Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Microorganisms maintain crowding homeostasis

Abstract

Macromolecular crowding affects the mobility of biomolecules, protein folding and stability, and the association of macromolecules with each other. Local differences in crowding that arise as a result of subcellular components and supramolecular assemblies contribute to the structural organization of the cytoplasm. In this Opinion article we discuss how macromolecular crowding affects the physicochemistry of the cytoplasm and how this, in turn, affects microbial physiology. We propose that cells maintain the overall concentration of macromolecules within a narrow range and discuss possible mechanisms for achieving crowding homeostasis. In addition, we propose that the term 'homeocrowding' is used to describe the process by which cells maintain relatively constant levels of macromolecules.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: General principles of macromolecular crowding.
Figure 2: Schematic showing the effect of osmotic stress on the volume of a bacterial cell.
Figure 3: Possible mechanisms of crowding homeostasis.

References

  1. 1

    Ellis, R. J. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26, 597–604 (2001).

    CAS  PubMed  Google Scholar 

  2. 2

    Swaminathan, R., Hoang, C. P. & Verkman, A. S. Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys. J. 72, 1900–1907 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Milo, R. & Phillips, R. Cell Biology by the Numbers (Garland Science, 2015).

    Google Scholar 

  4. 4

    Fisher, J. K. et al. Four-dimensional imaging of E. coli nucleoid organization and dynamics in living cells. Cell 153, 882–895 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Zimmerman, S. B. & Trach, S. O. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J. Mol. Biol. 222, 599–620 (1991).

    CAS  PubMed  Google Scholar 

  6. 6

    Cayley, S. & Record, M. T. Large changes in cytoplasmic biopolymer concentration with osmolality indicate that macromolecular crowding may regulate protein–DNA interactions and growth rate in osmotically stressed Escherichia coli K-12. J. Mol. Recognit. 17, 488–496 (2004).

    CAS  PubMed  Google Scholar 

  7. 7

    Konopka, M. C. et al. Cytoplasmic protein mobility in osmotically stressed Escherichia coli. J. Bacteriol. 191, 231–237 (2009).

    CAS  PubMed  Google Scholar 

  8. 8

    Boersma, A. J., Zuhorn, I. S. & Poolman, B. A sensor for quantification of macromolecular crowding in living cells. Nat. Methods 12, 227–229 (2015).

    CAS  PubMed  Google Scholar 

  9. 9

    Sochacki, K. A., Shkel, I. A., Record, M. T. & Weisshaar, J. C. Protein diffusion in the periplasm of E. coli under osmotic stress. Biophys. J. 100, 22–31 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    van den Berg, J. Cellular homeostasis of Escherichia coli probed by super-resolution microscopy. Thesis, Univ. Groningen (2016).

    Google Scholar 

  11. 11

    van der Heide, T. & Poolman, B. ABC transporters: one, two or four extracytoplasmic substrate-binding sites? EMBO Rep. 3, 938–943 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Minton, A. P. Excluded volume as a determinant of macromolecular structure and reactivity. Biopolymers 20, 2093–2120 (1981).

    CAS  Google Scholar 

  13. 13

    Zimmerman, S. B. & Minton, A. P. Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu. Rev. Biophys. Biomol. Struct. 22, 27–65 (1993).

    CAS  PubMed  Google Scholar 

  14. 14

    de Vries, R. DNA condensation in bacteria: Interplay between macromolecular crowding and nucleoid proteins. Biochimie 92, 1715–1721 (2010).

    CAS  Google Scholar 

  15. 15

    Kim, J. S., Backman, V. & Szleifer, I. Crowding-induced structural alterations of random-loop chromosome model. Phys. Rev. Lett. 106, 168102 (2011).

    PubMed  Google Scholar 

  16. 16

    Marenduzzo, D., Finan, K. & Cook, P. R. The depletion attraction: an underappreciated force driving cellular organization. J. Cell Biol. 175, 681–686 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Soranno, A. et al. Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments. Proc. Natl Acad. Sci. USA 111, 4874–4879 (2014).

    CAS  PubMed  Google Scholar 

  18. 18

    Ralston, G. Effects of “crowding” in protein solutions. J. Chem. Educ. 67, 857 (1990).

    CAS  Google Scholar 

  19. 19

    Minton, A. P. The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem. 276, 10577–10580 (2001).

    CAS  PubMed  Google Scholar 

  20. 20

    Rivas, G. & Minton, A. P. Macromolecular crowding in vitro, in vivo, and in between. Trends Biochem. Sci. 41, 970–981 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Stagg, L., Zhang, S. Q., Cheung, M. S. & Wittung-Stafshede, P. Molecular crowding enhances native structure and stability of α/β protein flavodoxin. Proc. Natl Acad. Sci. USA 104, 18976–18981 (2007).

    CAS  PubMed  Google Scholar 

  22. 22

    Hatters, D. M., Minton, A. P. & Howlett, G. J. Macromolecular crowding accelerates amyloid formation by human apolipoprotein C-II. J. Biol. Chem. 277, 7824–7830 (2002).

    CAS  PubMed  Google Scholar 

  23. 23

    Bosma, H. J., Voordouw, G., De Kok, A. & Veeger, C. Self-association of the pyruvate dehydrogenase complex from Azotobacter vinelandii in the presence of polyethylene glycol. FEBS Lett. 120, 179–182 (1980).

    CAS  PubMed  Google Scholar 

  24. 24

    Gnutt, D. & Ebbinghaus, S. The macromolecular crowding effect — from in vitro into the cell. Biol. Chem. 397, 37–44 (2016).

    CAS  PubMed  Google Scholar 

  25. 25

    Elcock, A. H. Models of macromolecular crowding effects and the need for quantitative comparisons with experiment. Curr. Opin. Struct. Biol. 20, 196–206 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Zhou, H. X., Rivas, G. & Minton, A. P. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37, 375–397 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Groen, J. et al. Associative interactions in crowded solutions of biopolymers counteract depletion effects. J. Am. Chem. Soc. 137, 13041–13048 (2015).

    CAS  PubMed  Google Scholar 

  28. 28

    Gao, M. et al. RNA hairpin folding in the crowded cell. Angew. Chem. Int. Ed. 55, 3224–3228 (2016).

    CAS  Google Scholar 

  29. 29

    Minton, A. P. How can biochemical reactions within cells differ from those in test tubes? J. Cell Sci. 119, 2863–2869 (2006).

    CAS  Google Scholar 

  30. 30

    Vöpel, T. & Makhatadze, G. I. Enzyme activity in the crowded milieu. PLoS ONE 7, e39418 (2012).

    PubMed  PubMed Central  Google Scholar 

  31. 31

    Fuller, R. S., Kaguni, J. M. & Kornberg, A. Enzymatic replication of the origin of the Escherichia coli chromosome. Proc. Natl Acad. Sci. USA 78, 7370–7374 (1981).

    CAS  PubMed  Google Scholar 

  32. 32

    Sokolova, E. et al. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate. Proc. Natl Acad. Sci. USA 110, 11692–11697 (2013).

    CAS  PubMed  Google Scholar 

  33. 33

    Ge, X., Luo, D. & Xu, J. Cell-free protein expression under macromolecular crowding conditions. PLoS ONE 6, e28707 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Mossing, M. C. & Record, M. T. Thermodynamic origins of specificity in the lac repressor–operator interaction: adaptability in the recognition of mutant operator sites. J. Mol. Biol. 186, 295–305 (1985).

    CAS  PubMed  Google Scholar 

  35. 35

    Roe, J. H. & Record, M. T. Jr. Regulation of the kinetics of the interaction of Escherichia coli RNA polymerase with the λPR promoter by salt concentration. Biochemistry 24, 4721–4726 (1985).

    CAS  PubMed  Google Scholar 

  36. 36

    Richey, B. et al. Variability of the intracellular ionic environment of Escherichia coli. Differences between in vitro and in vivo effects of ion concentrations on protein–DNA interactions and gene expression. J. Biol. Chem. 262, 7157–7164 (1987).

    CAS  PubMed  Google Scholar 

  37. 37

    Karasawa, A. et al. Physicochemical factors controlling the activity and energy coupling of an ionic strength-gated ATP-binding cassette (ABC) transporter. J. Biol. Chem. 288, 29862–29871 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Benton, L. A., Smith, A. E., Young, G. B. & Pielak, G. J. Unexpected effects of macromolecular crowding on protein stability. Biochemistry 51, 9773–9775 (2012).

    CAS  PubMed  Google Scholar 

  39. 39

    Schlesinger, A. P., Wang, Y., Tadeo, X., Millet, O. & Pielak, G. J. Macromolecular crowding fails to fold a globular protein in cells. J. Am. Chem. Soc. 133, 8082–8085 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Sarkar, M., Li, C. & Pielak, G. J. Soft interactions and crowding. Biophys. Rev. 5, 187–194 (2013).

    PubMed  PubMed Central  Google Scholar 

  41. 41

    Sarkar, M. & Pielak, G. J. An osmolyte mitigates the destabilizing effect of protein crowding. Protein Sci. 23, 1161–1164 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Ignatova, Z. & Gierasch, L. M. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc. Natl Acad. Sci. USA 103, 13357–13361 (2006).

    CAS  PubMed  Google Scholar 

  43. 43

    Dix, J. A. & Verkman, A. Crowding effects on diffusion in solutions and cells. Annu. Rev. Biophys. 37, 247–263 (2008).

    CAS  PubMed  Google Scholar 

  44. 44

    Puchkov, E. Intracellular viscosity: methods of measurement and role in metabolism. Biochem. (Mosc.) Suppl. Ser. A. 7, 270–279 (2013).

    Google Scholar 

  45. 45

    Konopka, M. C., Weisshaar, J. C. & Record, M. T. Methods of changing biopolymer volume fraction and cytoplasmic solute concentrations for in vivo biophysical studies. Methods Enzymol. 428, 487–504 (2007).

    CAS  PubMed  Google Scholar 

  46. 46

    Mika, J. T. & Poolman, B. Macromolecule diffusion and confinement in prokaryotic cells. Curr. Opin. Biotechnol. 22, 117–126 (2011).

    CAS  PubMed  Google Scholar 

  47. 47

    Elowitz, M. B., Surette, M. G., Wolf, P. E., Stock, J. B. & Leibler, S. Protein mobility in the cytoplasm of Escherichia coli. J. Bacteriol. 181, 197–203 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Konopka, M. C., Shkel, I. A., Cayley, S., Record, M. T. & Weisshaar, J. C. Crowding and confinement effects on protein diffusion in vivo. J. Bacteriol. 188, 6115–6123 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Golding, I. & Cox, E. C. Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96, 098102 (2006).

    PubMed  Google Scholar 

  50. 50

    Klumpp, S., Scott, M., Pedersen, S. & Hwa, T. Molecular crowding limits translation and cell growth. Proc. Natl Acad. Sci. USA 110, 16754–16759 (2013).

    CAS  PubMed  Google Scholar 

  51. 51

    Spitzer, J. J. & Poolman, B. Electrochemical structure of the crowded cytoplasm. Trends Biochem. Sci. 30, 536–541 (2005).

    CAS  PubMed  Google Scholar 

  52. 52

    Spitzer, J. & Poolman, B. The role of biomacromolecular crowding, ionic strength, and physicochemical gradients in the complexities of life's emergence. Microbiol. Mol. Biol. Rev. 73, 371–388 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Harold, F. M. Molecules into cells: specifying spatial architecture. Microbiol. Mol. Biol. Rev. 69, 544–564 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Mathews, C. K. The cell-bag of enzymes or network of channels? J. Bacteriol. 175, 6377–6381 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Srere, P. A. The metabolon. Trends Biochem. Sci. 10, 109–110 (1985).

    Google Scholar 

  56. 56

    Norris, V. et al. Functional taxonomy of bacterial hyperstructures. Microbiol. Mol. Biol. Rev. 71, 230–253 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    O'Connell, J. D., Zhao, A., Ellington, A. D. & Marcotte, E. M. Dynamic reorganization of metabolic enzymes into intracellular bodies. Annu. Rev. Cell Dev. Biol. 28, 89–111 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Petrovska, I. et al. Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation. eLife 3, e02409 (2014).

    PubMed Central  Google Scholar 

  59. 59

    Weber, S. C. & Brangwynne, C. P. Getting RNA and protein in phase. Cell 149, 1188–1191 (2012).

    CAS  PubMed  Google Scholar 

  60. 60

    Di Rienzo, C., Piazza, V., Gratton, E., Beltram, F. & Cardarelli, F. Probing short-range protein Brownian motion in the cytoplasm of living cells. Nat. Commun. 5, 5891 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Spitzer, J. & Poolman, B. How crowded is the prokaryotic cytoplasm? FEBS Lett. 587, 2094–2098 (2013).

    CAS  PubMed  Google Scholar 

  62. 62

    Bakshi, S., Siryaporn, A., Goulian, M. & Weisshaar, J. C. Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol. Microbiol. 85, 21–38 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Sanamrad, A. et al. Single-particle tracking reveals that free ribosomal subunits are not excluded from the Escherichia coli nucleoid. Proc. Natl Acad. Sci. USA 111, 11413–11418 (2014).

    CAS  PubMed  Google Scholar 

  64. 64

    Mika, J. T., van den Bogaart, G., Veenhoff, L., Krasnikov, V. & Poolman, B. Molecular sieving properties of the cytoplasm of Escherichia coli and consequences of osmotic stress. Mol. Microbiol. 77, 200–207 (2010).

    CAS  PubMed  Google Scholar 

  65. 65

    Mika, J. T., Schavemaker, P. E., Krasnikov, V. & Poolman, B. Impact of osmotic stress on protein diffusion in Lactococcus lactis. Mol. Microbiol. 94, 857–870 (2014).

    CAS  PubMed  Google Scholar 

  66. 66

    van den Bogaart, G., Hermans, N., Krasnikov, V. & Poolman, B. Protein mobility and diffusive barriers in Escherichia coli: consequences of osmotic stress. Mol. Microbiol. 64, 858–871 (2007).

    CAS  PubMed  Google Scholar 

  67. 67

    Parry, B. R. et al. The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 156, 183–194 (2014).

    CAS  PubMed  Google Scholar 

  68. 68

    Munder, M. C. et al. A pH-driven transition of the cytoplasm from a fluid to a solid-like state promotes entry into dormancy. eLife 5, e09347 (2016).

    PubMed  PubMed Central  Google Scholar 

  69. 69

    Joyner, R. P. et al. A glucose-starvation response regulates the diffusion of macromolecules. eLife 5, e09376 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. 70

    Vazquez, A. Optimal cytoplasmatic density and flux balance model under macromolecular crowding effects. J. Theor. Biol. 264, 356–359 (2010).

    CAS  PubMed  Google Scholar 

  71. 71

    Bennett, B. D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593–599 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Dill, K. A., Ghosh, K. & Schmit, J. D. Physical limits of cells and proteomes. Proc. Natl Acad. Sci. USA 108, 17876–17882 (2011).

    CAS  PubMed  Google Scholar 

  73. 73

    Cayley, D. S., Guttman, H. J. & Record, M. T. Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress. Biophys. J. 78, 1748–1764 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Schaechter, M., Maaløe, O. & Kjeldgaard, N. Dependency on medium and temperature on cell size and chemical composition during balanced growth of Salmonella typhimurium. J. Gen. Microbiol. 19, 592–606 (1958).

    CAS  Google Scholar 

  75. 75

    Kubitschek, H. E., Baldwin, W. W., Schroeter, S. J. & Graetzer, R. Independence of buoyant cell density and growth rate in Escherichia coli. J. Bacteriol. 158, 296–299 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Schmidt, A. et al. The quantitative and condition-dependent Escherichia coli proteome. Nat. Biotechnol. 34, 104–110 (2016).

    CAS  PubMed  Google Scholar 

  77. 77

    Booth, I. R. Bacterial mechanosensitive channels: progress towards an understanding of their roles in cell physiology. Curr. Opin. Microbiol. 18, 16–22 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Buda, R. et al. Dynamics of Escherichia coli's passive response to a sudden decrease in external osmolarity. Proc. Natl Acad. Sci. USA 113, E5838–E5846 (2016).

    CAS  PubMed  Google Scholar 

  79. 79

    Pilizota, T. & Shaevitz, J. W. Fast, multiphase volume adaptation to hyperosmotic shock by Escherichia coli. PLoS ONE 7, e35205 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Rojas, E., Theriot, J. A. & Huang, K. C. Response of Escherichia coli growth rate to osmotic shock. Proc. Natl Acad. Sci. USA 111, 7807–7812 (2014).

    CAS  PubMed  Google Scholar 

  81. 81

    Poolman, B. et al. How do membrane proteins sense water stress? Mol. Microbiol. 44, 889–902 (2002).

    CAS  PubMed  Google Scholar 

  82. 82

    Wood, J. M. Bacterial responses to osmotic challenges. J. Gen. Physiol. 145, 381–388 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Wang, J. D. & Levin, P. A. Metabolism, cell growth and the bacterial cell cycle. Nat. Rev. Microbiol. 7, 822–827 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Zhou, Y. et al. Carbon catabolite repression correlates with the maintenance of near invariant molecular crowding in proliferating E. coli cells. BMC Syst. Biol. 7, 138 (2013).

    PubMed  PubMed Central  Google Scholar 

  85. 85

    Vazquez, A. & Oltvai, Z. N. Macromolecular crowding explains overflow metabolism in cells. Sci. Rep. 6, 31007 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Levin, P. A. & Angert, E. R. Small but mighty: cell size and bacteria. Cold Spring Harb. Perspect. Biol. 7, a019216 (2015).

    PubMed  PubMed Central  Google Scholar 

  87. 87

    Basan, M. et al. Inflating bacterial cells by increased protein synthesis. Mol. Syst. Biol. 11, 836 (2015).

    PubMed  PubMed Central  Google Scholar 

  88. 88

    van der Heide, T. & Poolman, B. Osmoregulated ABC-transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane. Proc. Natl Acad. Sci. USA 97, 7102–7106 (2000).

    CAS  PubMed  Google Scholar 

  89. 89

    Peter, H., Weil, B., Burkovski, A., Kramer, R. & Morbach, S. Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP. J. Bacteriol. 180, 6005–6012 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Biemans-Oldehinkel, E., Mahmood, N. A. & Poolman, B. A sensor for intracellular ionic strength. Proc. Natl Acad. Sci. USA 103, 10624–10629 (2006).

    CAS  PubMed  Google Scholar 

  91. 91

    Culham, D. E., Shkel, I. A., Record, M. T. Jr. & Wood, J. M. Contributions of Coulombic and Hofmeister effects to the osmotic activation of Escherichia coli transporter ProP. Biochemistry 55, 1301–1313 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Culham, D. E., Henderson, J., Crane, R. A. & Wood, J. M. Osmosensor ProP of Escherichia coli responds to the concentration, chemistry, and molecular size of osmolytes in the proteoliposome lumen. Biochemistry 42, 410–420 (2003).

    CAS  PubMed  Google Scholar 

  93. 93

    Rowe, I., Anishkin, A., Kamaraju, K., Yoshimura, K. & Sukharev, S. The cytoplasmic cage domain of the mechanosensitive channel MscS is a sensor of macromolecular crowding. J. Gen. Physiol. 143, 543–557 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Colclasure, G. C. & Parker, J. C. Cytosolic protein concentration is the primary volume signal in dog red cells. J. Gen. Physiol. 98, 881–892 (1991).

    CAS  PubMed  Google Scholar 

  95. 95

    Colclasure, G. C. & Parker, J. C. Cytosolic protein concentration is the primary volume signal for swelling-induced [K-Cl] cotransport in dog red cells. J. Gen. Physiol. 100, 1–10 (1992).

    CAS  PubMed  Google Scholar 

  96. 96

    Strange, K. Cellular and Molecular Physiology of Cell Volume Regulation (CRC Press, 1993).

    Google Scholar 

  97. 97

    Zimmerman, S. B. & Harrison, B. Macromolecular crowding increases binding of DNA polymerase to DNA: an adaptive effect. Proc. Natl Acad. Sci. USA 84, 1871–1875 (1987).

    CAS  PubMed  Google Scholar 

  98. 98

    Cheng, X. et al. Basis of protein stabilization by K glutamate: unfavorable interactions with carbon, oxygen groups. Biophys. J. 111, 1854–1865 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    von Hippel, P. H. Changing the stability of macromolecular surfaces by manipulating the aqueous environment. Biophys. J. 111, 1817–1820 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Dinnbier, U., Limpinsel, E., Schmid, R. & Bakker, E. P. Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch. Microbiol. 150, 348–357 (1988).

    CAS  PubMed  Google Scholar 

  101. 101

    Dowhan, W. A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function. Biochim. Biophys. Acta 1831, 471–494 (2013).

    CAS  PubMed  Google Scholar 

  102. 102

    Cayley, S., Lewis, B. A., Guttman, H. J. & Record, M. T. Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity: implications for protein-DNA interactions in vivo. J. Mol. Biol. 222, 281–300 (1991).

    CAS  PubMed  Google Scholar 

  103. 103

    Gnutt, D., Gao, M., Brylski, O., Heyden, M. & Ebbinghaus, S. Excluded-volume effects in living cells. Angew. Chem. Int. Ed. 54, 2548–2551 (2015).

    CAS  Google Scholar 

  104. 104

    Li, G., Burkhardt, D., Gross, C. & Weissman, J. S. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157, 624–635 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the laboratories of the authors was funded by the European FP7 Initial Training Network program Network for Integrated Cellular Homeostasis in Escherichia coli (NICHE; to J.v.d.B.), a The Netherlands Organisation for Scientific Research (NWO) Innovational Research Incentives Scheme (VIDI) grant (to A.J.B.), and a NWO TOPGO (L.10.060) and a European Research Council (ERC) Advanced Grant (ABCVolume) to B.P. The authors thank M. Heinemann, J.-W. Veening and J. Spitzer for the critical reading of this manuscript. The authors also thank M. Guskova for help with the artwork.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bert Poolman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Complex Vectorial Chemistry (PDF 111 kb)

Supplementary information S2 (figure)

Diffusion coefficient of cytoplasmic GFP (DGFP) in E. coli (orange) and L. lactis (green) as a function of cell volume. Volume reduction was achieved by osmotic upshift. (PDF 111 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van den Berg, J., Boersma, A. & Poolman, B. Microorganisms maintain crowding homeostasis. Nat Rev Microbiol 15, 309–318 (2017). https://doi.org/10.1038/nrmicro.2017.17

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing