Key Points
-
The discipline of palaeomicrobiology involves the detection, identification and characterization of microorganisms in ancient remains. The materials examined include mummified tissues, bone and dental pulp. Although a variety of techniques have been used in palaeomicrobiological analyses, most data have been obtained using PCR-based techniques.
-
As palaeomicrobiology is a relatively new discipline that deals with samples that can be many thousands of years old, the establishment of generally agreed standards for palaeomicrobiological studies is a very welcome, but fairly new, development, and many of the published studies do not conform to these standards. In this article, the authors summarize the data obtained in important paleomicrobiological studies using a classification system for authenticity and strength of evidence based on that used in evidence-based medicine.
-
In addition to solving long-standing historical mysteries, it is hoped that the palaeomicrobiological analysis of ancient pathogens could influence current models of emerging infections and could contribute to the development of appropriate preventative measures.
Abstract
Palaeomicrobiology is an emerging field that is devoted to the detection, identification and characterization of microorganisms in ancient remains. Data indicate that host-associated microbial DNA can survive for almost 20,000 years, and environmental bacterial DNA preserved in permafrost samples has been dated to 400,000–600,000 years. In addition to frozen and mummified soft tissues, bone and dental pulp can also be used to search for microbial pathogens. Various techniques, including microscopy and immunodetection, can be used in palaeomicrobiology, but most data have been obtained using PCR-based molecular techniques. Infections caused by bacteria, viruses and parasites have all been diagnosed using palaeomicrobiological techniques. Additionally, molecular typing of ancient pathogens could help to reconstruct the epidemiology of past epidemics and could feed into current models of emerging infections, therefore contributing to the development of appropriate preventative measures.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Jackson, P. J. et al. PCR analysis of tissue samples from the 1979 Sverdlovsk anthrax victims: the presence of multiple Bacillus anthracis strains in different victims. Proc. Natl Acad. Sci. USA 95, 1224–1229 (1998).
Spigelman, M. & Lemma, E. The use of the polymerase chain reaction to detect Mycobacterium tuberculosis in ancient skeletons. Int. J. Osteoarchaeol. 3, 143 (1993).
Salo, W. L., Aufderheide, A. C., Buikstra, J. & Holcomb, T. A. Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc. Natl Acad. Sci. USA 91, 2091–2094 (1994). One of the first contributions to the palaeomicrobiology of tuberculosis.
Drancourt, M., Aboudharam, G., Signoli, M., Dutour, O. & Raoult, D. Detection of 400-year-old Yersinia pestis DNA in human dental pulp: an approach to the diagnosis of ancient septicemia. Proc. Natl Acad. Sci. USA 95, 12637–12640 (1998). The first demonstration of Y. pestis in ancient human skeletons.
Raoult, D. et al. Molecular identification by 'suicide PCR' of Yersinia pestis as the agent of medieval black death. Proc. Natl Acad. Sci. USA 97, 12800–12803 (2000).
Zink, A. R., Reischl, U., Wolf, H. & Nerlich, A. G. Molecular analysis of ancient microbial infections. FEMS Microbiol. Lett. 213, 141–147 (2002).
Donoghue, H. D. et al. Tuberculosis: from prehistory to Robert Koch, as revealed by ancient DNA. Lancet Infect. Dis. 4, 584–592 (2004).
Kish, M. A. Guide to development of practice guidelines. Clin. Infect. Dis. 32, 851–854 (2001).
Gilbert, M. T. et al. Absence of Yersinia pestis-specific DNA in human teeth from five European excavations of putative plague victims. Microbiology 150, 341–354 (2004).
Zink, A., Reischl, U., Wolf, H. & Nerlich, A. G. Molecular evidence of bacteremia by gastrointestinal pathogenic bacteria in an infant mummy from ancient Egypt. Arch. Pathol. Lab. Med. 124, 1614–1618 (2000).
Baron, H., Hummel, S. & Hermann, B. Mycobacterium tuberculosis complex DNA in ancient human bones. J. Archaeol. Sci. 23, 667–671 (1996).
Gernaey, A. M. et al. Mycolic acids and ancient DNA confirm an osteological diagnosis of tuberculosis. Tuberculosis (Edinb.) 81, 259–265 (2001).
Borst, A., Box, A. T. & Fluit, A. C. False-positive results and contamination in nucleic acid amplification assays: suggestions for a prevent and destroy strategy. Eur. J. Clin. Microbiol. Infect. Dis. 23, 289–299 (2004).
Grijalva, M., Horvath, R., Dendis, M., Erny, J. & Benedik, J. Molecular diagnosis of culture negative infective endocarditis: clinical validation in a group of surgically treated patients. Heart 89, 263–268 (2003).
Gauduchon, V. et al. Molecular diagnosis of infective endocarditis by PCR amplification and direct sequencing of DNA from valve tissue. J. Clin. Microbiol. 41, 763–766 (2003).
Ou, C. Y., Moore, J. L. & Schochetman, G. Use of UV irradiation to reduce false positivity in polymerase chain reaction. Biotechniques 10, 442–446 (1991).
Gilbert, M. T. et al. Distribution patterns of postmortem damage in human mitochondrial DNA. Am. J. Hum. Genet. 72, 32–47 (2003).
Montiel, R. et al. DNA sequences of Mycobacterium leprae recovered from ancient bones. FEMS Microbiol. Lett. 226, 413–414 (2003).
Rothschild, B. M. et al. Mycobacterium tuberculosis complex DNA from an extinct bison dated 17,000 years before the present. Clin. Infect. Dis. 33, 305–311 (2001).
Spencer, M. & Howe, C. J. Authenticity of ancient-DNA results: a statistical approach. Am. J. Hum. Genet. 75, 240–250 (2004).
Hofreiter, M., Serre, D., Poinar, H. N., Kuch, M. & Paabo, S. Ancient DNA. Nature Rev. Genet. 2, 353–359 (2001).
Ward, R. & Stringer, C. A molecular handle on the Neanderthals. Nature 388, 225–226 (1997).
Vreeland, R. H., Rosenzweig, W. D. & Powers, D. W. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407, 897–900 (2000).
Nickle, D. C., Learn, G. H., Rain, M. W., Mullins, J. I. & Mittler, J. E. Curiously modern DNA for a '250 million-year-old' bacterium. J. Mol. Evol. 54, 134–137 (2002).
Kolman, C. J. & Tuross, N. Ancient DNA analysis of human populations. Am. J. Phys. Anthropol. 111, 5–23 (2000).
Drancourt, M. et al. Genotyping, Orientalis-like Yersinia pestis, and plague pandemic. Emerg. Infect. Dis. 10, 1585–1592 (2004).
Hoss, M., Jaruga, P., Zastawny, T. H., Dizdaroglu, M. & Paabo, S. DNA damage and DNA sequence retrieval from ancient tissues. Nucleic Acids Res. 24, 1304–1307 (1996).
Cooper, A. & Poinar, H. N. Ancient DNA: do it right or not at all. Science 289, 1139 (2000).
Poinar, H. N. & Stankiewicz, B. A. Protein preservation and DNA retrieval from ancient tissues. Proc. Natl Acad. Sci. USA 96, 8426–8431 (1999).
Kolman, C. J., Centurion-Lara, A., Lukehart, S. A., Owsley, D. W. & Tuross, N. Identification of Treponema pallidum subspecies pallidum in a 200-year-old skeletal specimen. J. Infect. Dis. 180, 2060–2063 (1999). Demonstration of ancient reactive immunoglobulins.
Donoghue, H. D., Spigelman, M., Zias, J., Gernaey-Child, A. M. & Minnikin, D. E. Mycobacterium tuberculosis complex DNA in calcified pleura from remains 1400 years old. Lett. Appl. Microbiol. 27, 265–269 (1998).
Zink, A. R., Grabner, W., Reischl, U., Wolf, H. & Nerlich, A. G. Molecular study on human tuberculosis in three geographically distinct and time delineated populations from ancient Egypt. Epidemiol. Infect. 130, 239–249 (2003).
Marr, J. S. & Calisher, C. H. Alexander the Great and West Nile virus encephalitis. Emerg. Infect. Dis. 9, 1599–1603 (2003).
Bard, E., Rostek, F. & Menot-Combes, G. Paleoclimate. A better radiocarbon clock. Science 303, 178–179 (2004).
Ponel, P. Rissian, Eemian and Wurmian coleoptera assemblages from La Grande Pile (Vosges France). Palaeogeogr. Palaeoclimatol. Palaeoecol. 114, 1–41 (1995).
Vernesi, C. et al. Genetic characterization of the body attributed to the evangelist Luke. Proc. Natl Acad. Sci. USA 98, 13460–13463 (2001).
Anonymous. Stone age man goes 'home' to Italy. Nature 391, 318 (1998).
Meers, P. D. Smallpox still entombed? Lancet 1, 1103 (1985).
Hopkins, D. R. Beyond smallpox eradication. Assignment Child. 69-72, 235–242 (1985).
Rollo, F., Luciani, S., Canapa, A. & Marota, I. Analysis of bacterial DNA in skin and muscle of the Tyrolean iceman offers new insight into the mummification process. Am. J. Phys. Anthropol. 111, 211–219 (2000).
Reid, A. H., Fanning, T. G., Janczewski, T. A. & Taubenberger, J. K. Characterization of the 1918 'Spanish' influenza virus neuraminidase gene. Proc. Natl Acad. Sci. USA 97, 6785–6790 (2000).
Reid, A. H., Fanning, T. G., Hultin, J. V. & Taubenberger, J. K. Origin and evolution of the 1918 'Spanish' influenza virus hemagglutinin gene. Proc. Natl Acad. Sci. USA 96, 1651–1656 (1999).
Tumpey, T. M. et al. Pathogenicity and immunogenicity of influenza viruses with genes from the 1918 pandemic virus. Proc. Natl Acad. Sci. USA 101, 3166–3171 (2004).
Tumpey, T. M. et al. Existing antivirals are effective against influenza viruses with genes from the 1918 pandemic virus. Proc. Natl Acad. Sci. USA 99, 13849–13854 (2002).
Allison, M. J., Pezzia, A., Gerszten, E. & Mendosa, D. A case of Carrion's disease associated with human sacrifice from the Huari cluture of Southern Peru. Am. J. Phys. Anthropol. 41, 295–300 (1970).
Nerlich, A. G., Haas, C. J., Zink, A., Szeimies, U. & Hagedorn, H. G. Molecular evidence for tuberculosis in an ancient Egyptian mummy. Lancet 350, 1404 (1997).
Fletcher, H. A., Donoghue, H. D., Holton, J., Pap, I. & Spigelman, M. Widespread occurrence of Mycobacterium tuberculosis DNA from 18th–19th century Hungarians. Am. J. Phys. Anthropol. 120, 144–152 (2003).
Zink, A. R. et al. Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. J. Clin. Microbiol. 41, 359–367 (2003).
Taubenberger, J. K., Reid, A. H., Krafft, A. E., Bijwaard, K. E. & Fanning, T. G. Initial genetic characterization of the 1918 'Spanish' influenza virus. Science 275, 1793–1796 (1997). Pioneering work in the field of palaeovirology.
Lo, K. C., Geddes, J. F., Daniels, R. S. & Oxford, J. S. Lack of detection of influenza genes in archived formalin-fixed, paraffin wax-embedded brain samples of encephalitis lethargica patients from 1916 to 1920. Virchows Arch. 442, 591–596 (2003).
Crubezy, E. et al. Identification of Mycobacterium DNA in an Egyptian Pott's disease of 5,400 years old. C. R. Acad. Sci. III 321, 941–951 (1998).
Taylor, G. M., Goyal, M., Legge, A. J., Shaw, R. J. & Young, D. Genotypic analysis of Mycobacterium tuberculosis from medieval human remains. Microbiology 145, 899–904 (1999).
Mays, S., Fysh, E. & Taylor, G. M. Investigation of the link between visceral surface rib lesions and tuberculosis in a Medieval skeletal series from England using ancient DNA. Am. J. Phys. Anthropol. 119, 27–36 (2002).
Arriaza, B. T., Salo, W., Aufderheide, A. C. & Holcomb, T. A. Pre-Columbian tuberculosis in northern Chile: molecular and skeletal evidence. Am. J. Phys. Anthropol. 98, 37–45 (1995).
Haas, C. J., Zink, A., Palfi, G., Szeimies, U. & Nerlich, A. G. Detection of leprosy in ancient human skeletal remains by molecular identification of Mycobacterium leprae. Am. J. Clin. Pathol. 114, 428–436 (2000).
Mays, S. & Taylor, M. A first prehistoric case of tuberculosis from Britain. Int. J. Osteoarchaeol. 13, 189–196 (2003).
Donoghue, H. D., Holton, J. & Spigelman, M. PCR primers that can detect low levels of Mycobacterium leprae DNA. J. Med. Microbiol. 50, 177–182 (2001).
Paabo, S. Molecular cloning of Ancient Egyptian mummy DNA. Nature 314, 644–645 (1985).
Guhl, F., Jaramillo, C., Yockteng, R., Vallejo, G. A. & Cardenas–Arroyo, F. Trypanosoma cruzi DNA in human mummies. Lancet 349, 1370 (1997).
Konomi, N., Lebwohl, E., Mowbray, K., Tattersall, I. & Zhang,D. Detection of mycobacterial DNA in Andean mummies. J. Clin. Microbiol. 40, 4738–4740 (2002).
Haynes, S., Searle, J. B., Bretman, A. & Dobney, K. M. Bone preservation and ancient DNA: the application of screening methods for predicting DNA survival. J. Archaeol. Sci. 29, 585–592 (2002).
Potsch, L., Meyer, U., Rothschild, S., Schneider, P. M. & Rittner, C. Application of DNA techniques for identification using human dental pulp as a source of DNA. Int. J. Legal Med. 105, 139–143 (1992).
Aboudharam, G., Lascola, B., Raoult, D. & Drancourt, M. Detection of Coxiella burnetii DNA in dental pulp during experimental bacteremia. Microb. Pathog. 28, 249–254 (2000).
Aboudharam, G., Drancourt, M. & Raoult, D. Culture of C. burnetii from the dental pulp of experimentally infected guinea pigs. Microb. Pathog. 36, 349–350 (2004).
Aboudharam, G., La, V. D., Davoust, B., Drancourt, M. & Raoult, D. Molecular detection of Bartonella spp. in the dental pulp of stray cats buried for a year. Microb. Pathog. (in the press).
Aboudharam, G. et al. Molecular detection of Bartonella quintana DNA in the dental pulp of a homeless patient. J. Clin. Microbiol. Infect. Dis. (in the press).
Glick, M., Trope, M., Bagasra, O. & Pliskin, M. E. Human immunodeficiency virus infection of fibroblasts of dental pulp in seropositive patients. Oral Surg. Oral Med. Oral Pathol. 71, 733–736 (1991).
Glick, M., Trope, M. & Pliskin, M. E. Detection of HIV in the dental pulp of a patient with AIDS. J. Am. Dent. Assoc. 119, 649–650 (1989).
Paabo, S. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc. Natl Acad. Sci. USA 86, 1939–1943 (1989). One of the initial demonstrations that ancient DNA was available for laboratory work.
Willerslev, E. et al. Long-term persistence of bacterial DNA. Curr. Biol. 14, R9–R10 (2004).
Hanni, C., Brousseau, T., Laudet, V. & Stehelin, D. Isopropanol precipitation removes PCR inhibitors from ancient bone extracts. Nucleic Acids Res. 23, 881–882 (1995).
Siebert, P. D. & Larrick, J. W. PCR MIMICS: competitive DNA fragments for use as internal standards in quantitative PCR. Biotechniques 14, 244–249 (1993).
Di Bernardo, G. et al. Enzymatic repair of selected cross-linked homoduplex molecules enhances nuclear gene rescue from Pompeii and Herculaneum remains. Nucleic Acids Res. 30, e16 (2002).
Pusch, C. M., Giddings, I. & Scholz, M. Repair of degraded duplex DNA from prehistoric samples using Escherichia coli DNA polymerase I and T4 DNA ligase. Nucleic Acids Res. 26, 857–859 (1998).
Andersen, J. G. & Manchester, K. The rhinomaxillary syndrome in leprosy: a clinical, radiological and paleopathological study. Int. J. Osteoarchaeol. 2, 121–129 (1992).
Haas, C. J. et al. Molecular evidence for different stages of tuberculosis in ancient bone samples from Hungary. Am. J. Phys. Anthropol. 113, 293–304 (2000).
Spigelman, M. & Donoghue, H. D. Brief communication: unusual pathological condition in the lower extremities of a skeleton from ancient Israel. Am. J. Phys. Anthropol. 114, 92–93 (2001).
Drancourt, M. & Raoult, D. Molecular insights into the history of plague. Microbes Infect. 4, 105–109 (2002).
Enselme, J. [Commentaries on the great plague of 1348 in Avignon]. Rev. Lyon. Med. 17, 697–710 (1969).
Scott, S., Duncan, C. J. & Duncan, S. R. The plague in Penrith, Cumbria, 1597/8: its causes, biology and consequences. Ann. Hum. Biol. 23, 1–21 (1996).
Twigg, G. The Black Death. A biological reappraisal. (Batsford, London, 1984).
Weiss, E. in Encyclopedia of Microbiology. (ed. Lederberg J.) 585–610 (Academic San Diego, 2000).
Prentice, M. B., Gilbert, T. & Cooper, A. Was the Black Death caused by Yersinia pestis? Lancet Infect. Dis. 4, 72 (2004).
Drancourt, M. & Raoult, D. Molecular detection of Yersinia pestis in dental pulp. Microbiology 150, 263–264 (2004).
Torres, J. M., Borja, C. & Olivares, E. G. Immunoglobulin G in 1. 6 million-year-old fossil bones from Venta Micena (Granada, Spain). J. Archaeol. Sci. 29, 167–175 (2002).
Marshall, W. F. et al. Detection of Borrelia burgdorferi DNA in museum specimens of Peromyscus leucopus. J. Infect. Dis. 170, 1027–1032 (1994).
Matuschka, F. R., Ohlenbusch, A., Eiffert, H., Richter, D. & Spielman, A. Characteristics of Lyme disease spirochetes in archived European ticks. J. Infect. Dis. 174, 424–426 (1996).
Persing, D. H. et al. Detection of Borrelia burgdorferi DNA in museum specimens of Ixodes dammini ticks. Science 249, 1420–1423 (1990).
Postic, D. et al. Common ancestry of Borrelia burgdorferi sensu lato strains from North America and Europe. J. Clin. Microbiol. 37, 3010–3012 (1999).
Ras, N. M., Postic, D., Foretz, M. & Baranton, G. Borrelia burgdorferi sensu stricto, a bacterial species 'made in the USA' ? Int. J. Syst. Bacteriol. 47, 1112–1117 (1997).
Wier, A. et al. Spirochete and protist symbionts of a termite (Mastotermes electrodominicus) in Miocene amber. Proc. Natl Acad. Sci. USA 99, 1410–1413 (2002).
Drancourt, M., Tran-Hung, L., Courtin, J., De Lumley, H. & Raoult, D. Bartonella quintana in a 4,000-year–old human tooth. J. Infect. Dis. (in the press).
La, V. D. et al. Molecular detection of Bartonella henseale DNA in the dental pulp of French 800-year–old cats. Clin. Infect. Dis. (in the press).
Rhodes, A. N. et al. Identification of bacterial isolates obtained from intestinal contents associated with 12,000-year-old mastodon remains. Appl. Environ. Microbiol. 64, 651–658 (1998).
Zias, J. & Mumcuoglu, K. Y. Pre-pottery neolithic B head lice from Nahal hemar cave. Atiqot 20, 167–168 (1991).
Ewing, H. E. Lice from human mummies. Science 60, 389–390 (1924).
Mumcuoglu, Y. K. & Zias, J. Head lice, Pediculus humanus capitis (Anoplura: Pediculidae) from hair combs excavated in Israel and dated from the first century B. C. to the eighth century A. D. J. Med. Entomol. 25, 545–547 (1988).
El-Najjar, M. Y. & Mulinski, T. M. J. in Mummies, Diseases and Ancient Cultures (eds Cokburn, A & Cokburn, E.) 121–137 (Cambridge Univ. Press, 1983).
Reinhard, K. J. & Buikstra, J. Louse infestation of the Chiribaya culture, southern Peru: variation in prevalence by age and sex. Mem. Inst. Oswaldo Cruz 98 (Suppl. 1), 173–179 (2003).
Mumcuoglu, K. Y., Zias, J., Tarshis, M., Lavi, M. & Stiebel, G. D. Body louse remains found in textiles excavated at Masada, Israel. J. Med. Entomol. 40, 585–587 (2003).
Rick, F. M. et al. Crab louse infestation in pre-Columbian America. J. Parasitol. 88, 1266–1267 (2002).
Ruffer, M. A. Note on the presence of Bilharzia haematobia in Egyptian mummies of the twentieth dynasty (1250–1000 BC). Br. Med. J. 1, 16 (1910).
Bouchet, F. et al. Parasite remains in archaeological sites. Mem. Inst. Oswaldo Cruz 98 (Suppl. 1), 47–52 (2003).
Harter, S., Le Bailly, M., Janot, F. & Bouchet, F. First paleoparasitological study of an embalming rejects jar found in Saqqara, Egypt. Mem. Inst. Oswaldo Cruz 98 (Suppl. 1), 119–121 (2003).
Iniguez, A. M., Araujo, A., Ferreira, L. F. & Vicente, A. C. Analysis of ancient DNA from coprolites: a perspective with random amplified polymorphic DNA-polymerase chain reaction approach. Mem. Inst. Oswaldo Cruz 98 (Suppl. 1), 63–65 (2003).
Aufderheide, A. C. et al. A 9,000-year record of Chagas' disease. Proc. Natl Acad. Sci. USA 101, 2034–2039 (2004).
Taylor, G. M., Rutland, P. & Molleson, T. A sensitive polymerase chain reaction method for the detection of Plasmodium species DNA in ancient human remains. Anc. Biomol. 1, 193–203 (1997).
Sallares, R. & Gomzi, S. Biomolecular archaeology of malaria. Anc. Biomol. 3, 195–213 (2001).
Li, H. C. et al. The presence of ancient human T-cell lymphotropic virus type I provirus DNA in an Andean mummy. Nature Med. 5, 1428–1432 (1999).
Vandamme, A. M., Hall, W. W., Lewis, M. J., Goubau, P. & Salemi, M. Origins of HTLV-1 in South America. Nature Med. 6, 232–233 (2000).
Gessain, A., Pecon-Slattery, J., Meertens, L. & Mahieux, R. Origins of HTLV-1 in South America. Nature Med. 6, 232 (2000).
Stead, W. W. et al. When did Mycobacterium tuberculosis infection first occur in the New World? An important question with public health implications. Am. J. Respir. Crit. Care Med. 151, 1267–1268 (1995).
Brosch, R. et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl Acad. Sci. USA 99, 3684–3689 (2002).
Devignat, R. Varieties of Pasteurella pestis; new hypothesis. Bull. World Health Organ. 4, 247–263 (1951).
Antia, R., Regoes, R. R., Koella, J. C. & Bergstrom, C. T. The role of evolution in the emergence of infectious diseases. Nature 426, 658–661 (2003).
Yong, Z., Fournier, P. E., Rydkina, E. & Raoult, D. The geographical segregation of human lice preceded that of Pediculus humanus capitis and Pediculus humanus humanus. C. R. Biol. 326, 565–574 (2003).
Taylor, G. M., Crossey, M., Saldanha, J. A. & Waldron, T. Detection of Mycobacterium tuberculosis bacterial DNA in medieval human skeletal remains using polymerase chain reaction. J. Archaeol. Sci. 23, 789–798 (1996).
Broekhuijsen, M. et al. Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp tularensis. J. Clin. Microbiol. 41, 2924–2931 (2003).
Gutacker, M. M. et al. Genome-wide analysis of synonymous single nucleotide polymorphisms in Mycobacterium tuberculosis complex organisms: resolution of genetic relationships among closely related microbial strains. Genetics 162, 1533–1543 (2002).
Stevens, J. et al. Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science 303, 1866–1870 (2004).
Lemey, P. et al. Tracing the origin and history of the HIV-2 epidemic. Proc. Natl Acad. Sci. USA 100, 6588–6592 (2003).
Zhu, T. et al. An African HIV-1 sequence from 1959 and implications for the origin of the epidemic. Nature 391, 594–597 (1998).
Froland, S. S. et al. HIV-1 infection in Norwegian family before 1970. Lancet 1, 1344–1345 (1988).
Fricker, E. J., Spigelman, M. & Fricker, C. R. The detection of Escherichia coli DNA in the ancient remains of Lindow Man using the polymerase chain reaction. Lett. Appl. Microbiol. 24, 351–354 (1997).
Bouchet, F. et al. Toxocara canis (Werner, 1782) eggs in the pleistocene site of Menez-Dregan, France (300,000–500,000 years before present). Mem. Inst. Oswaldo Cruz 98 (Suppl. 1), 137–139 (2003).
Iniguez, A. M., Vicente, A. C., Araujo, A., Ferreira, L. F. & Reinhard, K. J. Enterobius vermicularis: specific detection by amplification of an internal region of 5S ribosomal RNA intergenic spacer and trans-splicing leader RNA analysis. Exp. Parasitol. 102, 218–222 (2002).
Acknowledgements
The authors acknowledge G. Aboudharam, L. V. Dang and L. Tran-Hung for expert help in the preparation of teeth pictures and P. Kelly for reviewing the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Related links
Related links
DATABASES
Entrez
FURTHER INFORMATION
Rights and permissions
About this article
Cite this article
Drancourt, M., Raoult, D. Palaeomicrobiology: current issues and perspectives. Nat Rev Microbiol 3, 23–35 (2005). https://doi.org/10.1038/nrmicro1063
Issue Date:
DOI: https://doi.org/10.1038/nrmicro1063
This article is cited by
-
Meta-proteomic analysis of the Shandrin mammoth by EVA technology and high-resolution mass spectrometry: what is its gut microbiota telling us?
Amino Acids (2021)
-
Presidential address—the Black Swan: ISPN and pediatric neurosurgery in times of COVID-19
Child's Nervous System (2021)
-
A 2,000–year-old specimen with intraerythrocytic Bartonella quintana
Scientific Reports (2020)
-
Evidence for signatures of ancient microbial life in paleosols
Scientific Reports (2020)
-
How to optimise the yield of forensic and clinical post-mortem microbiology with an adequate sampling: a proposal for standardisation
European Journal of Clinical Microbiology & Infectious Diseases (2015)