Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Comparative analysis of four Campylobacterales

Key Points

The ε-proteobacteria is a large group of diverse bacteria that occupy many different ecological niches. Five complete genome sequences are now available for a particular order — the Campylobacterales — within this proteobacterial subgroup. This article focuses on the comparative analysis of these sequences, three of which are pathogens of humans (Helicobacter pylori 26695 and J99, and Campylobacter jejuni NCTC 11168), one pathogen of rodents (Helicobacter hepaticus ATCC 51449) and one of which is a commensal (Wolinella succinogenes DSM 1740). The following noteworthy features are discussed in depth in the article:

  • Wolinella succinogenes DSM 1740 has genomic islands and 'homologues' of virulence factors.

  • The comparison identifies species-specific clusters (SSCs) that cannot be detected by the classical approach, which only looks for deviation from the average GC-content and the traditional 'hallmarks' of genomic islands.

  • Many of the SSCs that were found are direct neighbours of virulence genes, suggesting they might be relevant for the bacteria–host interaction.

  • This class of bacteria seems to have had (and still has in H. pylori and C. jejuni) a particular high rate of recombination, as their co-linear gene order has been almost entirely lost, despite being closely related.

  • Phase-variable contingency genes were also found in Wolinella succinogenes DSM 1740, which underlines the fact that it too has an issue with the host's immune system.

Abstract

Comparative genome analysis can be used to identify species-specific genes and gene clusters, and analysis of these genes can give an insight into the mechanisms involved in a specific bacteria–host interaction. Comparative analysis can also provide important information on the genome dynamics and degree of recombination in a particular species. This article describes the comparative genome analysis of representatives of four different Campylobacterales species — two pathogens of humans, Helicobacter pylori and Campylobacter jejuni, as well as Helicobacter hepaticus, which is associated with liver cancer in rodents, and the non-pathogenic commensal species, Wolinella succinogenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparative gene content analysis of sequenced ε-proteobacteria.
Figure 2: Functional classification of the genome inventory of sequenced ε-proteobacteria.
Figure 3: Species-specific and syntenic regions of sequenced ε-proteobacteria.
Figure 4: Genome-wide co-linearity analysis.
Figure 5: Visualization of intra- and interspecies recombinatorial events.
Figure 6: Microbial genomics and the study of bacterial pathogenicity.

Similar content being viewed by others

References

  1. Miroshnichenko, M. L. et al. Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov. within the class 'Epsilonproteobacteria', isolated from a deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 54, 41–45 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Engel, A. S. et al. Filamentous 'Epsilonproteobacteria' dominate microbial mats from sulfidic cave springs. Appl. Environ. Microbiol. 69, 5503–5511 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moyer, C. L., Dobbs, F. C. & Karl, D. M. Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 61, 1555–1562 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tomb, J. F. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–547 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Alm, R. A. et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176–180 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Parkhill, J. et al. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Suerbaum, S. et al. The complete genome sequence of the carcinogenic bacterium Helicobacter hepaticus. Proc. Natl Acad. Sci. USA 100, 7901–7906 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baar, C. et al. Complete genome sequence and analysis of Wolinella succinogenes. Proc. Natl Acad. Sci. USA 100, 11690–11695 (2003). References 4–8 report the genome sequences of the ε-proteobacterial species compared in this review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cover, T. L. & Blaser, M. J. Helicobacter pylori infection, a paradigm for chronic mucosal inflammation: pathogenesis and implications for eradication and prevention. Adv. Intern. Med. 41, 85–117 (1996).

    CAS  PubMed  Google Scholar 

  10. Solnick, J. V. & Schauer, D. B. Emergence of diverse Helicobacter species in the pathogenesis of gastric and enterohepatic diseases. Clin. Microbiol. Rev. 14, 59–97 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ward, J. M. et al. Chronic active hepatitis and associated liver tumors in mice caused by a persistent bacterial infection with a novel Helicobacter species. J. Natl Cancer Inst. 86, 1222–1227 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Blaser, M. J. Epidemiologic and clinical features of Campylobacter jejuni infections. J. Infect. Dis. 176 (Suppl.), S103–S105 (1997).

    Article  PubMed  Google Scholar 

  13. Nachamkin, I., Allos, B. M. & Ho, T. Campylobacter species and Guillain–Barré syndrome. Clin. Microbiol. Rev. 11, 555–567 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ang, C. W., Jacobs, B. C. & Laman, J. D. The Guillain–Barré syndrome: a true case of molecular mimicry. Trends Immunol. 25, 61–66 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Moran, A. P. & Prendergast, M. M. Molecular mimicry in Campylobacter jejuni and Helicobacter pylori lipopolysaccharides: contribution of gastrointestinal infections to autoimmunity. J. Autoimmun. 16, 241–256 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Wolin, M. J., Wolin, E. A. & Jacobs, N. J. Cytochrome-producing anaerobic vibrio, Vibrio succinogenes sp. n. J. Bacteriol. 81, 911–917 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Andersson, J. O. & Andersson, S. G. Insights into the evolutionary process of genome degradation. Curr. Opin. Genet. Dev. 9, 664–671 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Oshima, K. et al. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genet. 36, 27–29 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Simon, J., Gross, R., Klimmek, O. & Kröger, A. in The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community. 3rd ed. (eds Balows. A., Trüper, H. G., Dworkin, M., Harder, W. & Schleifer, K. H.) (Springer–Verlag, New York, 2000).

    Google Scholar 

  20. Vandamme, P. et al. Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int. J. Syst. Bacteriol. 41, 88–103 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Tamas, I., Klasson, L. M., Sandström, J. P. & Andersson, S. G. Mutualists and parasites: how to paint yourself into a (metabolic) corner. FEBS Lett. 498, 135–139 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Garcia-Vallve, S., Janssen, P. J. & Ouzounis, C. A. Genetic variation between Helicobacter pylori strains: gene acquisition or loss? Trends Microbiol. 10, 445–447 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Janssen, P. J., Audit, B. & Ouzounis, C. A. Strain-specific genes of Helicobacter pylori: distribution, function and dynamics. Nucleic Acids Res. 29, 4395–4404 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boneca, I. G. et al. A revised annotation and comparative analysis of Helicobacter pylori genomes. Nucleic Acids Res. 31, 1704–1714 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Henz, S. R., Auch, A. F., Huson, D. H., Nieselt-Struwe, K. & Schuster, S. C. Whole genome-based prokaryotic phylogeny. Bioinformatics 2004 (epub ahead of print).

  26. Kalman, S. et al. Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nature Genet. 21, 385–389 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Dobrindt, U., Hochhut, B., Hentschel, U. & Hacker, J. Genomic islands in pathogenic and environmental microorganisms. Nature Rev. Microbiol. 2, 414–424 (2004). Addresses the impact of horizontal gene transfer on the evolution of pathogenic as well as non-pathogenic bacteria.

    Article  CAS  Google Scholar 

  28. Hofreuter, D. & Haas, R. Characterization of two cryptic Helicobacter pylori plasmids: a putative source for horizontal gene transfer and gene shuffling. J. Bacteriol. 184, 2755–2766 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Simon, J. & Kröger, A. Identification and characterization of IS1302, a novel insertion element from Wolinella succinogenes belonging to the IS3 family. Arch. Microbiol. 170, 43–49 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Mahillon, J. & Chandler, M. Insertion sequences. Microbiol. Mol. Biol. Rev. 62, 725–774 (1998). General overview of the diverse types of insertion sequence elements, their classification, structural composition and versatile transposition mechanisms within a genome.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Aras, R. A., Kang, J., Tschumi, A. I., Harasaki, Y. & Blaser, M. J. Extensive repetitive DNA facilitates prokaryotic genome plasticity. Proc. Natl Acad. Sci. USA 100, 13579–13584 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Petersen, L., On, S. L. W. & Ussery, D. W. Visualization and significance of DNA structural motifs in the Campylobacter jejuni genome. Genome Lett. 1, 16–25 (2002).

    Article  CAS  Google Scholar 

  33. Doolittle, R. F. Biodiversity: microbial genomes multiply. Nature 416, 697–700 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Hacker, J. & Carniel, E. Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep. 2, 376–381 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bacon, D. J. et al. Involvement of a plasmid in virulence of Campylobacter jejuni 81-176. Infect. Immun. 68, 4384–4390 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alfredson, D. A. & Korolik, V. Sequence analysis of a cryptic plasmid pCJ419 from Campylobacter jejuni and construction of an Escherichia coliCampylobacter shuttle vector. Plasmid 50, 152–160 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Tatusov, R. L., Koonin, E. V. & Lipman, D. J. A genomic perspective on protein families. Science 278, 631–637 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Takata, T. et al. Phenotypic and genotypic variation in methylases involved in type II restriction–modification systems in Helicobacter pylori. Nucleic Acids Res. 30, 2444–2452 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ochman, H. & Moran, N. A. Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292, 1096–1099 (2001). Highlights the influence of gene acquisition and gene loss on genome evolution as major factors promoting the spectrum of interactions between bacteria and their hosts.

    Article  CAS  PubMed  Google Scholar 

  41. Adler, J., Hazelbauer, G. L. & Dahl, M. M. Chemotaxis toward sugars in Escherichia coli. J. Bacteriol. 115, 824–847 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hoch, J. A. & Silhavy, T. J. Two-component Signal Transduction. (ASM Press, Washington DC, 1995).

    Book  Google Scholar 

  43. Cases, I., de Lorenzo, V. & Ouzounis, C. A. Transcription regulation and environmental adaptation in bacteria. Trends Microbiol. 11, 248–253 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Marchant, J., Wren, B. & Ketley, J. Exploiting genome sequence: predictions for mechanisms of Campylobacter chemotaxis. Trends Microbiol. 10, 155–159 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Covacci, A., Telford, J. L., Del Giudice, G., Parsonnet, J. & Rappuoli, R. Helicobacter pylori virulence and genetic geography. Science 284, 1328–1333 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Martino, M. C. et al. Helicobacter pylori pore-forming cytolysin orthologue TlyA possesses in vitro hemolytic activity and has a role in colonization of the gastric mucosa. Infect. Immun. 69, 1697–1703 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ratledge, C. & Dover, L. G. Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 4, 881–941 (2000).

    Article  Google Scholar 

  48. Wooldridge, K. G. & Williams, P. H. Iron uptake mechanisms of pathogenic bacteria. FEMS Microbiol. Rev. 12, 325–348 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Braun, V. Iron uptake mechanisms and their regulation in pathogenic bacteria. Int. J. Med. Microbiol. 291, 67–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Lin, J., Michel, L. O. & Zhang, Q. CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrob. Agents Chemother. 46, 2124–2131 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Konkel, M. E., Kim, B. J., Rivera–Amill, V. & Garvis, S. G. Bacterial secreted proteins are required for the internalization of Campylobacter jejuni into cultured mammalian cells. Mol. Microbiol. 32, 691–701 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Lara-Tejero, M. & Galan, J. E. A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science 290, 354–357 (2002).

    Article  Google Scholar 

  53. Thelestam, M. & Frisan, T. Cytolethal distending toxins. Rev. Physiol. Biochem. Pharmacol. 2004 Aug 27 (epub ahead of print).

  54. Odenbreit, S. et al. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497–1500 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Gebert, B., Fischer, W. & Haas, R. The Helicobacter pylori vacuolating cytotoxin: from cellular vacuolation to immunosuppressive activities. Rev. Physiol. Biochem. Pharmacol. 2004 (epub ahead of print). A detailed review that summarizes the manifold interferences of the vacuolating cytotoxin VacA with the targeted host cell, inducing — apart from vacuole formation — apoptosis and modulatory effects on the host's immune system.

  56. Ilver, D., Barone, S., Mercati, D., Lupetti, P. & Telford, J. L. Helicobacter pylori toxin VacA is transferred to host cells via a novel contact-dependent mechanism. Cell. Microbiol. 6, 167–174 (2004). A recent paper that reports the discovery of a novel contact-dependent mechanism for transfer of bacterial surface-associated vacuolating cytotoxin VacA into the epithelial host cells.

    Article  CAS  PubMed  Google Scholar 

  57. Cascales, E. & Christie, P. J. The versatile bacterial type IV secretion systems. Nature Rev. Microbiol. 1, 137–149 (2003). Describes the phylogentic distribution and structural composition of the versatile bacterial type IV secretion systems and summarizes the effects of the secreted molecules on host-interacting targets.

    Article  CAS  Google Scholar 

  58. Bacon, D. J. et al. DNA sequence and mutational analyses of the pVir plasmid of Campylobacter jejuni 81-176. Infect. Immun. 70, 6242–6250 (2002). Presents the sequence of the C. jejuni virulence plasmid pVir that encodes for virulence (vir) homologues of the type IV secretion system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dorrell, N. et al. Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res. 11, 1706–1715 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wilson, D. L. et al. Variation of the natural transformation frequency of Campylobacter jejuni in liquid shake culture. Microbiology 149, 3603–3615 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Gilmore, M. S. & Ferretti, J. J. The thin line between gut commensal and pathogen. Science 299, 1999–2002 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Moxon, E. R., Rainey, P. B., Nowak, M. A. & Lenski, R. E. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4, 24–33 (1994). Reports the existence of highly mutable contingency genes, containing simple sequence repeats that are prone to slipping and mispairing.

    Article  CAS  PubMed  Google Scholar 

  63. Metzgar, D. & Wills, C. Evidence for the adaptive evolution of mutation rates. Cell 101, 581–584 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Linton, D., Karlyshev, A. V. & Wren, B. W. Deciphering Campylobacter jejuni cell surface interactions from the genome sequence. Curr. Opin. Microbiol. 4, 35–40 (2001). In this study, a β-1,3 galactosyltransferase was shown to be phase-variable expressed due to an intragenic homopolymeric tract, leading to alternate ganglioside-mimicking LOS structures.

    Article  CAS  PubMed  Google Scholar 

  65. Wang, G., Rasko, D. A., Sherburne, R. & Taylor, D. E. Molecular genetic basis for the variable expression of Lewis Y antigen in Helicobacter pylori: analysis of the α(1,2) fucosyltransferase gene. Mol. Microbiol. 31, 1265–1274 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Lozniewski, A. et al. Influence of Lewis antigen expression by Helicobacter pylori on bacterial internalization by gastric epithelial cells. Infect. Immun. 71, 2902–2906 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Saunders, N. J., Peden, J. F., Hood, D. W. & Moxon, E. R. Simple sequence repeats in the Helicobacter pylori genome. Mol. Microbiol. 27, 1091–1098 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. da Silva, A. C. et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417, 459–463 (2002).

    Article  PubMed  Google Scholar 

  69. Tillier, E. R. & Collins, R. A. Genome rearrangement by replication-directed translocation. Nature Genet. 26, 195–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. O'Toole, P. W., Lane, M. C. & Porwollik, S. Helicobacter pylori motility. Microbes Infect. 2, 1207–1214 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Garcia-Vallve, S., Romeu, A. & Palau, J. Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res. 10, 1719–1725 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Koonin, E. V. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nature Rev. Microbiol. 1, 127–136 (2003).

    Article  CAS  Google Scholar 

  73. Nierman, W. C. & Fraser, C. M. The power in comparison. Trends Microbiol. 12, 62–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Read, T. D. et al. Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae. Nucleic Acids Res. 31, 2134–2147 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Parkhill, J. et al. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nature Genet. 35, 32–40 (2003).

    Article  PubMed  Google Scholar 

  76. Seshadri, R. et al. Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes. Proc. Natl Acad. Sci. USA 101, 5646–5651 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wren, B. W. The yersiniae — a model genus to study the rapid evolution of bacterial pathogens. Nature Rev. Microbiol. 1, 55–64 (2003).

    Article  CAS  Google Scholar 

  78. Le Bouder-Langevin, S., Capron-Montaland, I., De Rosa, R. & Labedan, B. A strategy to retrieve the whole set of protein modules in microbial proteomes. Genome Res. 12, 1961–1973 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rasko, D. A. et al. The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res. 32, 977–988 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Snyder, L. A. S., Davies, J. K. & Saunders, N. J. Microarray genomotyping of key experimental strains of Neisseria gonorrhoeae reveals gene complement diversity and five new neisserial genes associated with minimal mobile elements. BMC Genomics 5, 23 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Poly, F., Threadgill, D. & Stintzi, A. Identification of Campylobacter jejuni ATCC 43431-specific genes by whole microbial genome comparisons. J. Bacteriol. 186, 4781–4795 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Leonard, E. E., Tompkins, L. S., Falkow, S. & Nachamkin, I. Comparison of Campylobacter jejuni isolates implicated in Guillain–Barré syndrome and strains that cause enteritis by a DNA microarray. Infect. Immun. 72, 1199–1203 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pearson, B. M. et al. Comparative genome analysis of Campylobacter jejuni using whole genome DNA microarrays. FEBS Lett. 554, 224–230 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Gaynor, E. C. et al. The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence-associated phenotypes. J. Bacteriol. 186, 503–517 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Aras, R. A. et al. Plasticity of repetitive DNA sequences within a bacterial (Type IV) secretion system component. J. Exp. Med. 198, 1349–1360 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. de Kievit, T. R., Kakai, Y., Register, J. K., Pesci, E. C. & Iglewski, B. H. Role of the Pseudomonas aeruginosa las and rhl quorum-sensing systems in rhlI regulation. FEMS Microbiol. Lett. 212, 101–106 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Grigoriev, A. Analyzing genomes with cumulative skew diagrams. Nucleic Acids Res. 26, 2286–2290 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Frank, A. C. & Lobry, J. R. Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene 238, 65–77 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ramkumar Nandakumar and Daniel Richter for assistance with the computation and graphics. This work was funded by the Max-Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan C. Schuster.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Entrez

CagA

Campylobacter jejuni NCTC 11168

Chlamydia pneumoniae

Chlamydia trachomatis

cmeABC

Helicobacter hepaticus ATCC 51449

Helicobacter pylori 26695

Helicobacter pylori J99

pVir

Wolinella succinogenes DSM 1740

FURTHER INFORMATION

Stephan C. Schuster's laboratory

COG database

PyloriGene database

Helicobacter Foundation

REBASE

DOLOP

CAZy

Glossary

CHEMOLITHOTROPHIC

An organism that is capable of using CO, CO2 or carbonates as the sole source of carbon for cell biosynthesis, and that derives energy from the oxidation of reduced inorganic or organic compounds.

CHEMOORGANOTROPHIC

An organism that derives energy from organic sources in a light-independent manner.

ORTHOLOGUES

Homologous genes that originated through speciation.

FLEXIBLE GENOME

A bacterial chromosome represents a mosaic structure composed of ancestral DNA, the core genome, and the horizontally acquired flexible genome pool.

LOW-COMPLEXITY ZONES

Genomic regions with a high level of repetitiveness of distinct nucleotides.

SYNTENIC

A genomic region found in two organisms with a co-linear order of genes (or nucleotides). Syntenic regions are found in chromosomal or plasmid-encoded replicons.

PARALOGOUS

Homologous genes that originated by gene duplication

TWO-COMPONENT SIGNAL-TRANSDUCTION SYSTEMS

A signal-transduction system using two components — a histidine protein kinase (HPK) and a response regulator (RR) — to sense and respond to external stimuli. The HPK autophosphorylates at a histidyl residue following stimulation and transfers that phosphoryl group to a cognate RR at its aspartyl residue to induce a conformational change in the regulatory domain, which in turn activates an associated domain.

LEWISXY ANTIGENS

Fucosylated carbohydrate antigens usually found on the surface of eukaryotic cells. They are structurally related to the human ABH blood group system.

HOMOPOLYMERIC TRACTS

The simplest but most frequent low-complexity zones in prokaryotes are simple sequence repeats (SSR), which consist either of homopolymeric tracts or multimeric repeats. These genomic regions are prone to slippage and mispairing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eppinger, M., Baar, C., Raddatz, G. et al. Comparative analysis of four Campylobacterales. Nat Rev Microbiol 2, 872–885 (2004). https://doi.org/10.1038/nrmicro1024

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1024

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing