Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Arthropod-borne diseases: vector control in the genomics era

Abstract

Diseases that are transmitted by arthropods cause severe morbidity and mortality throughout the world. The burden of many of these diseases is borne largely by developing countries. Advances in vector genomics offer new promise for the control of arthropod vectors of disease. Radical changes in vector-biology research are required if scientists are to exploit genomic data and implement changes in public health

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global estimates of human mortality caused by vector-borne diseases.
Figure 2: The global distribution and burden of major vector-borne diseases.
Figure 3: Potential new targets for development of novel vector- and disease-control strategies using vector genomics resources.

Similar content being viewed by others

References

  1. World Health Organization. The World Health Report 2002, Reducing Risks, Promoting Healthy Life (World Health Organization, Geneva, 2002).

  2. World Health Organization. The World Health Report 2004, Changing History (World Health Organization, Geneva, 2004).

  3. Holt, R. A. et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298, 129–149 (2002).

    Article  CAS  Google Scholar 

  4. Butler, D. African labs win major role in tsetse-fly genome project. Nature 427, 384 (2004).

    Article  CAS  Google Scholar 

  5. Jasinskiene, N. et al. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc. Natl Acad. Sci. USA 95, 3743–3747 (1998).

    Article  CAS  Google Scholar 

  6. Coates, C. J., Jasinskiene, N., Miyashiro, L. & James, A. A. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc. Natl Acad. Sci. USA 95, 3748–3751 (1998).

    Article  CAS  Google Scholar 

  7. Catteruccia, F. et al. Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405, 959–962 (2000).

    Article  CAS  Google Scholar 

  8. Dimopoulos, G. et al. Genome expression analysis of Anopheles gambiae: responses to injury, bacterial challenge, and malaria infection. Proc. Natl Acad. Sci. USA 99, 8814–8819 (2002).

    Article  CAS  Google Scholar 

  9. Coluzzi, M., Sabatini, A., della Torre, A., Di Deco, M. A. & Petrarca, V. A polytene chromosome analysis of the Anopheles gambiae species complex. Science 298, 1415–1418 (2002).

    Article  CAS  Google Scholar 

  10. della Torre, A. et al. Speciation within Anopheles gambiae — the glass is half full. Science 298, 115–117 (2002).

    Article  CAS  Google Scholar 

  11. Toure, Y. et al. The distribution and inversion polymorphism of chromosomally recognized taxa of the Anopheles gambiae complex in Mali, West Africa. Parassitologia 40, 477–511 (1998).

    CAS  PubMed  Google Scholar 

  12. Ito, J., Ghosh, A., Moreira, L. A., Wimmer, E. A. & Jacobs-Lorena, M. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417, 452–455 (2002).

    Article  CAS  Google Scholar 

  13. Hallem, E. A., Fox, N. A., Zweibel, L. J. & Carlson, J. R. Olfaction: mosquito receptor for human-sweat odorant. Nature 427, 212–213 (2004).

    Article  CAS  Google Scholar 

  14. Osta, M. A., Christophides, G. K. & Kafatos, F. C. Effects of mosquito genes on Plasmodium development. Science 303, 2030–2032 (2004).

    Article  CAS  Google Scholar 

  15. Scott, T. W., Takken, W., Knols, B. G. & Boete, C. The ecology of genetically modified mosquitoes. Science 298, 117–119 (2002).

    Article  CAS  Google Scholar 

  16. James, A. A. Engineering mosquito resistance to malaria parasites: the avian malaria model. Insect Biochem. Mol. Biol. 32, 1317–1323 (2002).

    Article  CAS  Google Scholar 

  17. Hill, C. A. et al. G protein-coupled receptors in the genome of Anopheles gambiae. Science 298, 176–178 (2002).

    Article  CAS  Google Scholar 

  18. Fox, A. N., Pitts, R. J., Robertson, H. M., Carlson, J. R. & Zwiebel, L. J. Proc. Natl Acad. Sci. USA 98, 14693–14697 (2001).

    Article  CAS  Google Scholar 

  19. Blandin, S. et al. Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the defensin gene. EMBO Rep. 3, 852–856 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine A. Hill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Anopheles gambiae

Infectious Disease Information

dengue

HIV/AIDS

leishmaniasis

malaria

tuberculosis

FURTHER INFORMATION

Aedes aegypti genome

Grand Challenges

Onchocerciasis

VectorBase

Medicines for Malaria Venture

Foundation for Innovative New Diagnostics

Catherine A. Hill's laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, C., Kafatos, F., Stansfield, S. et al. Arthropod-borne diseases: vector control in the genomics era. Nat Rev Microbiol 3, 262–268 (2005). https://doi.org/10.1038/nrmicro1101

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing