Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Variant surface antigens of Plasmodium falciparum and their roles in severe malaria

Key Points

  • In cases of severe malaria, most deaths occur within the first 24 h of hospitalization, when the characteristic features of high parasite load and obstructed microvasculature are present. Novel adjunct drugs need to be developed as it is crucial to stop the infection and restore blood flow without delay.

  • Plasmodium falciparum exports polypeptides to the surface of infected erythrocytes; for example, to import nutrients and to bind to other erythrocytes and the host microvasculature. Binding is mediated by the adhesive polypeptides Plasmodium falciparum-encoded repetitive interspersed families of polypeptides (RIFIN), subtelomeric variant open reading frame (STEVOR) and P. falciparum erythrocyte membrane protein 1 (PfEMP1).

  • P. falciparum has the ability to express allelic variants of hundreds of different versions of erythrocyte surface antigens. Most of these genes belong to three large multigene families, the repetitive interspersed family (rif), stevor and var families, which encode RIFIN, STEVOR and PfEMP1, respectively.

  • RIFIN, STEVOR and PfEMP1 mediate the binding of parasite-infected red blood cells (pRBCs) to the vascular endothelium (cytoadherence), to red blood cells (rosetting), and to leukocytes and serum proteins.

  • Cytoadherence and rosetting are involved in the pathogenesis of malaria by blocking blood flow when binding is excessive, leading to a lack of oxygen in tissues, excessive production of lactate and a reduction of the pH in blood and tissues, which can culminate in respiratory distress, coma, severe anaemia or combinations thereof — the hallmarks of severe malaria.

  • A correlation between the clinical severity of malaria and the ABO blood group of a patient suggests that the O blood group protects against severe disease, a hypothesis that is supported by genome-wide association studies. In addition, this suggestion is supported by results from various in vitro studies.

Abstract

Proliferation and differentiation inside erythrocytes are important steps in the life cycle of Plasmodium spp. To achieve these, the parasites export polypeptides to the surface of infected erythrocytes; for example, to import nutrients and to bind to other erythrocytes and the host microvasculature. Binding is mediated by the adhesive polypeptides Plasmodium falciparum-encoded repetitive interspersed families of polypeptides (RIFINs), subtelomeric variant open reading frame (STEVOR) and P. falciparum erythrocyte membrane protein 1 (PfEMP1), which are encoded by multigene families to ensure antigenic variation and evasion of host immunity. These variant surface antigens are suggested to mediate the sequestration of infected erythrocytes in the microvasculature and block the blood flow when binding is excessive. In this Review, we discuss the multigene families of surface variant polypeptides and highlight their roles in causing severe malaria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Plasmodium falciparum life cycle and sequestration of pRBCs.
Figure 2: Plasmodium falciparum proteins form knobs on the erythrocyte surface.
Figure 3: Structure of PfEMP1.
Figure 4: Domain structure and suggested functions of RIFINs and STEVORs.
Figure 5: A model of sequestration of Plasmodium falciparum pRBC in the microvasculature and severe malaria.

Similar content being viewed by others

References

  1. Garnham, P. C. C. Malaria Parasites and other Haemosporidia (Blackwell Scientific Publications, 1966).

    Google Scholar 

  2. World Health Organization. Severe malaria. Trop. Med. Int. Health 19 (Suppl. 1), 7–131 (2014).

  3. Miller, L. H., Baruch, D. I., Marsh, K. & Doumbo, O. K. The pathogenic basis of malaria. Nature 415, 673–679 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Scherf, A., Lopez-Rubio, J. J. & Riviere, L. Antigenic variation in Plasmodium falciparum. Annu. Rev. Microbiol. 62, 445–470 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Helmby, H., Cavelier, L., Pettersson, U. & Wahlgren, M. Rosetting Plasmodium falciparum-infected erythrocytes express unique strain-specific antigens on their surface. Infect. Immun. 61, 284–288 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baruch, D. I. et al. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82, 77–87 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Su, X. Z. et al. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82, 89–100 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Cheng, Q. et al. stevor and rif are Plasmodium falciparum multicopy gene families which potentially encode variant antigens. Mol. Biochem. Parasitol. 97, 161–176 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Fernandez, V., Hommel, M., Chen, Q., Hagblom, P. & Wahlgren, M. Small, clonally variant antigens expressed on the surface of the Plasmodium falciparum-infected erythrocyte are encoded by the rif gene family and are the target of human immune responses. J. Exp. Med. 190, 1393–1404 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kyes, S. A., Rowe, J. A., Kriek, N. & Newbold, C. I. Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Proc. Natl Acad. Sci. USA 96, 9333–9338 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaviratne, M., Khan, S. M., Jarra, W. & Preiser, P. R. Small variant STEVOR antigen is uniquely located within Maurer's clefts in Plasmodium falciparum-infected red blood cells. Eukaryot. Cell 1, 926–935 (2002). Together with references 5–10, this paper unveils the first description of the rif, stevor and var genes, and the presence of their encoded proteins (RIFIN, STEVOR and PfEMP1) at the surface of infected erythrocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gardner, M. J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Dondorp, A. M., Kager, P. A., Vreeken, J. & White, N. J. Abnormal blood flow and red blood cell deformability in severe malaria. Parasitol. Today 16, 272–272 (2000).

    Article  Google Scholar 

  14. Tiburcio, M. et al. A switch in infected erythrocyte deformability at the maturation and blood circulation of Plasmodium falciparum transmission stages. Blood 119, e172–e180 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ishioka, H. et al. Sequestration and red cell deformability as determinants of hyperlactatemia in Falciparum malaria. J. Infect. Dis. 213, 788–793 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. David, P. H., Hommel, M., Miller, L. H., Udeinya, I. J. & Oligino, L. D. Parasite sequestration in Plasmodium falciparum malaria: spleen and antibody modulation of cytoadherence of infected erythrocytes. Proc. Natl Acad. Sci. USA 80, 5075–5079 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marchiafava, E. & Bignami, A. Sulle febbri malariche estivo-autunnali [Italian](Ermanno Loescher & Co., 1892).

    Google Scholar 

  18. Trager, W., Rudzinska, M. A. & Bradbury, P. C. The fine structure of Plasmodium falciparum and its host erythrocytes in natural malarial infections in man. Bull. World Health Organ. 35, 883–885 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Macpherson, G. G., Warrell, M. J., White, N. J., Looareesuwan, S. & Warrell, D. A. Human cerebral malaria — a quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am. J. Pathol. 119, 385–401 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wahlgren, M. Antigens and antibodies involved in humoral immunity to Plasmodium falciparum. Thesis, Karolinska Institutet https://openarchive.ki.se/xmlui/handle/10616/45689 (1986). Together with reference 21, this study provides the first description of rosetting with P. falciparum -infected and P. fragile -infected erythrocytes.

  21. David, P. H., Handunnetti, S. M., Leech, J. H., Gamage, P. & Mendis, K. N. Rosetting: a new cytoadherence property of malaria-infected erythrocytes. Am. J. Trop. Med. Hyg. 38, 289–297 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Udomsangpetch, R. et al. Plasmodium falciparum infected erythrocytes form spontaneous erythrocyte rosettes. J. Exp. Med. 169, 1835–1840 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Handunnetti, S. M., David, P. H., Perera, K. L. & Mendis, K. N. Uninfected erythrocytes form “rosettes” around Plasmodium falciparum infected erythrocytes. Am. J. Trop. Med. Hyg. 40, 115–118 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Carlson, J. et al. Human cerebral malaria: association with erythrocyte rosetting and lack of anti-rosetting antibodies. Lancet 336, 1457–1460 (1990). This manuscript reveals that rosetting is associated with cerebral malaria.

    Article  CAS  PubMed  Google Scholar 

  25. Roberts, D. J., Pain, A., Kai, O., Kortok, M. & Marsh, K. Autoagglutination of malaria-infected red blood cells and malaria severity. Lancet 355, 1427–1428 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Kaul, D. K. et al. Rosetting of Plasmodium falciparum-infected red blood cells with uninfected red blood cells enhances microvascular obstruction under flow conditions. Blood 78, 812–819 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Dondorp, A. M. et al. Direct in vivo assessment of microcirculatory dysfunction in severe falciparum malaria. J. Infect. Dis. 197, 79–84 (2008). Together with reference 26, this study describes the microvascular obstruction of P. falciparum -infected erythrocytes (cytoadherence and rosetting) ex vivo and in humans with severe malaria.

    Article  CAS  PubMed  Google Scholar 

  28. White, N. J., Turner, G. D., Medana, I. M., Dondorp, A. M. & Day, N. P. The murine cerebral malaria phenomenon. Trends Parasitol. 26, 11–15 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Clark, H. C. The diagnostic value of the placental blood film in aestivo-autumnal malaria. J. Exp. Med. 22, 427–444 (1915).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Milner, D. A. Jr, Montgomery, J., Seydel, K. B. & Rogerson, S. J. Severe malaria in children and pregnancy: an update and perspective. Trends Parasitol. 24, 590–595 (2008).

    Article  PubMed  Google Scholar 

  31. Rogerson, S. J. Malaria in pregnancy and the newborn. Adv. Exp. Med. Biol. 659, 139–152 (2010).

    Article  PubMed  Google Scholar 

  32. Treutiger, C. J. et al. Rosette formation in Plasmodium falciparum isolates and anti-rosette activity of sera from Gambians with cerebral or uncomplicated malaria. Am. J. Trop. Med. Hyg. 46, 503–510 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Rowe, A., Obeiro, J., Newbold, C. I. & Marsh, K. Plasmodium falciparum rosetting is associated with malaria severity in Kenya. Infect. Immun. 63, 2323–2326 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rowe, J. A. et al. Blood group O protects against severe Plasmodium falciparum malaria through the mechanism of reduced rosetting. Proc. Natl Acad. Sci. USA 104, 17471–17476 (2007). This manuscript reveals that blood group O rosetting protects against severe malaria through diminished rosetting.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wahlgren, M. et al. Adhesion of Plasmodium falciparum-infected erythrocytes to human cells and secretion of cytokines (IL-1-β, IL-1RA, IL-6, IL-8, IL-10, TGFβ, TNFα, G-CSF. GM-CSF). Scand. J. Immunol. 42, 626–636 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Pain, A. et al. Platelet-mediated clumping of Plasmodium falciparum-infected erythrocytes is a common adhesive phenotype and is associated with severe malaria. Proc. Natl Acad. Sci. USA 98, 1805–1810 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chotivanich, K. et al. Platelet-induced autoagglutination of Plasmodium falciparum-infected red blood cells and disease severity in Thailand. J. Infect. Dis. 189, 1052–1055 (2004).

    Article  PubMed  Google Scholar 

  38. Heddini, A. et al. Fresh isolates from children with severe Plasmodium falciparum malaria bind to multiple receptors. Infect. Immun. 69, 5849–5856 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ochola, L. B. et al. Specific receptor usage in Plasmodium falciparum cytoadherence is associated with disease outcome. PLoS ONE 6, e14741 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Turner, L. et al. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 498, 502–505 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fried, M. & Duffy, P. E. Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science 272, 1502–1504 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Flick, K. et al. Role of nonimmune IgG bound to PfEMP1 in placental malaria. Science 293, 2098–2100 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Semblat, J. P., Raza, A., Kyes, S. A. & Rowe, J. A. Identitication of Plasmodium falciparum var1CSA and var2CSA domains that bind IgM natural antibodies. Mol. Biochem. Parasitol. 146, 192–197 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ghumra, A. et al. Identification of residues in the Cmu4 domain of polymeric IgM essential for interaction with Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). J. Immunol. 181, 1988–2000 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Jeppesen, A. et al. Multiple Plasmodium falciparum erythrocyte membrane protein 1 variants per genome can bind IgM via its Fc fragment Fcμ. Infect. Immun. 83, 3972–3981 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rasti, N. et al. Nonimmune immunoglobulin binding and multiple adhesion characterize Plasmodium falciparum-infected erythrocytes of placental origin. Proc. Natl Acad. Sci. USA 103, 13795–13800 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cockburn, I. A. et al. A human complement receptor 1 polymorphism that reduces Plasmodium falciparum rosetting confers protection against severe malaria. Proc. Natl Acad. Sci. USA 101, 272–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Mayor, A. et al. Association of severe malaria outcomes with platelet-mediated clumping and adhesion to a novel host receptor. PLoS ONE 6, e19422 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Newbold, C. et al. Receptor-specific adhesion and clinical disease in Plasmodium falciparum. Am. J. Trop. Med. Hyg. 57, 389–398 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Heddini, A. et al. Binding of Plasmodium falciparum-infected erythrocytes to soluble platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31): frequent recognition by clinical isolates. Am. J. Trop. Med. Hyg. 65, 47–51 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Moll, K., Palmkvist, M., Ch'ng, J., Kiwuwa, M. S. & Wahlgren, M. Evasion of immunity to Plasmodium falciparum: rosettes of blood group A impair recognition of PfEMP1. PLoS ONE 10, e0145120 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Larremore, D. B. et al. Ape parasite origins of human malaria virulence genes. Nat. Commun. 6, 8368 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Hamilton, W. L. et al. Extreme mutation bias and high AT content in Plasmodium falciparum. Nucleic Acids Res. (2016).

  54. Ribacke, U. et al. Genome wide gene amplifications and deletions in Plasmodium falciparum. Mol. Biochem. Parasitol. 155, 33–44 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Mok, B. W., Ribacke, U., Sherwood, E. & Wahlgren, M. A highly conserved segmental duplication in the subtelomeres of Plasmodium falciparum chromosomes varies in copy number. Malar. J. 7, 46 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Miles, A. et al. Indels, structural variation, and recombination drive genomic diversity in Plasmodium falciparum. Genome Res. 26, 1288–1299 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Claessens, A. et al. Generation of antigenic diversity in Plasmodium falciparum by structured rearrangement of var genes during mitosis. PLoS Genet. 10, e1004812 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Niang, M. et al. STEVOR is a Plasmodium falciparum erythrocyte binding protein that mediates merozoite invasion and rosetting. Cell Host Microbe 16, 81–93 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sargeant, T. J. et al. Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biol. 7, R12 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Maier, A. G. et al. Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell 134, 48–61 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Spielmann, T., Fergusen, D. J. & Beck, H. P. etramps, a new Plasmodium falciparum gene family coding for developmentally regulated and highly charged membrane proteins located at the parasite–host cell interface. Mol. Biol. Cell 14, 1529–1544 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Winter, G. et al. SURFIN is a polymorphic antigen expressed on Plasmodium falciparum merozoites and infected erythrocytes. J. Exp. Med. 201, 1853–1863 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Oberli, A. et al. A Plasmodium falciparum PHIST protein binds the virulence factor PfEMP1 and comigrates to knobs on the host cell surface. FASEB J. 28, 4420–4433 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nguitragool, W. et al. Malaria parasite clag3 genes determine channel-mediated nutrient uptake by infected red blood cells. Cell 145, 665–677 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nunes, M. C., Okada, M., Scheidig-Benatar, C., Cooke, B. M. & Scherf, A. Plasmodium falciparum FIKK kinase members target distinct components of the erythrocyte membrane. PLoS ONE 5, e11747 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Liu, W. et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 467, 420–425 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. del Portillo, H. A. et al. A superfamily of variant genes encoded in the subtelomeric region of Plasmodium vivax. Nature 410, 839–842 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Chan, E. R. et al. Whole genome sequencing of field isolates provides robust characterization of genetic diversity in Plasmodium vivax. PLoS Negl. Trop. Dis. 6, e1811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Al-Khedery, B., Barnwell, J. W. & Galiniski, M. R. Antigenic variation in malaria: a 3′ genomic alteration associated with the expression of a P. knowlesi variant antigen. Mol. Cell 3, 131–141 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Cunningham, D., Lawton, J., Jarra, W., Preiser, P. & Langhorne, J. The pir multigene family of Plasmodium: antigenic variation and beyond. Mol. Biochem. Parasitol. 170, 65–73 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Spence, P. J. et al. Vector transmission regulates immune control of Plasmodium virulence. Nature 498, 228–231 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen, Q. et al. Developmental selection of var gene expression in Plasmodium falciparum. Nature 394, 392–395 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Scherf, A. et al. Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. EMBO J. 17, 5418–5426 (1998). Together with reference 72, this study presents proof of allelic exclusion in the expression of var genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fernandez, V. et al. Mosaic-like transcription of var genes in single Plasmodium falciparum parasites. Mol. Biochem. Parasitol. 121, 195–203 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Bernabeu, M. et al. Severe adult malaria is associated with specific PfEMP1 adhesion types and high parasite biomass. Proc. Natl Acad. Sci. USA 113, E3270–E3279 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. de Koning-Ward, T. F., Dixon, M. W. A., Tilley, L. & Gilson, P. R. Plasmodium species: master renovators of their host cells. Nat. Rev. Microbiol. 14, 494–507 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Kilejian, A. Characterization of a protein correlated with the production of knob-like protrusions on membranes of erythrocytes infected with Plasmodium falciparum. Proc. Natl Acad. Sci. USA 76, 4650–4653 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hiller, N. L. et al. A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 306, 1934–1937 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Hiss, J. A., Przyborski, J. M., Schwarte, F., Lingelbach, K. & Schneider, G. The Plasmodium export element revisited. PLoS ONE 3, e1560 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Rowe, J. A., Moulds, J. M., Newbold, C. I. & Miller, L. H. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature 388, 292–295 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Chen, Q. et al. Identification of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) as the rosetting ligand of the malaria parasite P. falciparum. J. Exp. Med. 187, 15–23 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Miller, L. H., Hudson-Taylor, D., Gamain, B. & Saul, A. J. Definition of the minimal domain of CIDR1alpha of Plasmodium falciparum PfEMP1 for binding CD36. Mol. Biochem. Parasitol. 120, 321–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Salanti, A. et al. Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. J. Exp. Med. 200, 1197–1203 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lau, C. K. Y. et al. Structural conservation despite huge sequence diversity allows EPCR binding by the PfEMP1 family implicated in severe childhood malaria. Cell Host Microbe 17, 118–129 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stevenson, L. et al. α2-macroglobulin can crosslink multiple Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) molecules and may facilitate adhesion of parasitized erythrocytes. PLoS Pathog. 11, e1005022 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Stevenson, L. et al. Investigating the function of Fc-specific binding of IgM to Plasmodium falciparum erythrocyte membrane protein 1 mediating erythrocyte rosetting. Cell. Microbiol. 17, 819–831 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lennartz, F. et al. Mapping the binding site of a cross-reactive Plasmodium falciparum PfEMP1 monoclonal antibody inhibitory of ICAM-1 binding. J. Immunol. 195, 3273–3283 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Avril, M., Bernabeu, M., Benjamin, M., Brazier, A. J. & Smith, J. D. Interaction between endothelial protein C receptor and intercellular adhesion molecule 1 to mediate binding of Plasmodium falciparum-infected erythrocytes to endothelial cells. mBio e00615–16 (2016).

  89. Hsieh, F. L. et al. The structural basis for CD36 binding by the malaria parasite. Nat. Commun. 7, 12837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Akhouri, R. R., Goel, S., Furusho, H., Skoglund, U. & Wahlgren, M. Architecture of human IgM in complex with P. falciparum erythrocyte membrane protein 1. Cell Rep. 14, 723–736 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Mok, B. W. et al. Comparative transcriptomal analysis of isogenic Plasmodium falciparum clones of distinct antigenic and adhesive phenotypes. Mol. Biochem. Parasitol. 151, 184–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Goel, S. et al. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria. Nat. Med. 21, 314–317 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Niang, M., Yam, X. Y. & Preiser, P. R. The Plasmodium falciparum STEVOR multigene family mediates antigenic variation of the infected erythrocyte. PLoS Pathog. 5, e1000307 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Lavstsen, T. et al. Plasmodium falciparum erythrocyte membrane protein 1 domain cassettes 8 and 13 are associated with severe malaria in children. Proc. Natl Acad. Sci. USA 109, E1791–E1800 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Smith, J. D. The role of PfEMP1 adhesion domain classification in Plasmodium falciparum pathogenesis research. Mol. Biochem. Parasitol. 195, 82–87 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Angeletti, D., Sandalova, T., Wahlgren, M. & Achour, A. Binding of subdomains 1/2 of PfEMP1–DBL1α to heparan sulfate or heparin mediates Plasmodium falciparum rosetting. PLoS ONE 10, e0118898 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Bengtsson, A. et al. A novel domain cassette identifies Plasmodium falciparum PfEMP1 proteins binding ICAM-1 and is a target of cross-reactive, adhesion-inhibitory antibodies. J. Immunol. 190, 240–249 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Avril, M., Brazier, A. J., Melcher, M., Sampath, S. & Smith, J. D. DC8 and DC13 var genes associated with severe malaria bind avidly to diverse endothelial cells. PLoS Pathog. 9, e1003430 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Berger, S. S. et al. Plasmodium falciparum expressing domain cassette 5 type PfEMP1 (DC5-PfEMP1) bind PECAM1. PLoS ONE 8, e69117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Singh, S. K. et al. Definition of structural elements in Plasmodium vivax and P. knowlesi Duffy-binding domains necessary for erythrocyte invasion. Biochem. J. 374, 193–198 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tolia, N. H., Enemark, E. J., Sim, B. K. & Joshua-Tor, L. Structural basis for the EBA-175 erythrocyte invasion pathway of the malaria parasite Plasmodium falciparum. Cell 122, 183–193 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Singh, K. et al. Structure of the DBL3x domain of pregnancy-associated malaria protein VAR2CSA complexed with chondroitin sulfate A. Nat. Struct. Mol. Biol. 15, 932–938 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Singh, S. K., Hora, R., Belrhali, H., Chitnis, C. E. & Sharma, A. Structural basis for Duffy recognition by the malaria parasite Duffy-binding-like domain. Nature 439, 741–744 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Higgins, M. K. The structure of a chondroitin sulfate-binding domain important in placental malaria. J. Biol. Chem. 283, 21842–21846 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Juillerat, A. et al. Structure of a Plasmodium falciparum PfEMP1 rosetting domain reveals a role for the N-terminal segment in heparin-mediated rosette inhibition. Proc. Natl Acad. Sci. USA 108, 5243–5248 (2011). Together with reference 104, this paper describes the structural basis for placental and severe malaria (rosetting).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Brown, A. et al. Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1. J. Biol. Chem. 288, 5992–6003 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gamain, B., Gratepanche, S., Miller, L. H. & Baruch, D. I. Molecular basis for the dichotomy in Plasmodium falciparum adhesion to CD36 and chondroitin sulfate A. Proc. Natl Acad. Sci. USA 99, 10020–10024 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Srivastava, A. et al. Full-length extracellular region of the var2CSA variant of PfEMP1 is required for specific, high-affinity binding to CSA. Proc. Natl Acad. Sci. USA 107, 4884–4889 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Khunrae, P. et al. Full-length recombinant Plasmodium falciparum VAR2CSA binds specifically to CSPG and induces potent parasite adhesion-blocking antibodies. J. Mol. Biol. 397, 826–834 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Clausen, T. M. et al. Structural and functional insight into how the Plasmodium falciparum VAR2CSA protein mediates binding to chondroitin sulfate A in placental malaria. J. Biol. Chem. 287, 23332–23345 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Scholander, C., Treutiger, C. J., Hultenby, K. & Wahlgren, M. Novel fibrillar structure confers adhesive property to malaria-infected erythrocytes. Nat. Med. 2, 204–208 (1996). This paper reveals the presence of serum proteins (IgM and IgG) at the surface of infected erythrocytes and provides the first evidence of their involvement in rosetting.

    Article  CAS  PubMed  Google Scholar 

  112. Scholander, C., Carlson, J., Kremsner, P. G. & Wahlgren, M. Extensive immunoglobulin binding of Plasmodium falciparum-infected erythrocytes in a group of children with moderate anemia. Infect. Immun. 66, 361–363 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Clough, B., Atilola, F. A., Black, J. & Pasvol, G. Plasmodium falciparum: the importance of IgM in the rosetting of parasite-infected erythrocytes. Exp. Parasitol. 89, 129–132 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Fernandez, V., Treutiger, C. J., Nash, G. B. & Wahlgren, M. Multiple adhesive phenotypes linked to rosetting binding of erythrocytes in Plasmodium falciparum malaria. Infect. Immun. 66, 2969–2975 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Treutiger, C. J., Carlson, J., Scholander, C. & Wahlgren, M. The time course of cytoadhesion, immunoglobulin binding, rosette formation, and serum-induced agglutination of Plasmodium falciparum-infected erythrocytes. Am. J. Trop. Med. Hyg. 59, 202–207 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Treutiger, C. J. et al. Rouleaux-forming serum proteins are involved in the rosetting of Plasmodium falciparum-infected erythrocytes. Exp. Parasitol. 93, 215–224 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Somner, E. A., Black, J. & Pasvol, G. Multiple human serum components act as bridging molecules in rosette formation by Plasmodium falciparum-infected erythrocytes. Blood 95, 674–682 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Barfod, L. et al. Evasion of immunity to Plasmodium falciparum malaria by IgM masking of protective IgG epitopes in infected erythrocyte surface-exposed PfEMP1. Proc. Natl Acad. Sci. USA 108, 1 2485–12490 (2011).

    Article  Google Scholar 

  119. Petter, M. et al. Variant proteins of the Plasmodium falciparum RIFIN family show distinct subcellular localization and developmental expression patterns. Mol. Biochem. Parasitol. 156, 51–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Petter, M., Bonow, I. & Klinkert, M.-Q. Diverse expression patterns of subgroups of the rif multigene family during Plasmodium falciparum gametocytogenesis. PLoS ONE 3, e3779 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Joannin, N., Abhiman, S., Sonnhammer, E. L. & Wahlgren, M. Sub-grouping and sub-functionalization of the RIFIN multi-copy protein family. BMC Genomics 9, 19 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Joannin, N., Kallberg, Y., Wahlgren, M. & Persson, B. RSpred, a set of Hidden Markov Models to detect and classify the RIFIN and STEVOR proteins of Plasmodium falciparum. BMC Genomics 12, 119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bachmann, A. et al. Absence of erythrocyte sequestration and lack of multicopy gene family expression in Plasmodium falciparum from a splenectomized malaria patient. PLoS ONE 4, e7459 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Aley, S. B., Sherwood, J. A., Marsh, K., Eidelman, O. & Howard, R. J. Identification of isolate-specific proteins on sorbitol-enriched Plasmodium falciparum infected erythrocytes from Gambian patients. Parasitology 92, 511–525 (1986).

    Article  CAS  PubMed  Google Scholar 

  125. Blythe, J. E. et al. Plasmodium falciparum STEVOR proteins are highly expressed in patient isolates and located in the surface membranes of infected red blood cells and the apical tips of merozoites. Infect. Immun. 76, 3329–3336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Marti, M., Good, R. T., Rug, M., Knuepfer, E. & Cowman, A. F. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306, 1930–1933 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Albrecht, L. et al. var gene transcription and PfEMP1 expression in the rosetting and cytoadhesive Plasmodium falciparum clone FCR3S1.2. Malar. J. 10, 17 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Carlson, J. E. et al. Disruption of Plasmodium falciparum erythrocyte rosettes by standard heparin and heparin devoid of anticoagulant activity. Am. J. Trop. Med. Hyg. 46, 595–602 (1992).

    Article  CAS  PubMed  Google Scholar 

  129. Daniels, G. Human Blood Groups 3rd edn (Wiley-Blackwell, 2013).

    Book  Google Scholar 

  130. Jick, H. et al. Venous thromboembolic disease and ABO blood type — a cooperative study. Lancet 1, 539–542 (1969).

    Article  CAS  PubMed  Google Scholar 

  131. Ohira, T. et al. ABO blood group, other risk factors and incidence of venous thromboembolism: the Longitudinal Investigation of Thromboembolism Etiology (LITE). J. Thromb. Haemost. 5, 1455–1461 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Nossent, A. Y. et al. von Willebrand factor and its propeptide: the influence of secretion and clearance on protein levels and the risk of venous thrombosis. J. Thromb. Haemost. 4, 2556–2562 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Bachmann, J. et al. Affinity proteomics reveals elevated muscle proteins in plasma of children with cerebral malaria. PLoS Pathog. 10, e1004038 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Hollestelle, M. J. et al. von Willebrand factor propeptide in malaria: evidence of acute endothelial cell activation. Br. J. Haematol. 133, 562–569 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Jenkins, P. V. & O'Donnell, J. S. ABO blood group determines plasma von Willebrand factor levels: a biologic function after all? Transfusion 46, 1836–1844 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Spiezia, L. et al. ABO blood groups and the risk of venous thrombosis in patients with inherited thrombophilia. Blood Transfus. 11, 250–253 (2013).

    PubMed  PubMed Central  Google Scholar 

  137. Band, G. et al. A novel locus of resistance to severe malaria in a region of ancient balancing selection. Nature 526, 253–257 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Carlson, J. & Wahlgren, M. Plasmodium falciparum erythrocyte rosetting is mediated by promiscuous lectin-like onteractions. J. Exp. Med. 176, 1311–1317 (1992). This paper reveals the dependence on ABO blood group antigens for the rosetting of P. falciparum pRBCs.

    Article  CAS  PubMed  Google Scholar 

  139. Carlson, J., Nash, G. B., Gabutti, V., al-Yaman, F. & Wahlgren, M. Natural protection against severe Plasmodium falciparum malaria due to impaired rosette formation. Blood 84, 3909–3914 (1994).

    Article  CAS  PubMed  Google Scholar 

  140. Rowe, J. A., Obiero, J., Marsh, K. & Raza, A. Short report: positive correlation between rosetting and parasitemia in Plasmodium falciparum clinical isolates. Am. J. Trop. Med. Hyg. 66, 458–460 (2002).

    Article  PubMed  Google Scholar 

  141. Sanyal, S. et al. Plasmodium falciparum STEVOR proteins impact erythrocyte mechanical properties. Blood 119, E1–E8 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. McRobert, L. et al. Distinct trafficking and localization of STEVOR proteins in three stages of the Plasmodium falciparum life cycle. Infect. Immun. 72, 6597–6602 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Garcia, J. E. et al. Peptides from the Plasmodium falciparum STEVOR putative protein bind with high affinity to normal human red blood cells. Peptides 26, 1133–1143 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Khattab, A. et al. Plasmodium falciparum variant STEVOR antigens are expressed in merozoites and possibly associated with erythrocyte invasion. Malar. J. 7, 137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Khattab, A. & Meri, S. Exposure of the Plasmodium falciparum clonally variant STEVOR proteins on the merozoite surface. Malar. J. 10, 58 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sutherland, C. J. Stevor transcripts from Plasmodium falciparum gametocytes encode truncated polypeptides. Mol. Biochem. Parasitol. 113, 331–335 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Tiburcio, M. et al. Early gametocytes of the malaria parasite Plasmodium falciparum specifically remodel the adhesive properties of infected erythrocyte surface. Cell. Microbiol. 15, 647–659 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Cowman, A. F., Berry, D. & Baum, J. The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J. Cell Biol. 198, 961–971 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Barragan, A., Kremsner, P. G., Wahlgren, M. & Carlson, J. Blood group A antigen is a coreceptor in Plasmodium falciparum rosetting. Infect. Immun. 68, 2971–2975 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Carlson, J., Holmquist, G., Taylor, D. W., Perlmann, P. & Wahlgren, M. Antibodies to a histidine-rich protein (PfHRP1) disrupt spontaneously formed Plasmodium falciparum erythrocyte rosettes. Proc. Natl Acad. Sci. USA 87, 2511–2515 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fried, M., Nosten, F., Brockman, A., Brabin, B. T. & Duffy, P. E. Maternal antibodies block malaria. Nature 395, 851–852 (1998).

    Article  CAS  PubMed  Google Scholar 

  152. Staalsoe, T. et al. Variant surface antigen-specific IgG and protection against clinical consequences of pregnancy-associated Plasmodium falciparum malaria. Lancet 363, 283–289 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Abdel-Latif, M. S., Dietz, K., Issifou, S., Kremsner, P. G. & Klinkert, M. Q. Antibodies to Plasmodium falciparum rifin proteins are associated with rapid parasite clearance and asymptomatic infections. Infect. Immun. 71, 6229–6233 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Abdel-latif, M. et al. Antibodies to rifin: a component of naturally acquired responses to Plasmodium falciparum variant surface antigens on infected erythrocytes. Am. J. Trop. Med. Hyg. 71, 179–186 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Bull, P. C. & Abdi, A. I. The role of PfEMP1 as targets of naturally acquired immunity to childhood malaria: prospects for a vaccine. Parasitology 143, 171–186 (2016).

    Article  PubMed  CAS  Google Scholar 

  156. Baruch, D. I. et al. Immunization of Aotus monkeys with a functional domain of the Plasmodium falciparum variant antigen induces protection against a lethal parasite line. Proc. Natl Acad. Sci. USA 99, 3860–3865 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chen, Q. J. et al. Immunization with PfEMP1–DBL1α generates antibodies that disrupt rosettes and protect against the sequestration of Plasmodium falciparum-infected erythrocytes. Vaccine 22, 2701–2712 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Nielsen, M. A. et al. The influence of sub-unit composition and expression system on the functional antibody response in the development of a VAR2CSA based Plasmodium falciparum placental malaria vaccine. PLoS ONE 10, e0135406 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Thrane, S. et al. A novel virus-like particle based vaccine platform displaying the placental malaria antigen VAR2CSA. PLoS ONE 10, e0143071 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Chen, Q. et al. Immunization with PfEMP1–DBL1α generates antibodies that disrupt rosettes and protect against the sequestration of Plasmodium falciparum-infected erythrocytes. Vaccine 22, 2701–2712 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Abdel-Latif, M. S., Khattab, A., Lindenthal, C., Kremsner, P. G. & Klinkert, M.-Q. Recognition of variant Rifin antigens by human antibodies induced during natural Plasmodium falciparum infections. Infect. Immun. 70, 7013–7021 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tan, J. M. P. et al. A LAIR-1 insertion generates broadly reactive antibodies against malaria variant antigens. Nature 529, 105–109 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Dondorp, A. M. et al. AQUAMAT group. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet 376, 1647–1657 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med. 17, 1217–1220 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. World Health Organization. World malaria report 2015. WHO http://apps.who.int/iris/bitstream/10665/200018/1/9789241565158_eng.pdf?ua=1 (2015).

  166. Idro, R. et al. Severe neurological sequelae and behaviour problems after cerebral malaria in Ugandan children. BMC Res. Notes 3, 104–108 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Franke-Fayard B. et al. Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration. Proc. Natl Acad. Sci. USA 102, 11468–11473 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Taylor, T. E. et al. Intravenous immunoglobulin in the treatment of paediatric cerebral malaria. Clin. Exp. Immunol. 90, 357–362 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kwiatkowski, D. et al. Anti-TNF therapy inhibits fever in cerebral malaria. Q. J. Med. 86, 91–98 (1993).

    CAS  PubMed  Google Scholar 

  170. Hawkes, M. T. et al. Inhaled nitric oxide as adjunctive therapy for severe malaria: a randomized controlled trial. Malar. J. 14, 421 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Havlik, I. et al. Curdlan sulphate in human severe/cerebral Plasmodium falciparum malaria. Trans. R. Soc. Trop. Med. Hyg. 99, 333–340 (2005).

    Article  CAS  PubMed  Google Scholar 

  172. Maude, R. J. et al. Randomized controlled trial of levamisole hydrochloride as adjunctive therapy in severe falciparum malaria with high parasitemia. J. Infect. Dis. 209, 120–129 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Vogt, A. M. P. et al. Release of sequestered malaria parasites upon injection of a glycosaminoglycan. PLoS Pathog. 2, e100 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Charunwatthana, P. et al. A phase I/II randomized, open label, standard therapy controlled, parallel assignment, safety/efficacy study of sevuparin as an adjunctive therapy in subjects affected with uncomplicated Plasmodium falciparum malaria [abstract]. Am. J. Trop. Med. Hyg. 91 (Suppl.), LB-3278 (2014).

    Google Scholar 

  175. Gordon, E. B. et al. Targeting glutamine metabolism rescues mice from late-stage cerebral malaria. Proc. Natl Acad. Sci. USA 112, 13075–13080 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wahlgren, N. et al. Randomized assessment of imatinib in patients with acute ischaemic stroke treated with intravenous thrombolysis. J. Intern. Med. 281, 273–283 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. Taylor, T. E. et al. Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat. Med. 10, 435–435 (2004).

    Article  CAS  Google Scholar 

  178. Milner, D. A. Jr. et al. Quantitative assessment of multiorgan sequestration of parasites in fatal pediatric cerebral malaria. J. Infect. Dis. 212, 1317–1321 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Chene, A. et al. A molecular link between malaria and Epstein–Barr virus reactivation. PLoS Pathog. 3, e80 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Chang, Z. et al. The TatD-like DNase of plasmodium is a virulence factor and a potential malaria vaccine candidate. Nat. Commun. 7, 11537 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. White, V. A., Lewallen, S., Beare, N. A., Molyneux, M. E. & Taylor, T. E. Retinal pathology of pediatric cerebral malaria in Malawi. PLoS ONE 4, e4317 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Nacer, A. et al. Clag9 is not essential for PfEMP1 surface expression in non-cytoadherent Plasmodium falciparum parasites with a chromosome 9 deletion. PLoS ONE 6, e29039 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lavazec, C., Sanyal, S. & Templeton, T. J. Hypervariability within the Rifin, Stevor and Pfmc-2TM superfamilies in Plasmodium falciparum. Nucleic Acids Res. 34, 6696–6707 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.W. is supported by the Swedish Research Council, the Swedish Strategic Foundation, the EU Seventh-Framework Programmes (EviMalar Network of Excellence), the Söderberg Foundation and Swedish Academy of Sciences. The funders had no role in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mats Wahlgren.

Ethics declarations

Competing interests

M. W. holds shares in, and is a director of the board of, Modus Therapeutics AB, a company of the Karolinska Development AB involved in the development of adjunct treatment for severe malaria and sickle-cell disease. The authors declare no other competing financial interests.

PowerPoint slides

Glossary

Trophozoites

An asexual stage in the life cycle of Plasmodium spp. that is present during the first 20–32 h post-invasion of red blood cells. Young trophozoites (1–20 h) are commonly called ring-stage parasites owing to their ring-like appearance.

Schizonts

An asexual stage in the life cycle of Plasmodium spp. that occurs 30–48 h after red blood cell invasion, in which the parasite divides several times to produce daughter cells (merozoites) that then invade new red blood cells.

Syncytiotrophoblasts

Epithelial cells that replace the endothelium at the maternal–fetal blood interface of the placenta.

Allelic exclusion

A process by which only one allele (gene) of a gene family is expressed, whereas the other alleles are silenced.

Parasitophorous vacuole

A compartment that is formed in host cells in which apicomplexan parasites reside and develop.

Plasmodium export element

(PEXEL). A pentameric amino acid motif in the amino-terminal region of proteins that guides their export.

Merozoite

An asexual stage in the life cycle of Plasmodium spp. and the invasive form that invades new red blood cells.

Gametocytes

A sexual stage in the life cycle of Plasmodium spp., in which the parasite develops into male and female sexual gametocytes, which fertilize after ingestion by the mosquito vector.

ABO blood group antigens

Carbohydrate moieties that are physically exposed on the surface of red blood cells, endothelial cells, serum proteins, platelets and other cells of the microvasculature. The distribution of the blood groups A, B, O and AB varies between populations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahlgren, M., Goel, S. & Akhouri, R. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria. Nat Rev Microbiol 15, 479–491 (2017). https://doi.org/10.1038/nrmicro.2017.47

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2017.47

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing