Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug resistance in Plasmodium

Key Points

  • Resistance to frontline artemisinins and partner drugs is now causing the failure of artemisinin-based combination therapies against Plasmodium falciparum in southeast Asia.

  • Triple artemisinin-based combination therapies are being developed, but their design and deployment require an understanding of background resistance and associated genetic mutations of the parasite populations being targeted.

  • P. falciparum Kelch 13 (PfKelch13), the marker for artemisinin resistance in P. falciparum malaria, is not an enzyme or a pump but rather is predicted to be a substrate adapter for a cullin E3 ligase, with a putative substrate of P. falciparum phosphatidylinositol 3-kinase (PfPI3K) and a redox sensor.

  • Mutation in pfkelch13 appears to increase parasite phosphatidylinositol-3-phosphate (PtdIns3P) as well as the unfolded protein response, and both have been proposed as mechanisms of artemisinin resistance.

  • Additional PfKelch13-independent mechanisms of artemisinin resistance have appeared in southeast Asia.

  • The identification of mechanisms of resistance to artemisinin and its partner drugs as well as of new targets for chemotherapy that can eliminate resistant infection in both symptomatic and asymptomatic populations is needed for malaria elimination.

Abstract

A marked decrease in malaria-related deaths worldwide has been attributed to the administration of effective antimalarials against Plasmodium falciparum, in particular, artemisinin-based combination therapies (ACTs). Increasingly, ACTs are also used to treat Plasmodium vivax, the second major human malaria parasite. However, resistance to frontline artemisinins and partner drugs is now causing the failure of P. falciparum ACTs in southeast Asia. In this Review, we discuss our current knowledge of markers and mechanisms of resistance to artemisinins and ACTs. In particular, we describe the identification of mutations in the propeller domains of Kelch 13 as the primary marker for artemisinin resistance in P. falciparum and explore two major mechanisms of resistance that have been independently proposed: the activation of the unfolded protein response and proteostatic dysregulation of parasite phosphatidylinositol 3- kinase. We emphasize the continuing challenges and the imminent need to understand mechanisms of resistance to improve parasite detection strategies, develop new combinations to eliminate resistant parasites and prevent their global spread.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Life cycle of Plasmodium falciparum and epidemiology of antimalarial drug resistance.
Figure 2: Schematic and structural representation of Plasmodium falciparum Kelch 13 and its hypothesized function as a substrate adapter for a cullin E3 ligase.
Figure 3: Model of protein quality control in the endoplasmic reticulum lumen and cytoplasm of eukaryotes illustrating mechanisms of artemisinin resistance in Plasmodium falciparum.
Figure 4: A working model for heterogeneity in levels of artemisinin resistance.

Similar content being viewed by others

References

  1. World Health Organization. World Malaria Report 2015 (WHO, 2015).

  2. World Health Organization. World Malaria Report 2016 (WHO, 2016).

  3. Guerra, C. A. et al. The international limits and population at risk of Plasmodium vivax transmission in 2009. PLOS Negl. Trop. Dis. 4, e774 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Haldar, K., Murphy, S. C., Milner, D. A. & Taylor, T. E. Malaria: mechanisms of erythrocytic infection and pathological correlates of severe disease. Annu. Rev. Pathol. 2, 217–249 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Milner, D. A. Jr. et al. Quantitative assessment of multiorgan sequestration of parasites in fatal pediatric cerebral Malaria. J. Infect. Dis. 212, 1317–1321 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Okell, L. C., Drakeley, C. J., Ghani, A. C., Bousema, T. & Sutherland, C. J. Reduction of transmission from malaria patients by artemisinin combination therapies: a pooled analysis of six randomized trials. Malar. J. 7, 125 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jensen, M. & Mehlhorn, H. Seventy-five years of Resochin in the fight against malaria. Parasitol. Res. 105, 609–627 (2009).

    Article  PubMed  Google Scholar 

  8. Jong, E. C. & Nothdurft, H. D. Current drugs for antimalarial chemoprophylaxis: a review of efficacy and safety. J. Travel Med. 8, S48–S56 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Mawson, A. Mefloquine use, psychosis, and violence: a retinoid toxicity hypothesis. Med. Sci. Monit. 19, 579–583 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Verdrager, J. Epidemiology of the emergence and spread of drug-resistant falciparum malaria in South-East Asia and Australasia. J. Trop. Med. Hyg. 89, 277–289 (1986).

    CAS  PubMed  Google Scholar 

  11. Verdrager, J. Localized permanent epidemics: the genesis of chloroquine resistance in Plasmodium falciparum. Southeast Asian J. Trop. Med. Public Health 26, 23–28 (1995).

    CAS  PubMed  Google Scholar 

  12. Payne, D. Spread of chloroquine resistance in Plasmodium falciparum. Parasitol. Today 3, 241–246 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Gesase, S. et al. High resistance of Plasmodium falciparum to sulphadoxine/pyrimethamine in Northern Tanzania and the emergence of dhps resistance mutation at codon 581. PLOS ONE 4, e4569 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mixson-Hayden, T. et al. Evidence of selective sweeps in genes conferring resistance to chloroquine and pyrimethamine in Plasmodium falciparum isolates in India. Antimicrob. Agents Chemother. 54, 997–1006 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shah, N. K. et al. Antimalarial drug resistance of Plasmodium falciparum in India: changes over time and space. Lancet. Infect. Dis. 11, 57–64 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Meshnick, S. R., Taylor, T. E. & Kamchonwongpaisan, S. Artemisinin and the antimalarial endoperoxides: from herbal remedy to targeted chemotherapy. Microbiol. Rev. 60, 301–315 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Djimde, A. et al. A molecular marker for chloroquine-resistant falciparum malaria. N. Engl. J. Med. 344, 257–263 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Ariey, F. et al. A molecular marker of artemisinin resistant Plasmodium falciparum malaria. Nature 505, 50–55 (2014). This study presents the identification of the first marker of artemisinin resistance in P. falciparum malaria, which was shown to be causal in later genetic studies.

    Article  CAS  PubMed  Google Scholar 

  19. Ashley, E. A. et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 371, 411–423 (2014). This is the first of a series of clinical and epidemiological studies showing that delayed clearance time of artemisinin resistance in patients was associated with mutations in the β-propeller domain of PfKelch13 and with their spread in southeast Asia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Takala-Harrison, S. et al. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J. Infect. Dis. 211, 670–679 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Tun, K. M. et al. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect. Dis. 15, 415–421 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheeseman, I. H. et al. A major genome region underlying artemisinin resistance in malaria. Science 336, 79–82 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miotto, O. et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat. Genet. 47, 226–234 (2015). This GWAS identifies the population structure of clinically resistant parasites and the genomic complexity of artemisinin resistance in southeast Asia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fidock, D. A., Rosenthal, P. J., Croft, S. L., Brun, R. & Nwaka, S. Antimalarial drug discovery: efficacy models for compound screening. Nat. Rev. Drug Discov. 3, 509–520 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Fidock, A. D. et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell 6, 861–871 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sidhu, A. B. S., Verdier-Pinard, D. & Fidock, D. A. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science 298, 210–213 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Triglia, T., Wang, P., Sims, P. F., Hyde, J. E. & Cowman, A. F. Allelic exchange at the endogenous genomic locus in Plasmodium falciparum proves role of dihydropteroate synthase in sulfadoxine-resistant malaria. EMBO J. 17, 3807–3815 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Korsinczky, M. et al. Mutations in Plasmodium falciparum Cytochrome b that are associated with atovaquone resistance are located at a putative drug-binding site. Antimicrob. Agents Chemother. 44, 2100–2108 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ismail, H. M. et al. Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7. Proc. Natl Acad. Sci. 113, 2080–2085 (2016). This study, together with reference 30, suggests 'proteopathic' toxicity of artemisinins.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, J. et al. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat. Commun. 6, 10111 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ghorbal, M. et al. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat. Biotechnol. 32, 819–821 (2014). This is the first report of the use of CRISPR–Cas9 in P. falciparum to engineer a single point mutation in the genome of the sensitive African strain PfNF54 to yield a PfNF54 strain with the PfKelch13-C580Y mutation, which shows an RSA value of 13–14; this study also proves that the pfkelch13 mutation was causal for artemisinin resistance.

    Article  CAS  PubMed  Google Scholar 

  32. Straimer, J. et al. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347, 428–431 (2015). In this study, zinc-finger nuclease technology is used to rapidly introduce or remove PfKelch13 β-propeller mutations in P. falciparum reference strains and clinical isolates from Cambodia to prove that different mutations cause different levels of resistance (as measured by the RSA), the extent of which is sensitive to the genetic backgrounds of the parasites.

    Article  CAS  PubMed  Google Scholar 

  33. Gupta, V. A. & Beggs, A. H. Kelch proteins: emerging roles in skeletal muscle development and diseases. Skelet. Muscle 4, 11 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nikesitch, N. & Ling, S. C. Molecular mechanisms in multiple myeloma drug resistance. J. Clin. Pathol. 69, 97–101 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Mok, S. et al. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science 347, 431–435 (2015). This study presents transcriptomic signatures of 1,000 clinical strains to reveal that the induction of the parasite UPR is associated with artemisinin resistance.

    Article  CAS  PubMed  Google Scholar 

  36. Mbengue, A. et al. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature 520, 683–687 (2015). This study shows that mutations of PfKelch13 increase PfPI3K to elevate PtdIns3P and confer artemisinin resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Amato, R. et al. Genetic markers associated with dihydroartemisinin–piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype-phenotype association study. Lancet Infect. Dis. 17, 164–173 (2017). This study, together with reference 38, identifies the molecular markers associated with P. falciparum that are dually resistant to ACT with artemisinins and PPQ.

    Article  CAS  PubMed  Google Scholar 

  38. Witkowski, B. et al. A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype–genotype association study. Lancet Infect. Dis. 17, 174–183 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ataide, R. et al. Host immunity to Plasmodium falciparum and the assessment of emerging artemisinin resistance in a multinational cohort. Proc. Natl Acad. Sci. USA 114, 3515–3520 (2017). This is the first study investigating the effect of immunity on the parasite clearance rates associated with artemisinin resistance.

    Article  CAS  PubMed  Google Scholar 

  40. Tumwebaze, P. et al. Changing antimalarial drug resistance patterns identified by surveillance at three sites in Uganda. J. Infect. Dis. 215, 631–635 (2017).

    CAS  PubMed  Google Scholar 

  41. Costa, G. L. et al. Assessment of copy number variation in genes related to drug resistance in Plasmodium vivax and Plasmodium falciparum isolates from the Brazilian Amazon and a systematic review of the literature. Malar. J. 16, 152 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peterson, D. S., Walliker, D. & Wellems, T. E. Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc. Natl Acad. Sci. USA 85, 9114–9118 (1988).

    Article  CAS  PubMed  Google Scholar 

  43. Gregson, A. & Plowe, C. V. Mechanisms of resistance of malaria parasites to antifolates. Pharmacol. Rev. 57, 117–145 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Mishra, N. et al. Declining efficacy of artesunate plus sulphadoxine-pyrimethamine in northeastern India. Malar. J. 13, 284 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Srivastava, I. K. & Vaidya, A. B. A mechanism for the synergistic antimalarial action of atovaquone and proguanil. Antimicrob. Agents Chemother. 43, 1334–1339 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vaidya, A. B. in Treatment and Prevention of Malaria: Antimalarial Drug Chemistry, Action and Use (eds Henry Staines, M. & Sanjeev Krishna) 127–139 (Springer Basel, 2012).

    Google Scholar 

  47. Goodman, C. D. & Buchanan, H. D. & McFadden, G. I. Is the mitochondrion a good malaria drug target? Trends Parasitol. 33, 185–193 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Sigala, P. A. & Goldberg, D. E. The peculiarities and paradoxes of Plasmodium heme metabolism. Annu. Rev. Microbiol. 68, 259–278 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Nkrumah, L. J. et al. Probing the multifactorial basis of Plasmodium falciparum quinine resistance: evidence for a strain-specific contribution of the sodium–proton exchanger PfNHE. Mol. Biochem. Parasitol. 165, 122–131 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cooper, R. A. et al. Alternative mutations at position 76 of the vacuolar transmembrane protein PfCRT are associated with chloroquine resistance and unique stereospecific quinine and quinidine responses in Plasmodium falciparum. Mol. Pharmacol. 61, 35–42 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Cooper, R. A. et al. Mutations in transmembrane domains 1, 4 and 9 of the Plasmodium falciparum chloroquine resistance transporter alter susceptibility to chloroquine, quinine and quinidine. Mol. Microbiol. 63, 270–282 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Petersen, I. et al. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter. Mol. Microbiol. 97, 381–395 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Veiga, M. I. et al. Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nat. Commun. 7, 11553 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pascual, A. et al. In vitro piperaquine susceptibility is not associated with the Plasmodium falciparum chloroquine resistance transporter gene. Malar. J. 12, 431 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dhingra, S. K. et al. A variant PfCRT isoform can contribute to Plasmodium falciparum resistance to the first-line partner drug piperaquine. mBio 8, e00303–00317 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Venkatesan, M. et al. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine. Am. J. Trop. Med. Hyg. 91, 833–843 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Blasco, B., Leroy, D. & Fidock, D. A. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat. Med. 23, 917–928 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Takala-Harrison, S. et al. Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia. Proc. Natl Acad. Sci. USA 110, 240–245 (2013).

    Article  PubMed  Google Scholar 

  59. Miotto, O. et al. Multiple populations of artemisinin resistant Plasmodium falciparum in Cambodia. Nat. Genet. 45, 648–655 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Mok, S. et al. Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription. BMC Genomics 12, 391 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ménard, D. et al. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N. Engl. J. Med. 374, 2453–2464 (2016). This study provides a summary of the distribution of polymorphisms of pfkelch13 that are linked to artemisinin resistance (or not) on a global scale.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Huang, F. et al. A single mutation in K13 predominates in Southern China and is associated with delayed clearance of Plasmodium falciparum following artemisinin treatment. J. Infect. Dis. 212, 1629–1635 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tun, K. M. et al. Parasite clearance rates in Upper Myanmar indicate a distinctive artemisinin resistance phenotype: a therapeutic efficacy study. Malar. J. 15, 185 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mishra, N. et al. Surveillance for artemisinin resistance in Plasmodium falciparum in India using the kelch13 molecular marker. Antimicrob. Agents Chemother. 59, 2548–2553 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mishra, N. et al. Emerging polymorphisms in falciparum Kelch 13 gene in Northeastern region of India. Malar. J. 15, 583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Korenromp, E. L., Williams, B. G., Gouws, E., Dye, C. & Snow, R. W. Measurement of trends in childhood malaria mortality in Africa: an assessment of progress toward targets based on verbal autopsy. Lancet Infect. Dis. 3, 349–358 (2003).

    Article  PubMed  Google Scholar 

  67. Trape, J. F. et al. Impact of chloroquine resistance on malaria mortality. C. R. Acad. Sci. III 321, 689–697 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. World Health Organization. Global report on antimalarial drug efficacy and drug resistance: 2000–2010. (WHO, 2010).

  69. Noedl, H. et al. Evidence of artemisinin-resistant malaria in western Cambodia. N. Engl. J. Med. 359, 2619–2620 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Dondorp, A. M. et al. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 361, 1714 (2009).

    Article  CAS  Google Scholar 

  71. Barnes, K. I. et al. Effect of artemether-lumefantrine policy and improved vector control on malaria burden in KwaZulu-Natal, South Africa. PLOS Med. 2, e330 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bhattarai, A. et al. Impact of artemisinin-based combination therapy and insecticide-treated nets on malaria burden in Zanzibar. PLOS Med. 4, e309 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Phommasone, K. et al. Asymptomatic Plasmodium infections in 18 villages of southern Savannakhet Province, Lao PDR (Laos). Malar. J. 15, 296 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Worldwide Antimalarial Resistance Network. Tracking resistance to artemisinin collaboration II. WWARN http://www.wwarn.org/Working-Together/Partner-Projects/Tracking-Resistance-Artemisinin-Collaboration-ii (2017).

  75. Imwong, M. et al. The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study. Lancet. Infect. Dis. 5, 491–497 (2017).

    Article  Google Scholar 

  76. Srimuang, K. et al. Analysis of anti-malarial resistance markers in pfmdr1 and pfcrt across Southeast Asia in the tracking resistance to artemisinin collaboration. Malar. J. 15, 541 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xie, S. C. et al. Haemoglobin degradation underpins the sensitivity of early ring stage Plasmodium falciparum to artemisinins. J. Cell Sci. 129, 406–416 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mukherjee, A. et al. Artemisinin resistance without pfkelch13 mutations in Plasmodium falciparum isolates from Cambodia. Malar. J. 16, 195 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cerqueira, G. C. et al. Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance. Genome Biol. 18, 78 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Price, R. N. et al. Vivax malaria: neglected and not benign. Am. J. Trop. Med. Hyg. 77, 79–87 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Suwanarusk, R. et al. Amplification of pvmdr1 associated with multidrug-resistant Plasmodium vivax. J. Infect. Dis. 198, 1558–1564 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Imwong, M. et al. Gene amplification of the multidrug resistance 1 gene of Plasmodium vivax isolates from Thailand, Laos, and Myanmar. Antimicrob. Agents Chemother. 52, 2657–2659 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lu, F. et al. Mutations in the antifolate-resistance-associated genes dihydrofolate reductase and dihydropteroate synthase in Plasmodium vivax isolates from malaria-endemic countries. Am. J. Trop. Med. Hyg. 83, 474–479 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Price, R. N. et al. Global extent of chloroquine-resistant Plasmodium vivax: a systematic review and meta-analysis. Lancet. Infect. Dis. 14, 982–991 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Douglas, N. M., Anstey, N. M., Angus, B. J., Nosten, F. & Price, R. N. Artemisinin combination therapy for vivax malaria? Lancet Infect. Dis. 10, 405–416 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Witkowski, B. et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet. Infect. Dis. 13, 1043–1049 (2013). This study presents the development of an in vitro correlate of in vivo P. falciparum artemisinin-resistant malaria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Taguchi, K. & Yamamoto, M. The KEAP1-NRF2 System in Cancer. Front. Oncol. 7, 85 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Fairhurst, R. M. & Dondorp, A. M. Artemisinin-Resistant Plasmodium falciparum Malaria. Microbiol. Spectr. 4, 3 (2016).

    Google Scholar 

  89. Paloque, L., Ramadani, A. P., Mercereau-Puijalon, O., Augereau, J. M. & Benoit-Vical, F. Plasmodium falciparum: multifaceted resistance to artemisinins. Malar. J. 15, 149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sambuughin, N. et al. KBTBD13 interacts with Cullin 3 to form a functional ubiquitin ligase. Biochem. Biophys. Res. Commun. 421, 743–749 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Geyer, R., Wee, S., Anderson, S., Yates, J. & Wolf, D. A. BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol. Cell 12, 783–790 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Canning, P. et al. Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. J. Biol. Chem. 288, 7803–7814 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dogovski, C. et al. Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance. PLOS Biol. 13, e1002132 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li, H. et al. Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nature 530, 233–236 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Prasad, R. et al. Blocking Plasmodium falciparum development via dual inhibition of hemoglobin degradation and the ubiquitin proteasome system by MG132. PLOS One 8, e73530 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, M. et al. PK4, a eukaryotic initiation factor 2α (eIF2α) kinase, is essential for the development of the erythrocytic cycle of Plasmodium. Proc. Natl Acad. Sci. 109, 3956–3961 (2012).

    Article  PubMed  Google Scholar 

  97. Cheng, Q., Kyle, D. E. & Gatton, M. L. Artemisinin resistance in Plasmodium falciparum: a process linked to dormancy? Int. J. Parasitol. Drugs Drug Resist. 2, 249–255 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Vanhaesebroeck, B. et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem. 70, 535–602 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Vaid, A., Ranjan, R., Smythe, W. A., Hoppe, H. C. & Sharma, P. PfPI3K, a phosphatidylinositol-3 kinase from Plasmodium falciparum, is exported to the host erythrocyte and is involved in hemoglobin trafficking. Blood 115, 2500–2507 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dall'Armi, C., Devereaux, Kelly, A. & Di Paolo, G. The role of lipids in the control of autophagy. Curr. Biol. 23, R33–R45 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tawk, L. et al. Phosphatidylinositol 3-phosphate, an essential lipid in Plasmodium, localizes to the food vacuole membrane and the apicoplast. Eukaryot. Cell 9, 1519–1530 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tawk, L. et al. Phosphatidylinositol 3-monophosphate is involved in toxoplasma apicoplast biogenesis. PLOS Pathog. 7, e1001286 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bhattacharjee, S., Stahelin, R. V., Speicher, K. D., Speicher, D. W. & Haldar, K. Endoplasmic reticulum PI(3)P lipid binding targets malaria proteins to the host cell. Cell 148, 201–212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cervantes, S. et al. The multifunctional autophagy pathway in the human malaria parasite. Plasmodium falciparum. Autophagy 10, 80–92 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Kitamura, K. et al. Autophagy-related Atg8 localizes to the apicoplast of the human malaria parasite Plasmodium falciparum. PLOS ONE 7, e42977 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cyrklaff, M. et al. Oxidative insult can induce malaria-protective trait of sickle and fetal erythrocytes. Nat. Commun. 7, 13401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kavishe, R. A., Koenderink, J. B. & Alifrangis, M. Oxidative stress in malaria and artemisinin combination therapy: pros and cons. FEBS J. 284, 2579–2591 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Phillips, M. A. et al. Malaria. Nat Rev. Dis. Primers 3, 17050 (2017).

    Article  PubMed  Google Scholar 

  109. Straimer, J. et al. Plasmodium falciparum K13 mutations differentially impact ozonide susceptibility and parasite fitness in vitro. mBio 8, e00172–e00117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. O'Neill, P. M. et al. A tetraoxane-based antimalarial drug candidate that overcomes PfK13-C580Y dependent artemisinin resistance. Nat. Commun. 8, 15159 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dembele, L. et al. The Plasmodium PI(4)K inhibitor KDU691 selectively inhibits dihydroartemisinin-pretreated Plasmodium falciparum ring-stage parasites. Sci. Rep. 7, 2325 (2017). References 111–114 present several potential new therapeutics from the antimalaria discovery and development pipeline.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Le Bihan, A. et al. Characterization of novel antimalarial compound ACT-451840: preclinical assessment of activity and dose-efficacy modeling. PLOS Med. 13, e1002138 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. McCarthy, J. S. et al. Safety, tolerability, pharmacokinetics, and activity of the novel long-acting antimalarial DSM265: a two-part first-in-human phase 1a/1b randomised study. Lancet. Infect. Diseases 17, 626–635 (2017).

    Article  CAS  Google Scholar 

  114. Baragana, B. et al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature 522, 315–320 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mohon, A. et al. Mutations in Plasmodium falciparum K13 propeller gene from Bangladesh (2009–2013). Malar. J. 13, 431 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Witkowski, B. et al. Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia. Antimicrob. Agents Chemother. 57, 914–923 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Bhaya, D., Davison, M. & Barrangou, R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu. Rev. Genet. 45, 273–297 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Straimer, J. et al. Site-specific genome editing in Plasmodium falciparum using engineered zinc-finger nucleases. Nat. Methods 9, 993–998 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Amaratunga, C. et al. Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect. Dis. 16, 357–365 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Phyo, A. P. et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379, 1960–1966 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Thriemer, K. et al. Delayed parasite clearance after treatment with dihydroartemisinin-piperaquine in Plasmodium falciparum malaria patients in central Vietnam. Antimicrob. Agents Chemother. 58, 7049–7055 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang, Z. et al. Prevalence of K13-propeller polymorphisms in Plasmodium falciparum from China–Myanmar border in 2007–2012. Malar. J. 14, 168 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ye, R. et al. Distinctive origin of artemisinin-resistant Plasmodium falciparum on the China–Myanmar border. Sci. Rep. 6, 20100 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Thanh, N. V. et al. Rapid decline in the susceptibility of Plasmodium falciparum to dihydroartemisinin–piperaquine in the south of Vietnam. Malar. J. 16, 27 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Boulle, M. et al. Artemisinin-resistant Plasmodium falciparum K13 mutant alleles, Thailand–Myanmar border. Emerg. Infect. Dis. 22, 1503–1505 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Gama, B. E., Lacerda, M. V., Daniel-Ribeiro, C. T. & Ferreira-da-Cruz Mde, F. Chemoresistance of Plasmodium falciparum and Plasmodium vivax parasites in Brazil: consequences on disease morbidity and control. Mem. Inst. Oswaldo Cruz 106, 159–166 (2011).

    Article  PubMed  Google Scholar 

  127. Goncalves, L. A., Cravo, P. & Ferreira, M. U. Emerging Plasmodium vivax resistance to chloroquine in South America: an overview. Mem. Inst. Oswaldo Cruz 109, 534–539 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Delves, M. et al. The activities of current antimalarial drugs on the life cycle stages of Plasmodium: a comparative study with human and rodent parasites. PLoS Med. 9, e1001169 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sa, J. M. et al. Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine. Proc. Natl Acad. Sci. USA 106, 18883–18889 (2009).

    Article  PubMed  Google Scholar 

  130. Agrawal, S. et al. Association of a novel mutation in the Plasmodium falciparum chloroquine resistance transporter with decreased piperaquine sensitivity. J. Infect. Dis. 216, 468–476 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Madamet, M. et al. The Plasmodium falciparum chloroquine resistance transporter is associated with the ex vivo P. falciparum African parasite response to pyronaridine. Parasit. Vectors 9, 77 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sidhu, A. B. S. et al. Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J. Infect. Dis. 194, 528–535 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Sisowath, C. et al. In vivo selection of Plasmodium falciparum pfmdr1 86N coding alleles by artemether-lumefantrine (Coartem). J. Infect. Dis. 191, 1014–1017 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Sidhu, A. B., Valderramos, S. G. & Fidock, D. A. pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. Mol. Microbiol. 57, 913–926 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Price, R. N. et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 364, 438–447 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sisowath, C. et al. The role of pfmdr1 in Plasmodium falciparum tolerance to artemether-lumefantrine in Africa. Trop. Med. Int. Health 12, 736–742 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Uhlemann, A. C. & Krishna, S. Antimalarial multi-drug resistance in Asia: mechanisms and assessment. Curr. Top. Microbiol. Immunol. 295, 39–53 (2005).

    CAS  PubMed  Google Scholar 

  138. Imwong, M. et al. Limited polymorphism in the dihydropteroate synthetase gene (dhps) of Plasmodium vivax isolates from Thailand. Antimicrob. Agents Chemother. 49, 4393–4395 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Parzy, D. et al. Proguanil resistance in Plasmodium falciparum African isolates: assessment by mutation-specific polymerase chain reaction and in vitro susceptibility testing. Am. J. Trop. Med. Hyg. 57, 646–650 (1997).

    Article  CAS  PubMed  Google Scholar 

  140. Gil, J. P. et al. Detection of atovaquone and Malarone resistance conferring mutations in Plasmodium falciparum cytochrome b gene (cytb). Mol. Cell. Probes 17, 85–89 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to colleagues whose work could not be cited owing to the broad scope of the Review and space limitation. They thank members of the Haldar laboratory for insightful discussion. Work in the authors' laboratories was supported by the US National Institutes of Health (R01 HL069630 and HL130330) and India Government Department of Science and Technology (ECR/2015/000387) and Department of Biotechnology Ramalingaswami Re-entry Fellowship (BT/HRD/35/02/2006).

Author information

Authors and Affiliations

Authors

Contributions

K.H., S.B. and I.S. researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Kasturi Haldar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Country/area and Antimalarial Drug Therapy used (WHO, 2016) (DOC 47 kb)

Glossary

Sporozoites

A malaria parasite stage that is injected by the mosquito and that infects liver cells.

Merozoites

A malaria parasite stage that infects red blood cells (also known as erythrocytes).

Endoperoxide

A peroxide group (O–O) that bridges two atoms of a larger molecule and whose cleavage gives rise to reactive free radicals that can oxidize and aggregate proteins (as well as DNA and lipids).

Proteopathy

A disease state where proteins become structurally abnormal and disrupt cellular function.

Proteostasis

A network process or system that integrates translation, signalling pathways, molecular chaperones and protein degradation to enable cells to control the abundance and folding of the proteome.

Parasitaemia

The number of infected red cells per total number of red cells.

Autophagosome

A double-membraned vesicle containing cellular material slated to be degraded by autophagy.

Macroautophagy

A process by which a membrane or phagophore forms near cargo and then expands until it encloses the cargo, which is subsequently degraded by autophagy. Macroautophagy depends on phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3) and its lipid product phosphatidylinositol-3-phosphate (PtdIns3P).

Apicoplast

An organelle that is a remnant of a non-photosynthetic plastid found in many apicomplexan parasites, including Plasmodium falciparum.

Haemoglobinopathies

Single-gene disorders that result in abnormal structure of the haemoglobin molecule.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haldar, K., Bhattacharjee, S. & Safeukui, I. Drug resistance in Plasmodium. Nat Rev Microbiol 16, 156–170 (2018). https://doi.org/10.1038/nrmicro.2017.161

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2017.161

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology