traub, N. & Huang, E. S. Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature 424, 456–461 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Mossman, K. L. et al. Herpes simplex virus triggers and then disarms a host antiviral response. J. Virol. 75, 750–758 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Browne, E. P., Wing, B., Coleman, D. & Shenk, T. Altered cellular mRNA levels in human cytomegalovirus-infected fibroblasts: viral block to the accumulation of antiviral mRNAs. J. Virol. 75, 12319–12330 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Browne, E. P. & Shenk, T. Human cytomegalovirus UL83-coded pp65 virion protein inhibits antiviral gene expression in infected cells. Proc. Natl Acad. Sci. USA 100, 11439–11444 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chang, Y. E. & Laimins, L. A. Microarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31. J. Virol. 74, 4174–4182 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nees, M. et al. Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-κB-responsive genes in cervical keratinocytes. J. Virol. 75, 4283–4296 (2001). References 34 and 36 show the potential of using microarrays to identify pathogen proteins that inhibit the host immune response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Simmons, A., Aluvihare, V. & McMichael, A. Nef triggers a transcriptional program in T cells imitating single-signal T cell activation and inducing HIV virulence mediators. Immunity 14, 763–777 (2001). The authors used microarrays to generate an expression signature of T-cell activation and to show that this is mimicked by HIV Nef.

    Article  CAS  PubMed  Google Scholar 

  38. Corbeil, J. et al. Temporal gene regulation during HIV-1 infection of human CD4+ T cells. Genome Res. 11, 1198–11204 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van 't Wout, A. B. et al. Cellular gene expression upon human immunodeficiency virus type 1 infection of CD4+-T-cell lines. J. Virol. 77, 1392–1402 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ehrt, S. et al. Reprogramming of the macrophage transcriptome in response to interferon-γ and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J. Exp. Med. 194, 1123–1140 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sauvonnet, N., Pradet-Balade, B., Garcia-Sanz, J. A. & Cornelis, G. R. Regulation of mRNA expression in macrophages after Yersinia enterocolitica infection. Role of different Yop effectors. J. Biol. Chem. 277, 25133–25142 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Bohn, E. et al. Gene expression patterns of epithelial cells modulated by pathogenicity factors of Yersinia enterocolitica. Cell. Microbiol. 6, 129–141 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Geiss, G. K. et al. Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc. Natl Acad. Sci. USA 99, 10736–10741 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Girard, S. et al. An altered cellular response to interferon and up-regulation of interleukin-8 induced by the hepatitis C viral protein NS5A uncovered by microarray analysis. Virology 295, 272–283 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Geiss, G. K. et al. Gene expression profiling of the cellular transcriptional network regulated by α/β interferon and its partial attenuation by the hepatitis C virus nonstructural 5A protein. J. Virol. 77, 6367–6375 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Polyak, S. J., Khabar, K. S., Rezeiq, M. & Gretch, D. R. Elevated levels of interleukin-8 in serum are associated with hepatitis C virus infection and resistance to interferon therapy. J. Virol. 75, 6209–6211 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Geimonen, E. et al. Pathogenic and nonpathogenic hantaviruses differentially regulate endothelial cell responses. Proc. Natl Acad. Sci. USA 99, 13837–13842 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guerra, S. et al. Cellular gene expression survey of vaccinia virus infection of human HeLa cells. J. Virol. 77, 6493–6506 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guerra, S. et al. Microarray analysis reveals characteristic changes of host cell gene expression in response to attenuated modified vaccinia virus Ankara infection of human HeLa cells. J. Virol. 78, 5820–5834 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ichikawa, J. K. et al. Interaction of Pseudomonas aeruginosa with epithelial cells: identification of differentially regulated genes by expression microarray analysis of human cDNAs. Proc. Natl Acad. Sci. USA 97, 9659–9664 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Detweiler, C. S., Cunanan, D. B. & Falkow, S. Host microarray analysis reveals a role for the Salmonella response regulator phoP in human macrophage cell death. Proc. Natl Acad. Sci. USA 98, 5850–5855 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pathan, N. et al. Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. Lancet 363, 203–209 (2004). This paper coupled microarray gene expression data with other functional annotation to identify an unknown factor that was responsible for impaired heart function during sepsis.

    Article  CAS  PubMed  Google Scholar 

  53. Taylor, L. A. et al. Host gene regulation during coxsackievirus B3 infection in mice: assessment by microarrays. Circ. Res. 87, 328–334 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Sui, Y. et al. Microarray analysis of cytokine and chemokine genes in the brains of macaques with SHIV-encephalitis. J. Med. Primatol. 32, 229–239 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Roberts, E. S. et al. Induction of pathogenic sets of genes in macrophages and neurons in NeuroAIDS. Am. J. Pathol. 162, 2041–2057 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Domachowske, J. B., Bonville, C. A., Easton, A. J. & Rosenberg, H. F. Differential expression of proinflammatory cytokine genes in vivo in response to pathogenic and nonpathogenic pneumovirus infections. J. Infect. Dis. 186, 8–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Johnston, C., Jiang, W., Chu, T. & Levine, B. Identification of genes involved in the host response to neurovirulent alphavirus infection. J. Virol. 75, 10431–10445 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bigger, C. B., Brasky, K. M. & Lanford, R. E. DNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection. J. Virol. 75, 7059–7066 (2001). This study followed the gene expression changes that accompany the course of infection by a human pathogen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. George, M. D., Sankaran, S., Reay, E., Gelli, A. C. & Dandekar, S. High-throughput gene expression profiling indicates dysregulation of intestinal cell cycle mediators and growth factors during primary simian immunodeficiency virus infection. Virology 312, 84–94 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Guadalupe, M. et al. Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J. Virol. 77, 11708–11717 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chun, T. W. et al. Gene expression and viral prodution in latently infected, resting CD4+ T cells in viremic versus aviremic HIV-infected individuals. Proc. Natl Acad. Sci. USA 100, 1908–1913 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mueller, A. et al. Protective immunity against Helicobacter is characterized by a unique transcriptional signature. Proc. Natl Acad. Sci. USA 100, 12289–12294 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wu, C. G. et al. Distinctive gene expression profiles associated with Hepatitis B virus x protein. Oncogene 20, 3674–3682 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Xu, X. R. et al. Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc. Natl Acad. Sci. USA 98, 15089–15094 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Okabe, H. et al. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression. Cancer Res. 61, 2129–2137 (2001).

    CAS  PubMed  Google Scholar 

  66. Iizuka, N. et al. Comparison of gene expression profiles between hepatitis B virus- and hepatitis C virus-infected hepatocellular carcinoma by oligonucleotide microarray data on the basis of a supervised learning method. Cancer Res. 62, 3939–3944 (2002).

    CAS  PubMed  Google Scholar 

  67. Wang, H. W. et al. Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nature Genet. 36, 687–693 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Hong, Y. K. et al. Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nature Genet. 36, 683–685 (2004). Reference 67 shows that the unusual gene expression pattern of Kaposi's sarcoma is caused by the reprogramming of endothelial cells by KSHV. Reference 68 suggests that this virus activity might reside in LANA1.

    Article  CAS  PubMed  Google Scholar 

  69. Jenner, R. G. et al. Kaposi's sarcoma-associated herpesvirus-infected primary effusion lymphoma has a plasma cell gene expression profile. Proc. Natl Acad. Sci. USA 100, 10399–10404 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Klein, U. et al. Gene expression profile analysis of AIDS-related primary effusion lymphoma (PEL) suggests a plasmablastic derivation and identifies PEL-specific transcripts. Blood 101, 4115–4121 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Moses, A. V. et al. Kaposi''s sarcoma-associated herpesvirus-induced upregulation of the c-kit proto-oncogene, as identified by gene expression profiling, is essential for the transformation of endothelial cells. J. Virol. 76, 8383–8399 (2002). This paper represents the first study to identify a novel drug target for an infectious disease using microarrays, and to test the efficacy of a pharmacological agent against the protein in a disease model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Casadevall, A. & Pirofski, L. A. The damage-response framework of microbial pathogenesis. Nature Rev. Microbiol. 1, 17–24 (2003).

    Article  CAS  Google Scholar 

  73. Schnappinger, D. et al. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med. 198, 693–704 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Odom, D. T. et al. Control of pancreas and liver gene expression by HNF transcription factors. Science 303, 1378–1381 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rodriguez, N. E., Chang, H. K. & Wilson, M. E. Novel program of macrophage gene expression induced by phagocytosis of Leishmania chagasi. Infect. Immun. 72, 2111–2122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dietz, A. B., Bulur, P. A., Knutson, G. J., Matasic, R. & Vuk-Pavlovic, S. Maturation of human monocyte-derived dendritic cells studied by microarray hybridization. Biochem. Biophys. Res. Commun. 275, 731–738 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Feezor, R. J. et al. Molecular characterization of the acute inflammatory response to infections with gram-negative versus gram-positive bacteria. Infect. Immun. 71, 5803–5813 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jones, J. O. & Arvin, A. M. Microarray analysis of host cell gene transcription in response to varicella-zoster virus infection of human T cells and fibroblasts in vitro and SCIDhu skin xenografts in vivo. J. Virol. 77, 1268–1280 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Iizuka, N. et al. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet 361, 923–929 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Kramer, M. F. et al. Latent herpes simplex virus infection of sensory neurons alters neuronal gene expression. J. Virol. 77, 9533–9541 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Radhakrishnan, S. et al. JC virus-induced changes in cellular gene expression in primary human astrocytes. J. Virol. 77, 10638–10644 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Warke, R. V. et al. Dengue virus induces novel changes in gene expression of human umbilical vein endothelial cells. J. Virol. 77, 11822–11832 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Belcher, C. E. et al. The transcriptional responses of respiratory epithelial cells to Bordetella pertussis reveal host defensive and pathogen counter-defensive strategies. Proc. Natl Acad. Sci. USA 97, 13847–13852 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, Y. et al. Expression of respiratory syncytial virus-induced chemokine gene networks in lower airway epithelial cells revealed by cDNA microarrays. J. Virol. 75, 9044–9058 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tian, B. et al. Identification of NF-κB-dependent gene networks in respiratory syncytial virus-infected cells. J. Virol. 76, 6800–6814 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, Y. et al. Ribavirin treatment up-regulates antiviral gene expression via the interferon-stimulated response element in respiratory syncytial virus-infected epithelial cells. J. Virol. 77, 5933–5947 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cuadras, M. A., Feigelstock, D. A., An, S. & Greenberg, H. B. Gene expression pattern in Caco-2 cells following rotavirus infection. J. Virol. 76, 4467–4482 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wells, S. I. et al. Transcriptome signature of irreversible senescence in human papillomavirus-positive cervical cancer cells. Proc. Natl Acad. Sci. USA 100, 7093–7098 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Guillemin, K., Salama, N. R., Tompkins, L. S. & Falkow, S. Cag pathogenicity island-specific responses of gastric epithelial cells to Helicobacter pylori infection. Proc. Natl Acad. Sci. USA 99, 15136–15141 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mueller, A. et al. Distinct gene expression profiles characterize the histopathological stages of disease in Helicobacter–induced mucosa–associated lymphoid tissue lymphoma. Proc. Natl Acad. Sci. USA 100, 1292–1297 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank E. Herbolsheimer and G. Bell for help with data processing and Gene Ontology annotation. We apologize to any authors whose papers we inadvertently missed when compiling Supplementary information S1,S2,S3 (tables and references). This work was funded by the National Institute of Allergy and Infectious Diseases.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Swiss-Prot

TLR2

TLR3

TLR4

TLR5

TLR7

Gene ontology nomenclature

FURTHER INFORMATION

Processed microarray data

Richard A. Young's laboratory

Glossary

DNA MICROARRAY

An ordered array of DNA probes of known sequence on a solid support, fabricated on a very small scale. The probes are used to interrogate the composition of DNA mixtures through hybridization.

INTERFERON

(IFN). Cytokines that can induce cells to resist infection. Type 1 IFNs (α and β) are produced by several cell types; type 2 IFN(γ) is produced by T cells and NK cells.

TRANSCRIPTOME

The set of mRNA transcripts that are present in any one cell at a given time.

CLUSTER ANALYSIS

A multivariate statistical classification technique that partitions variables (which for microarray data are genes or samples) into groups (clusters) based on shared characteristics (in this case, gene expression patterns).

LATENT INFECTION (LATENCY)

The stage of some virus life-cycles in which no progeny virions are produced. Viral gene expression is restricted.

APOPTOSIS

Programmed cell death, a controlled physiological process by which a cell terminates its own existence.

ADAPTOR PROTEINS

Linker proteins that connect cell-surface receptors to downstream members of intracellular signalling pathways.

T-HELPER (TH) CELLS

T cells that help in the activation of other cell types; TH1 cells are mainly involved in macrophage activation, TH2 cells in B-cell activation.

FORWARD GENETICS

The experimental process of identifying the genes responsible for a defined function or phenotype.

REVERSE GENETICS

The experimental process of assigning functions to a gene, usually through mutation or inhibition of its expression.

GRAM-POSITIVE BACTERIA

A group of bacteria that retain the stain of Gram's solution after rinsing. They have a single cell wall that does not contain LPS. Gram-negative bacteria have a double cell wall that contains LPS, which prevents the retention of the stain.

DOUBLE-STRANDED (ds)RNA

Double-stranded RNA, which is produced during the life-cycle of many viruses but which is otherwise not normally found in the cell (except for very short RNA species).

GLIOMA CELL LINE

A self-propagating cell population that is derived from a cancer of glial cells.

ELISA

Enzyme-linked immunosorbent assay — an assay in which antigen is detected by an antibody linked to an enzyme that produces a coloured product.

VIRULENCE FACTOR

A pathogen protein that is essential for causing disease in a host.

RNA INTERFERENCE

(RNAI) Post-transcriptional gene silencing (PTGS) induced by the direct introduction of dsRNA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenner, R., Young, R. Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 3, 281–294 (2005). https://doi.org/10.1038/nrmicro1126

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing