Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chlamydia and apoptosis: life and death decisions of an intracellular pathogen

Key Points

  • The chlamydiae are important obligate intracellular prokaryotic pathogens that replicate in cytoplasmic vesicles in a variety of different eukaryotic host cells, including the mucosal and vascular epithelia, smooth muscle cells, monocytes and macrophages.

  • A key pathogenic strategy of the chlamydiae is the ability to induce host-cell apoptosis under some circumstances and actively inhibit apoptosis under others. This flexible strategy is crucial for the pathogenic success of the chlamydiae as these organisms cause diseases in many different species and in many different host cell types, and a pro-apoptotic response in one host species or cell might not be appropriate in another host species or cell type. Also, the intracellular growth cycle of the chlamydiae is complex and can be productive or non-productive under different growth conditions and the growth status of the bacteria might affect their apoptotic activity.

  • Chlamydia-mediated protection against apoptosis occurs via a variety of different mechanisms. It is thought that Chlamydia trachomatis and Chlamydia pneumoniae can protect infected cells by inhibiting the release of cytochrome c from mitochondria. These chlamydial species also upregulate the expression of the anti-apoptotic mediators IAP and MCL-1. C. pneumoniae infection of monocytes also activates the transcription of NF-κB, although how this transcription factor contributes to the inhibition of apoptosis is still unclear. Protection against apoptosis may be a strategy that the chlamydiae use to maintain a persistent, chronic infection.

  • Chlamydia induction of host cell death has been a recognised phenomenon for more than 30 years, but the mechanisms of this cytotoxicity have only recently begun to be explored. Again, it is likely that different chlamydial species or biovars use different mechanisms and that the same species could use different mechanisms in different host species or cell types. Recent studies have shown that this apoptosis may be caspase independent. A chlamydial protein known as CADD — Chlamydia protein associating with death receptors — was recently identified and it has been suggested that CADD inhibits Fas-mediated apoptosis or induces cell death under different conditions.


The chlamydiae are important obligate intracellular prokaryotic pathogens that, each year, are responsible for millions of human infections involving the eye, genital tract, respiratory tract, vasculature and joints. The chlamydiae grow in cytoplasmic vesicles in susceptible host cells, which include the mucosal epithelium, vascular endothelium, smooth muscle cells, circulating monocytes and recruited or tissue-specific macrophages. One important pathogenic strategy that chlamydiae have evolved to promote their survival is the modulation of programmed cell death pathways in infected host cells. The chlamydiae can elicit the induction of host cell death, or apoptosis, under some circumstances and actively inhibit apoptosis under others. This subtle pathogenic mechanism highlights the manner in which these highly successful pathogens take control of infected cells to promote their own survival — even under the most adverse circumstances.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Infected cells can die through apoptosis or necrosis, or most likely a combination of both.
Figure 2: The chlamydiae have the ability to both activate and inhibit apoptotic signalling pathways in eukaryotic host cells.


  1. 1

    Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004).

    CAS  Article  Google Scholar 

  2. 2

    Bloss, T. A., Witze, E. S. & Rothman, J. H. Suppression of CED-3-independent apoptosis by mitochondrial β-NAC in Caenorhabditis elegans. Nature 424, 1066–1071 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B. & Cohen, S. M. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36 (2003).

    CAS  Article  Google Scholar 

  4. 4

    Lindsten, T. et al. The combined functions of pro-apoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389–1399 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Juo, P., Kuo, C. J., Yuan, J. & Blenis, J. Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr. Biol. 8, 1001–1008 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Wallach, D. et al. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu. Rev. Immunol. 17, 331–367 (1999).

    CAS  Article  Google Scholar 

  7. 7

    Savill, J. & Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784–788 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Fadok, V. A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J. Clin. Invest. 101, 890–898 (1998).

    CAS  Article  Google Scholar 

  9. 9

    Huynh, M. -L., Fadok, V. A. & Henson, P. M. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-β1 secretion and the resolution of inflammation. J. Clin. Invest. 109, 41–50 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Gallucci, S. & Matzinger, P. Danger signals: SOS to the immune system. Curr. Opin. Immunol. 13, 114–119 (2001).

    CAS  Article  Google Scholar 

  11. 11

    Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    CAS  Article  Google Scholar 

  12. 12

    Di Virgilio, F. et al. Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 97, 587–600 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Müller, S. et al. The double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO J. 16, 4337–4340 (2001).

    Article  Google Scholar 

  14. 14

    Shi, Y., Evans, J. E. & Rock, K. L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Coutinho-Silva, R. et al. Inhibition of chlamydial infectious activity due to P2X7 receptor-dependent phospholipase D activation. Immunity 19, 403–412 (2003).

    CAS  Article  Google Scholar 

  16. 16

    Kusner, D. J. & Barton, J. A. ATP stimulates human macrophages to kill intracellular virulent Mycobacterium tuberculosis via calcium-dependent phagosome–lysosome fusion. J. Immunol. 167, 3308–3315 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Lammas, D. A. et al. ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z(P2X7) receptors. Immunity 7, 433–444 (1997).

    CAS  Article  Google Scholar 

  18. 18

    Takaoka, A. et al. Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence. Nature 424, 516–523 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Everett, H. & McFadden, G. Apoptosis: an innate immune response to virus infection. Trends Microbiol. 7, 160–165 (1999).

    CAS  Article  Google Scholar 

  20. 20

    Kaplan, D. & Sieg, S. Role of Fas/Fas ligand apoptotic pathway in human immunodeficiency virus type I disease. J. Virol. 72, 6279–6282 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Evan, G. & Littlewood, T. A matter of life and cell death. Science 281, 1317–1322 (1998).

    CAS  Article  Google Scholar 

  22. 22

    Weinrauch, Y. & Zychlinsky, A. The induction of apoptosis by bacterial pathogens. Annu. Rev. Microbiol. 53, 155–187 (1999).

    CAS  Article  Google Scholar 

  23. 23

    Galmiche, A. et al. The N-terminal 34-kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. EMBO J. 19, 6361–6370 (2000).

    CAS  Article  Google Scholar 

  24. 24

    Zychlinsky, A., Prevost, M. C. & Sansonetti, P. J. Shigella flexneri induces apoptosis in infected macrophages. Nature 358, 167–169 (1992).

    CAS  Article  Google Scholar 

  25. 25

    Mills, S. D. et al. Yersinia enterocolitica induces apoptosis in macrophages by a process requiring functional type III secretion and translocation mechanisms and involving YopP, presumably acting as an effector protein. Proc. Natl Acad. Sci. USA 94, 12638–12643 (1997).

    CAS  Article  Google Scholar 

  26. 26

    Clifton, D. R. et al. NF-κB-dependent inhibition of apoptosis is essential for host cell survival during Rickettsia rickettsii infection. Proc. Natl Acad. Sci. USA 85, 4641–4651 (1998).

    Google Scholar 

  27. 27

    Dean, D. & Powers, V. C. Persistent Chlamydia trachomatis infections resist apoptotic stimuli. Infect. Immun. 69, 2442–2447 (2001). The first data to indicate that protection against apoptosis might be related to the ability of a host cell to maintain persistent chlamydial infection.

    CAS  Article  Google Scholar 

  28. 28

    Fan, T. et al. Inhibition of apoptosis in Chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J. Exp. Med. 187, 487–496 (1998). The first demonstration that cells infected with C. trachomatis are resistant to apoptosis mediated by external inducers of apoptosis.

    CAS  Article  Google Scholar 

  29. 29

    Fischer, S. F., Harlander, T., Vier, J. & Hacker, G. Protection against CD95-induced apoptosis by chlamydial infection at a mitochondrial step. Infect. Immun. 72, 1107–1115 (2004). This elegant study shows that Chlamydia -infected cells are resistant to mitochondrion-dependent apoptosis, but are sensitive to death if apoptosis does not require a mitochondrial step.

    CAS  Article  Google Scholar 

  30. 30

    Fischer, S. F., Schwarz, C., Vier, J. & Hacker, G. Characterization of anti-apoptotic activities of Chlamydia pneumoniae in human cells. Infect. Immun. 69, 7121–7129 (2001).

    CAS  Article  Google Scholar 

  31. 31

    Rajalingam, K. et al. Epithelial cells infected with Chlamydophila pneumoniae (Chlamydia pneumoniae) are resistant to apoptosis. Infect. Immun. 69, 7880–7888 (2001).

    CAS  Article  Google Scholar 

  32. 32

    Greene, W., Xiao, Y., Huang, Y., McClarty, G. & Zhong, G. Chlamydia-infected cells continue to undergo mitosis and resist induction of apoptosis. Infect. Immun. 72, 451–460 (2004).

    CAS  Article  Google Scholar 

  33. 33

    Wahl, C. et al. Survival of Chlamydia pneumoniae-infected Mono Mac 6 cells is dependent on NF-κB binding activity. Infect. Immun. 69, 7039–7045 (2001).

    CAS  Article  Google Scholar 

  34. 34

    Karin, M. & Lin, A. NF-κB at the crossroads of life and death. Nature Immunol. 3, 221–227 (2002).

    CAS  Article  Google Scholar 

  35. 35

    Hess, S. et al. More than just innate immunity: comparative analysis of Chlamydophila pneumoniae and Chlamydia trachomatis effects on host-cell gene regulation. Cell. Microbiol. 5, 785–795 (2003).

    CAS  Article  Google Scholar 

  36. 36

    Hess, S. et al. The reprogrammed host: Chlamydia trachomatis-induced upregulation of glycoprotein 130 cytokines, transcription factors, and anti-apoptotic genes. Arthritis Rheum. 44, 2392–2401 (2001).

    CAS  Article  Google Scholar 

  37. 37

    Xia, M., Bumagarner, R. E., Lampe, M. F. & Stamm, W. E. Chlamydia trachomatis infection alters host cell transcription in diverse cellular pathways. J. Infect. Dis. 187, 424–434 (2003).

    CAS  Article  Google Scholar 

  38. 38

    Beatty, W. L., Byrne, G. I. & Morrison, R. P. Morphologic and antigenic characterization of interferon-γ-mediated persistent Chlamydia trachomatis infection in vitro. Proc. Natl Acad. Sci. USA 90, 3998–4002 (1993). An original elaboration of how persistent chlamydial growth is linked to chronic disease pathogenesis.

    CAS  Article  Google Scholar 

  39. 39

    Hogan, R. J., Mathews, S. A., Mukhopadhyay, S., Summersgill, J. T. & Timms, P. Chlamydial persistence: beyond the biphasic paradigm. Infect. Immun. 72, 1843–1855 (2004).

    CAS  Article  Google Scholar 

  40. 40

    Chang, G. T. & Moulder, J. W. Loss of inorganic ions from host cells infected with Chlamydia psittaci. Infect. Immun. 19, 827–832 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Friis, R. R. Interaction of L cells and Chlamydia psittaci: entry of the parasite and host responses to its development. J. Bacteriol. 180, 706–721 (1972). A classic ultrastructural description of the nature of the chlamydial inclusion.

    Google Scholar 

  42. 42

    Fudyk, T., Olinger, L. & Stephens, R. S. Selection of mutant cell lines resistant to infection by Chlamydia trachomatis and Chlamydia pneumoniae. Infect. Immun. 70, 6446–6447 (2002).

    Article  Google Scholar 

  43. 43

    Todd, W. J. & Storz, J. Ultrastructural cytochemical evidence for the activation of lysosomes in the cytocidal effect of Chlamydia psittaci. Infect. Immun. 12, 638–646 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Wyrick, P. B., Brownridge, E. A. & Ivins, B. E. Interaction of Chlamydia psittaci with mouse peritoneal macrophages. Infect. Immun. 19, 1061–1067 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    McCoy, A. J., Sandlin, R. C. & Maurelli, A. T. In vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance. J. Bacteriol. 185, 1218–1228 (2003).

    CAS  Article  Google Scholar 

  46. 46

    Gibellini, D., Panaya, R. & Rumpianesi, F. Induction of apoptosis by Chlamydia psittaci and Chlamydia trachomatis infection in tissue culture cells. Zentralblatt für Bakteriologie 288, 35–43 (1998).

    CAS  Article  Google Scholar 

  47. 47

    Ojcius, D. M., Souque, P., Perfettini, J. L. & Dautry-Varsat, A. Apoptosis of epithelial cells and macrophages due to infection with the obligate intracellular pathogen Chlamydia psittaci. J. Immunol. 161, 4220–4226 (1998).

    CAS  PubMed  Google Scholar 

  48. 48

    Perfettini, J. -L. et al. Effect of Chlamydia trachomatis infection and subsequent TNF-α secretion on apoptosis in the murine genital tract. Infect. Immun. 68, 2237–2244 (2000).

    CAS  Article  Google Scholar 

  49. 49

    Perfettini, J. L. et al. Role of Bcl-2 family members in caspase-independent apoptosis during Chlamydia infection. Infect. Immun. 70, 55–61 (2002).

    CAS  Article  Google Scholar 

  50. 50

    Jäättelä, M. & Tschopp, J. Caspase-independent cell death in T lymphocytes. Nature Immunol. 4, 416–423 (2003).

    Article  Google Scholar 

  51. 51

    Leist, M. & Jäättelä, M. Four deaths and a funeral: from caspses to alternative mechanisms. Nature Rev. Mol. Cell Biol. 2, 589–598 (2001).

    CAS  Article  Google Scholar 

  52. 52

    Lorenzo, H. K., Susin, S. A., Penninger, J. M. & Kroemer, G. Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ. 6, 516–524 (1999).

    CAS  Article  Google Scholar 

  53. 53

    Pastorino, J. G., Chen, S. T., Tafani, M., Snyder, J. W. & Farber, J. L. The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J. Biol. Chem. 273, 7770–7775 (1998).

    CAS  Article  Google Scholar 

  54. 54

    Xiang, J., Chao, D. T. & Korsmeyer, S. J. BAX-induced cell death may not require interleukin 1β-converting enzyme-like proteases. Proc. Natl Acad. Sci. USA 93, 14559–14563 (1996).

    CAS  Article  Google Scholar 

  55. 55

    Azenabor, A. A. & Mahony, J. B. Generation of reactive oxygen species and formation of membrane lipid peroxides in cells infected with Chlamydia trachomatis. Int. J. Infect. Dis. 4, 46–50 (1999).

    Article  Google Scholar 

  56. 56

    Hatch, G. M. & McClarty, G. Cardiolipin remodeling in eukaryotic cells infected with Chlamydia trachomatis is linked to elevated mitochondrial metabolism. Biochem. Biophys. Res. Commun. 243, 356–360 (1998).

    CAS  Article  Google Scholar 

  57. 57

    Ojcius, D. M., Degani, H., Mispelter, J. & Dautry-Varsat, A. Enhancement of ATP levels and glucose metabolism during an infection of Chlamydia. J. Biol. Chem. 273, 7052–7058 (1998).

    CAS  Article  Google Scholar 

  58. 58

    Perfettini, J. L. et al. Role of proapoptotic BAX in propagation of Chlamydia muridarum (the mouse pneumonitis strain of Chlamydia trachomatis) and the host inflammatory response. J. Biol. Chem. 278, 9496–9502 (2003). Demonstration that the efficiency of Chlamydia infection and pathology are linked to BAX activation in vaginally infected mice.

    CAS  Article  Google Scholar 

  59. 59

    Belland, R. J. et al. Chlamydia trachomatis cytotoxicity associated with complete and partial cytotoxin genes. Proc. Natl Acad. Sci. USA 98, 13984–13989 (2001). Initial documentation of a chlamydial toxin, one of the few true virulence factors identified for this pathogen.

    CAS  Article  Google Scholar 

  60. 60

    Jungas, T., Verbeke, P., Darville, T. & Ojcius, D. M. Cell death, BAX activation, and HMGB1 release during infection with Chlamydia. Microbes Infect. (in the press).

  61. 61

    DeFilippis, R. A., Goodwin, E. C., Wu, L. & DiMaio, D. Endogenous human papillomavirus E6 and E7 proteins differentially regulate proliferation, senescence, and apoptosis in HeLa cervical carcinoma cells. J. Virol. 77, 1551–1563 (2003).

    CAS  Article  Google Scholar 

  62. 62

    Stenner-Liewen, F. et al. CADD, a Chlamydia protein that interacts with death receptors. J. Biol. Chem. 277, 9633–9636 (2002). First identification of a chlamydial mediator that modulates apoptosis.

    CAS  Article  Google Scholar 

  63. 63

    Schwarzenbacher, R. et al. Structure of the Chlamydia protein CADD reveals a redox enzyme that modulates host cell apoptosis. J. Biol. Chem. 279, 29320–29324 (2004).

    CAS  Article  Google Scholar 

  64. 64

    Su, H. et al. Activation of Raf/MEK/ERK/cPLA2 signaling pathway is essential for chlamydial acquisition of host glycerophospholipids. J. Biol. Chem. 279, 9409–9416 (2004).

    CAS  Article  Google Scholar 

  65. 65

    Slepenkin, A., Motin, V., de la Maza, L. M. & Peterson, E. M. Temporal expression of type III secretion genes of Chlamydia pneumoniae. Infect. Immun. 71, 2555–2562 (2003).

    CAS  Article  Google Scholar 

  66. 66

    Gavrilescu, L. C. & Denkers, E. Y. Apoptosis and the balance of homeostatic and pathologic responses to protozoan infection. Infect. Immun. 71, 6109–6115 (2003).

    CAS  Article  Google Scholar 

  67. 67

    Thornberry, N. A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312–1316 (1998).

    CAS  Article  Google Scholar 

  68. 68

    Messmer, U. K. & Pfeilschifter, J. New insights into the mechanism for clearance of apoptotic cells. Bioessays 22, 878–881 (2000).

    CAS  Article  Google Scholar 

  69. 69

    Martinou, J. -C. & Green, D. R. Breaking the mitochondrial barrier. Nature Rev. Mol. Cell Biol. 2, 63–67 (2001).

    CAS  Article  Google Scholar 

  70. 70

    Jungas, T. et al. Glutathione levels and BAX activation during apoptosis due to oxidative stress in cells expressing wild-type and mutant cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 277, 27912–27918 (2002).

    CAS  Article  Google Scholar 

  71. 71

    Khaled, A. R., Kim, K., Hofmeister, R., Muegge, K. & Durum, S. K. Withdrawal of IL-7 induces Bax translocation from cytosol to mitochondria through a rise in intracellular pH. Proc. Natl Acad. Sci. USA 96, 14476–14481 (1999).

    CAS  Article  Google Scholar 

  72. 72

    Matsuyama, S., Llopis, J., Deveraux, Q. L., Tsien, R. Y. & Reed, J. C. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nature Cell Biol. 2, 318–325 (2000).

    CAS  Article  Google Scholar 

  73. 73

    Belland, R. J., Ojcius, D. M. & Byrne, G. I. Disease watch focus: Chlamydia. Nature Rev. Microbiol. 2, 530–531 (2004).

    CAS  Article  Google Scholar 

  74. 74

    Campbell, L. A. & Kuo, C. C. Chlamydia pneumoniae — an infectious risk factor for atherosclerosis? Nature Rev. Microbiol. 2, 23–32 (2004).

    CAS  Article  Google Scholar 

  75. 75

    Byrne, G. I. Chlamydia uncloaked. Proc. Natl Acad. Sci. USA 100, 8040–8042 (2003).

    CAS  Article  Google Scholar 

  76. 76

    Perfettini, J. L. et al. Cell death and inflammation during infection with the obligate intracellular pathogen. Chlamydia. Biochimie 85, 763–769 (2003).

    CAS  Article  Google Scholar 

  77. 77

    Fischer, S. F. et al. Chlamydia inhibit host-cell apoptosis by degradation of pro-apoptotic BH3-only proteins. J. Exp. Med. (in the press).

Download references


Work in the authors' laboratories is supported by grants from the Public Health Service. We thank O. S. Mahdi for her help in organizing and critiquing the manuscript.

Author information



Corresponding author

Correspondence to Gerald I. Byrne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links



Chlamydia pneuomoniae

Chlamydia psittaci

Chlamydia trachomatis

Mycobacterium tuberculosis


Rickettsia rickettsii















Gerald I. Byrne's laboratory

David M. Ojcius' laboratory



A form of cell death, also known as programmed cell death, which is typically characterized by death receptor ligand or mitochondria-elicited activation of caspase proteases and which leads to nuclear condensation, DNA fragmentation and clearance of the dead cell by surrounding tissue.


Family of cytosolic proteases that contain a cysteine residue within the active site, and which cleave their substrate after an aspartic acid residue. They can be divided into inflammatory caspases, which cleave and activate pro-inflammatory cytokines, and pro-apoptotic caspases, which cleave and activate pro-apoptotic substrates.


An accidental cell death process that is characterized by an accompanying inflammatory response.


A family of receptors that are stimulated by the purine nucleotides — ATP, ADP, AMP and UTP.


Cells that recruit caspase 8, which results in the subsequent cleavage of caspase 3.


Cells that activate caspase 3 through a mitochondria-dependent step.


The phenotypical distinction of bacteria within the same species based on biological tests such as simple biochemical and/or enzymatic differences.


A pathway of caspase activation that requires release of cytochrome c from the mitochondria.


An assay that allows visualization of the cytopathic effect of viruses or bacteria in a monolayer of host cells. The plaque centre lacks cells due to infection-induced lysis.


Proteins that contain a BCL-2 homology (BH) 3 domain, but not the other BH domains usually found in BCL-2 family proteins. The BH3 domain is required to inhibit the activity of pro-survival proteins related to BCL-2.


Cytopathic toxins, found in many bacteria, which inactivate host-cell proteins that regulate actin polymerization, causing the cells to round up.


A region of limited homology consisting of about 80 residues close to the intracellular carboxyl terminus of some cell-membrane receptors that is essential for the receptors to generate a signal leading to apoptosis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Byrne, G., Ojcius, D. Chlamydia and apoptosis: life and death decisions of an intracellular pathogen. Nat Rev Microbiol 2, 802–808 (2004).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing