Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Xerotolerant bacteria: surviving through a dry spell

Key Points

  • Xerotolerant microorganisms are extremophiles that can survive in environments with extremely limited water availability. Despite their importance to these ecosystems, xerotolerant bacteria have been largely overlooked.

  • A high diversity of xerotolerant bacteria can be found in many different extreme environments, including hot and cold environments, such as the Atacama and Antarctic deserts. In these biomes, xerotolerant microorganisms survive in sheltered geological niches that allow for biological activity.

  • Dormancy and sporulation are common behavioural responses to desiccation that enable xerotolerant microorganisms to react to sporadic cycles of rainfall and drought by remaining in an inert metabolic state.

  • Xerotolerant bacteria use several physiological mechanisms to prevent cell disruption and water loss, including phospholipid modifications to maintain membrane fluidity, the secretion of water-retaining extracellular polymeric substances (EPS), and the accumulation of compatible solutes that preserve the osmotic potential across the membrane.

  • For xerotolerant microorganisms, DNA and protein stability are crucial to ensure that cellular activity is resumed under favourable conditions. Consequently, most molecular adaptations to xeric stress involve the upregulation of proteins that are stable under low water activity and that preserve the integrity of DNA through physical protection and repair.

  • Although xerotolerant bacteria are unique in their capacity to survive in environments in which water is scarce, many of the adaptive mechanisms that they use are also triggered by other abiotic stresses that are present in these environments. Therefore, these mechanisms are part of broader adaptive response that enables the survival of microorganisms in extreme biomes.

Abstract

Water is vital for many biological processes and is essential for all living organisms. However, numerous macroorganisms and microorganisms have adapted to survive in environments in which water is scarce; such organisms are collectively termed xerotolerant. With increasing global desertification due to climate change and human-driven desertification processes, it is becoming ever more important to understand how xerotolerant organisms cope with a lack of water. In this Review, we discuss the environmental, physiological and molecular adaptations that enable xerotolerant bacteria to survive in environments in which water is scarce and highlight insights from modern 'omics' technologies. Understanding xerotolerance will inform and hopefully aid efforts to regulate and even reverse desertification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of desiccation on the physiology and biochemistry of bacterial cells.
Figure 2: Niches of xerotolerant communities.
Figure 3: Adaptive mechanisms of xerotolerant bacteria.
Figure 4: Dormancy and evasion of environmental stress.

Similar content being viewed by others

References

  1. Finney, J. L. Water? What's so special about it? Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 1145–1165 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Potts, M. Desiccation tolerance of prokaryotes. Microbiol. Rev. 58, 755–805 (1994). This paper represents the first and most comprehensive review of xerotolerant bacteria and archaeato date and details the role of water in the cell, desiccation damage, methods of water removal from cells and provides an overview of the main mechanisms of desiccation tolerance in the pre-genomic era.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Stevenson, A. et al. Is there a common water-activity limit for the three domains of life? ISME J. 9, 1333–1351 (2015). Determining the limits of the water activity at which living organisms can survive is central to understanding xerotolerance. In this paper, the water-activity limits of various xerotolerant members of the Archaea, Bacteria and Eukarya are investigated.

    Article  CAS  PubMed  Google Scholar 

  4. Dai, J. et al. Unraveling adaptation of Pontibacter korlensis to radiation and infertility in desert through complete genome and comparative transcriptomic analysis. Sci. Rep. 5, 10929 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Verón, S. R., Paruelo, J. M. & Oesterheld, M. Assessing desertification. J. Arid Environ. 66, 751–763 (2006).

    Article  Google Scholar 

  6. Grant, W. D. Life at low water activity. Philos. Trans. R. Soc. Lond. B Biol, Sci. 359, 1266–1267 (2004).

    Article  CAS  Google Scholar 

  7. Connon, S. A., Lester, E. D., Shafaat, H. S., Obenhuber, D. C. & Ponce, A. Bacterial diversity in hyperarid Atacama Desert soils. J. Geophys. Res. 112, G04S17 (2007).

    Article  CAS  Google Scholar 

  8. Smith, J. J., Tow, L. A., Stafford, W., Cary, C. & Cowan, D. A. Bacterial diversity in three different Antarctic Cold Desert mineral soils. Microb. Ecol. 51, 413–421 (2006).

    Article  PubMed  Google Scholar 

  9. de los Rios, A., Cary, C. & Cowan, D. The spatial structures of hypolithic communities in the Dry Valleys of East Antarctica. Polar Biol. 37, 1823–1833 (2014).

    Article  Google Scholar 

  10. Crits-Christoph, A. et al. Colonization patterns of soil microbial communities in the Atacama Desert. Microbiome 1, 28 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chan, Y. et al. Hypolithic microbial communities: between a rock and a hard place. Environ. Microbiol. 14, 2272–2282 (2012).

    Article  PubMed  Google Scholar 

  12. DiRuggiero, J. et al. Microbial colonisation of chasmoendolithic habitats in the hyper-arid zone of the Atacama Desert. Biogeosciences 10, 2439–2450 (2013).

    Article  Google Scholar 

  13. Makhalanyane, T. P. et al. Microbial ecology of hot desert edaphic systems. FEMS Microbiol. Rev. 39, 203–221 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Wood, S. A., Rueckert, A., Cowan, D. A. & Cary, S. C. Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME J. 2, 308–320 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Wierzchos, J. et al. Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search of life on Mars. Geobiology 9, 44–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Pointing, S. B. et al. Highly specialized microbial diversity in hyper-arid polar desert. Proc. Natl Acad. Sci. USA 106, 19964–19969 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cary, S. C., McDonald, I., Barrett, J. E. & Cowan, D. A. On the rocks: microbial ecology of Antarctic cold desert soils. Nat. Rev. Microbiol. 8, 129–138 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Finn, S., Condell, O., McClure, P., Amézquita, A. & Fanning, S. Mechanisms of survival, response and source of Salmonella in low-moisture environments. Front. Microbiol. 4, 331 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Breeuwer, P., Lardeau, A., Peterz, M. & Joosten, H. M. Desiccation and heat tolerance of Enterobacter sakazakii. J. Appl. Microbiol. 95, 967–973 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Burgess, C. M. et al. The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. Int. J. Food Microbiol. 221, 37–53 (2016).

    Article  PubMed  Google Scholar 

  21. Keto-Timonen, R., Tolvanen, R., Lundén, J. & Korkeala, H. An 8-year surveillance of the diversity and persistence of Listeria monocytogenes in a chilled food processing plant analyzed by amplified fragment length polymorphism. J. Food Prot. 70, 1866–1873 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Chaibenjawong, P. & Foster, S. J. Desiccation tolerance in Staphylococcus aureus. Arch. Microbiol. 193, 125–135 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Walsh, R. L. & Camilli, A. Streptococcus pneumoniae is desiccation tolerant and infectious upon rehydration. mBio 2, e00092-11 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Williams, J. P. & Hallsworth, J. E. Limits of life in hostile environments: no barriers to biosphere function? Environ. Microbiol. 11, 3292–3308 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gruzdev, N. et al. Global transcriptional analysis of dehydrated Salmonella enterica serovar Typhimurium. Appl. Environ. Microbiol. 78, 7866–7875 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tamaru, Y., Takani, Y., Yoshida, T. & Sakamoto, T. Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl. Environ. Microbiol. 71, 7327–7333 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kocharunchitt, C., King, T., Gobius, K., Bowman, J. P. & Ross, T. Integrated transcriptomic and proteomic analysis of the physiological response of Escherichia coli O157:H7 Sakai to steady-state conditions of cold and water activity stress. Mol Cell. Proteomics 11, M111.009019 (2012). This paper presents a holistic overview of the gene and protein expression profiles in E. coli that underlie the physiological response to water-activity stress separately from, and in combination with, cold stress.

    Article  CAS  PubMed  Google Scholar 

  28. Cowan, D. A., Ramond, J. B., Makhalanyane, T. P. & De Maayer, P. Metagenomics of extreme environments. Curr. Opin. Microbiol. 25, 97–102 (2015). This mini review provides a comprehensive overview of the metagenomic approaches that are used to study microorganisms in extreme environments.

    Article  CAS  PubMed  Google Scholar 

  29. Handelsman, J. Metagenomics: applications of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669–685 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Simon, C. & Daniel, R. Metagenomic analyses: past and future trends. Appl. Environ. Microbiol. 77, 1153–1161 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Solden, L., Lloyd, K. & Wrighton, K. The bright side of microbial dark matter: lessons learned from the uncultivated majority. Curr. Opin. Microbiol. 31, 217–226 (2016).

    Article  PubMed  Google Scholar 

  32. Phuong, T. L. et al. Comparative metagenomics analysis reveals mechanisms for stress response in hypoliths from extreme hyperarid deserts. Genome Biol. Evol. 8, 2737–2747 (2016). This paper highlights the potential of comparative metagenomics as a tool to examine microbial communities for specific functional capabilities that are genetically present in specific ecological niches.

    Article  CAS  Google Scholar 

  33. Varin, T., Lovejoy, C., Jungblut, A. D., Vincent, W. F. & Corbeil, J. Metagenomics analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Appl. Environ. Microbiol. 78, 549–559 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Temperton, B. & Giovannoni, S. J. Metagenomics: microbial diversity through a scratched lens. Curr. Opin. Microbiol. 15, 605–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. LeBlanc, J. C., Gonçalves, E. R. & Mohn, W. W. Global response to desiccation stress in the soil actinomycete Rhodococcus jostii RHA1. Appl. Environ. Microbiol. 74, 2627–2636 (2008). This article presents a holistic transcriptomic analysis of the actinomycete R. jostii RHA1 under conditions of desiccation and sets a benchmark for studies on soil bacteriathat inhabit dry habitats.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cytryn, E. J. et al. Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress. J. Bacteriol. 189, 6751–6762 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Katoh, H., Asthana, R. K. & Ohmori, M. Gene expression in the cyanobacterium Anabaena sp. PCC7120 under desiccation. Microb. Ecol. 47, 164–174 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Chan, Y., van Nostrand, J. D., Zhou, J., Pointing, S. B. & Farrell, R. L. Functional ecology of an Antarctic Dry Valley. Proc. Natl Acad. Sci. USA 110, 8990–8995 (2013). This article highlights the integration of transcriptomic and metagenomic approaches to study the effects of, and microbial responses to, xeric stress in situ rather than looking at xeric stress responses in a laboratory setting.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jones, S. E. & Lennon, J. T. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl Acad. Sci. USA 107, 5881–5886 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Proctor, M. C. E. & Tuba, Z. Poikilohydry and homoihydry: antithesis or spectrum of possibilities? New Phytol. 156, 327–349 (2002).

    Article  PubMed  Google Scholar 

  42. Rittershaus, E. S., Baek, S. H. & Sassetti, C. M. The normalcy of dormancy: common themes in microbial quiescence. Cell Host Microbe 13, 643–651 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Setlow, P. The germination of spores of Bacillus species: what we know and don't know. J. Bacteriol. 196, 1297–1305 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Higgins, D. & Dworkin, J. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol. Rev. 36, 131–148 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Lee, K. S., Bumbaca, D., Kosman, J., Setlow, P. & Jedrzejas, M. J. Structure of a protein–DNA complex essential for DNA protection in spores of Bacillus species. Proc. Natl Acad. Sci. USA 105, 2806–2811 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Setlow, P. in The Bacterial Spore: From Molecules to Systems (eds Driks, A. & Eichenberger, P.) 201–215 (ASM Press, 2016).

    Google Scholar 

  47. Kaplan-Levy, R. N., Hadas, O., Summers, M. L., Rücker, J. & Sukenik, A. in Dormancy and Resistance in Harsh Environments (eds Lubzens, E., Cerda, J. & Clark, M.) 5–27 (Springer, 2010).

    Book  Google Scholar 

  48. Sukenik, A. et al. Carbon assimilation and accumulation of cyanophycin during the development of dormant cells (akinetes) in the cyanobacterium Aphanozomenon ovalisporum. Front. Microbiol. 6, 1067 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Olsson-Francis, K., de la Torre, R., Towner, M. C. & Cockell, C. S. Survival of akinetes (resting-state cells of cyanobacteria) in low earth orbit and simulated extraterrestrial conditions. Orig. Life Evol. Biosph. 39, 565–579 (2009).

    Article  PubMed  Google Scholar 

  50. Dworkin, J. & Shah, I. M. Exit from dormancy in microbial organisms. Nat. Rev. Microbiol. 8, 890–896 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Vriezen, J. A. C., de Bruijn, F. J. & Nusslein, K. R. Desiccation induces viable but non-culturable cells in Sinorhizobium meliloti 1021. AMB Express 2, 6 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Deng, X., Li, Z. & Zhang, W. Transcriptome sequencing of Salmonella enterica serovar Enteritidis under desiccation and starvation stress in peanut oil. Food Microbiol. 30, 311–315 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Bär, M., von Hardenberg, J., Meron, E. & Provenzale, A. Modelling the survival of bacteria in drylands: the advantage of being dormant. Proc. Biol. Sci. 269, 937–942 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wierzchos, J., de los Ríos, A. & Ascaso, C. Microorganisms in desert rocks: the edge of life on Earth. Int. Microbiol. 15, 173–183 (2012).

    CAS  PubMed  Google Scholar 

  55. Gorbushina, A. A. Life on the rocks. Environ. Microbiol. 9, 1613–1631 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Pointing, S. B. & Belnap, J. Microbial colonization and controls in dryland systems. Nat. Rev. Microbiol. 10, 551–562 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Lennon, J. T., Aanderud, Z. T., Lehmkuhl, B. K. & Schoolmaster, D. R. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 93, 1867–1879 (2012).

    Article  PubMed  Google Scholar 

  58. Flemming, H. C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Ophir, T. & Gutnick, D. L. A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl. Environ. Microbiol. 60, 740–745 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Anderson, K. L., Apolinario, E. E. & Sowers, K. R. Desiccation as a long-term survival mechanism for the archaeon Methanosarcina barkeri. Appl. Environ. Microbiol. 78, 1473–1479 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chang, W. S. et al. Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J. Bacteriol. 189, 8290–8299 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pereira, S. et al. Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol. Rev. 33, 917–941 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Truelstrup Hansen, L. & Vogel, B. F. Desiccation of adhering and biofilm Listeria monocytogenes on stainless steel: survival and transfer to salmon products. Int. J. Food Microbiol. 140, 192–200 (2011).

    Google Scholar 

  64. White, A. P., Gibson, D. L., Kim, W., Kay, W. W. & Surette, M. G. Thin aggregative fimbriae and cellulose enhance long-term survival and persistence of Salmonella. J. Bacteriol. 188, 3219–3227 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Knowles, E. J. & Castenholz, R. W. Effect of exogenous extracellular polysaccharides on the desiccation and freezing tolerance of rock-inhabiting phototrophic microorganisms. FEMS Microbiol. Ecol. 66, 261–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Yoshimura, H. et al. The role of extracellular polysaccharides produced by the terrestrial cyanobacterium Nostoc sp. strain HK-01 in NaCl tolerance. Appl. Phycol. 24, 237–243 (2012).

    Article  CAS  Google Scholar 

  67. Rajeev, L. et al. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J. 7, 2178–2191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brown, G. R., Sutcliffe, I. C., Bendell, D. & Cummings, S. P. The modification of the membrane of Oceanomonas baumanii when subjected to both osmotic and organic solvent stress. FEMS Microbiol. Lett. 189, 149–154 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Mutnuri, S., Vasudevan, N., Kastner, M. & Heipieper, H. J. Changes in fatty acid composition of Chromobacter israelensis with varying salt concentrations. Curr. Microbiol. 50, 151–154 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Halverson, L. J. & Firestone, M. K. Differential effects of permeating and nonpermeating solutes on the fatty acid composition of Pseudomonas putida. Appl. Environ. Microbiol. 66, 2414–2421 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. van de Mortel, M. & Halverson, L. J. Cell envelope components contributing to biofilm growth and survival of Pseudomonas putida in low-water-content habitats. Mol. Microbiol. 52, 735–750 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Kocharunchitt, C., King, T., Gobius, K., Bowman, J. P. & Ross, T. Global genome response of Escherichia coli O157:H7 Sakai during dynamic changes in growth kinetics induced by abrupt downshift in water activity. PLoS ONE 9, e90422 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Romantsov, T., Guan, Z. & Wood, J. M. Cardiolipin and the osmotic stress responses of bacteria. Biochim. Biophys. Acta 1788, 2092–2100 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Johler, S., Roger, S., Hartmann, I., Kuehner, K. A. & Lehner, A. Genes involved in yellow pigmentation of Cronobacter sakazakii ES5 and influence of pigmentation on persistence and growth under environmental stress. Appl. Environ. Microbiol. 76, 1053–1061 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Chen, T. H. H. & Murata, N. Enhancement of tolerance to abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr. Opin. Plant Biol. 5, 250–257 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Pade, N. & Hagemann, M. Salt acclimation of cyanobacteria and their application in biotechnology. Life 5, 25–49 (2015).

    Article  CAS  Google Scholar 

  77. Santos, H. & Da Costa, M. S. Compatible solutes of organisms that live in hot saline environments. Environ. Microbiol. 4, 501–509 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Harding, T., Brown, M. W., Simpson, A. G. & Roger, A. J. Osmoadaptive strategy and its molecular signature in obligately halophilic heterotrophic protists. Genome Biol. Evol. 8, 2241–2248 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Riedel, K. & Lehner, A. Identification of proteins involved in osmotic stress response in Enterobacter sakazakii by proteomics. Proteomics 7, 1217–1231 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Sleator, R. D. & Hill, C. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 26, 49–71 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Oren, A. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems 4, 2 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Crowe, J. H., Carpenter, J. F. & Crowe, L. M. The role of vitrification in anhydrobiosis. Annu. Rev. Physiol. 60, 73–103 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Crowe, J. H., Oliver, A. E. & Tablin, F. Is there a single biochemical adaptation to anhydrobiosis? Integr. Comp. Biol. 42, 497–503 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Welsch, D. T. Ecological significance of compatible solute accumulation by microorganisms: from single cells to global climate. FEMS Microbiol. Rev. 24, 263–290 (2000).

    Article  Google Scholar 

  85. Li, H., Bhaskara, A., Megalis, C. & Tortorello, M. L. Transcriptomic analysis of Salmonella desiccation resistance. Foodborne Pathog. Dis. 9, 1143–1151 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Youssef, N. H. et al. Trehalose/2-sulfotrehalose biosynthesis and glycine-betaine uptake are widely spread mechanisms for osmoadaptation in the Halobacteriales. ISME J. 8, 636–649 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Klähn, S. & Hagemann, M. Compatible solute biosynthesis in cyanobacteria. Environ. Microbiol. 13, 551–562 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Liu, Y. et al. Transcriptome analysis of Shewanella oneidensis MR-1 in response to elevated salt conditions. J. Bacteriol. 187, 2501–2507 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gunasekera, T. S., Csonka, L. N. & Palily, O. Genome-wide transcriptional response of Escherichia coli K-12 to continuous osmotic and heat stresses. J. Bacteriol. 190, 3712–3720 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hingston, P. A., Piercey, M. J. & Truelstrup Hansen, L. Genes associated with desiccation and osmotic stress in Listeria monocytogenes as revealed by insertional mutagenesis. Appl. Environ. Microbiol. 81, 5350–5362 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Garay-Arroyo, A., Colmenero-Flores, J. M., Garciarrubio, A. & Covarrubias, A. A. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J. Biol. Chem. 275, 5668–5674 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Slade, D. & Radman, M. Oxidative stress resistance in Deinococcus radiodurans. Microbiol. Mol. Biol. Rev. 75, 133–191 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F. & Covarrubias, A. A. The enigmatic LEA proteins and other hydrophilins. Plant Physiol. 148, 6–24 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Battista, J. R., Park, M. J. & McLemore, A. E. Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation. Cryobiology 43, 133–139 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Chakrabortee, S. et al. Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proc. Natl Acad. Sci. USA 104, 18073–18078 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shirkey, B. et al. Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (cyanobacteria) after years of desiccation. J. Bacteriol. 182, 189–197 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Potts, M., Slaughter, S. M., Hunneke, F. E., Garst, J. F. & Helm, R. F. Desiccation tolerance of prokaryotes: application of principles to human cells. Integr. Comp. Biol. 45, 800–809 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Wright, D. J. et al. UV irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (cyanobacteria). J. Biol. Chem. 280, 40271–40281 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Aertsen, A. & Michiels, C. W. Stress and how bacteria cope with death and survival. Crit. Rev. Microbiol. 30, 263–273 (2004). This review highlights the commonalities between xeric stress responses and responses to other stressors, which suggests that the physiological, biochemical and molecular adaptations that are used by microorganisms to tolerate xeric stress form part of a global stress response.

    Article  CAS  PubMed  Google Scholar 

  100. Schnider-Keel, U., Leibølle, K. B., Baehler, E., Haas, D. & Keel, C. The sigma factor AlgU (AlgT) controls exopolysaccharide production and tolerance towards desiccation and osmotic stress in the biocontrol agent Pseudomonas fluorescens CHA0. Appl. Environ. Microbiol. 67, 5683–5693 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chung, H. J., Bang, W. & Drake, M. A. Stress response of Escherichia coli. Compr. Rev. Food Sci. Food Saf. 5, 52–64 (2006).

    Article  CAS  Google Scholar 

  102. Obolski, U. & Hadany, L. Implications of stress-induced genetic variation for minimizing multidrug resistance in bacteria. BMC Med. 10, 89 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Daly, M. J. et al. Small-molecular antioxidant proteome-shields in Deinococcus radiodurans. PLoS ONE 5, e12570 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Stevenson, A. et al. Glycerol enhances fungal germination at the water-activity limit for life. Environ. Microbiol. http://dx.doi.org/10.1111/1462-2920.13530 (2016).

  105. Stevenson, A. et al. Aspergillus penicillioides differentiation and cell division at 0.585 water activity. Environ. Microbiol. 19, 687–697 (2016).

    Article  CAS  Google Scholar 

  106. Reynolds, J. F. & Stafford Smith, D. M. Global Desertification: Do Humans Cause Deserts? (Dahlem Univ. Press, 2002).

    Google Scholar 

  107. D'Odorico, P. et al. Global desertification: drivers and feedbacks. Adv. Water Resour. 51, 326–344 (2013).

    Article  Google Scholar 

  108. Geist, H. J. & Lambin, E. F. Dynamic causal patterns of desertification. BioScience 54, 817–829 (2004).

    Article  Google Scholar 

  109. Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science 316, 847–851 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Belnap, J. Surface disturbances: their role in accelerating desertification. Environ. Monit. Assess. 37, 38–57 (1995).

    Article  Google Scholar 

  111. Chamizo, S., Cantón, Y., Rodríguez-Caballero, E. & Domingo, F. Biocrusts positively affect the soil water balance in semiarid ecosystems. Ecohydrology 9, 1208–1221 (2016).

    Article  Google Scholar 

  112. Reed, S. C. et al. in Biological Soil Crusts: An Organizing Principle in Drylands (eds Weber, B., Büdel, B. & Belnap, J.) 451–476 (Springer, 2016).

    Book  Google Scholar 

  113. Chiquoine, L. P., Abella, S. R. & Bowker, M. A. Rapidly restoring biological soil crusts and ecosystem functions in a severely disturbed desert ecosystem. Ecol. Appl. 26, 1260–1272 (2016).

    Article  PubMed  Google Scholar 

  114. Wolfe, J. & Bryant, G. Freezing, drying and/or vitrification of membrane-solute-water systems. Cryobiology 39, 103–129 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Billi, D. & Potts, M. Life and death of dried prokaryotes. Res. Microbiol. 153, 7–12 (2002). This mini review contrasts desiccation tolerance and osmoadaptation, and discusses how bacteria and archaeacan cope with both xeric and osmotic stress.

    Article  CAS  PubMed  Google Scholar 

  116. Franca, M. B., Panek, A. D. & Eleutherio, E. C. Oxidative stress effects during dehydration. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 146, 621–631 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. García, A. H. Anhydrobiosis in bacteria: from physiology to applications. J. Biosci. 36, 939–950 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Keegan, K. P., Glass, E. M. & Meyer, F. MG-RAST, a metagenomics service for analysis of microbial community structure and function. Methods Mol. Biol. 1399, 207–233 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don A. Cowan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

MG-RAST metagenomics repository

PowerPoint slides

Glossary

Hypertonicity

A solution that contains a higher concentration of solutes than another solution.

Hyper-arid

An oligotrophic environment with severe water shortage, low precipitation and soil erosion that poses extreme challenges to the survival of living organisms. Technically, hyper-arid environments have an aridity index of less than 0.05.

Water activity

(aw). A measurement of the water that is available to an organism in the environment. It is calculated as the ratio of the vapour pressure in an environment relative to pure water under identical conditions.

Maillard reactions

Non-enzymatic reactions in which the reactive carbonyl groups of sugars react with primary amines of nucleic acids and amino groups of proteins, forming covalent bonds that cause crosslinks between proteins and DNA. These reactions are also referred to as Browning reactions.

Hydroxyl radicals

The neutral form of the hydroxide ion (OH).

Metataxonomic approaches

(MTX approaches). The high-throughput sequencing of taxonomic markers (such as 16S rRNA genes) in metagenomic DNA from an environmental sample and the subsequent phylogenetic and taxonomic analyses of the microbial community composition and structure.

Akinetes

Thick-walled dormant cells that are formed through the enlargement of vegetative cells in non-sporulating cyanobacteria and green algae.

Monoenoic fatty acids

An unsaturated fatty acid that has only one double bond.

Cyclopropane fatty acids

Rare fatty acids that are produced through the cyclopropanation of unsaturated fatty acids.

Hexagonal II phase

A membrane lipid polymorphism in which lipids aggregate into cone shapes that are organized with the polar head groups on the inside of the cone and the hydrophobic hydrocarbons tails on the outside. The creation of these aggregates increases the packing disorder of lipid membranes under xeric stress.

Phosphatidylglycerol lipids

Glycerophospholipids that consist of an L-glycerol-3-phosphate backbone ester-linked to either saturated or unsaturated fatty acids at carbon 1 and carbon 2.

Cardiolipin

A negatively charged diphosphatidylglycerol lipid that consists of a glycerol backbone linked to two phosphatidic acid moieties.

Halophiles

Organisms that are adapted to thrive in environments that have saturated salt content and do not grow optimally in more mesophilic environments.

Vitrification

The formation of glass by disaccharides (such as trehalose and sucrose), which is induced by the removal of water from the intracellular environment. The decrease in diffusion rates inside the cell caused by vitrification is thought to be crucial for resistance to water stress, as it slows down diffusion rates and prevents the accumulation of harmful reactive oxygen species (ROS).

Glyoxylate shunt

A variant of the tricarboxylic acid (TCA) cycle that involves the conversion of acetyl-CoA to succinate for the biosynthesis of carbohydrates.

Chemotaxis

A process that is carried out by a system of membrane chemoreceptors and signal-transducing pathways that controls the ability of bacteria to move by means of flagella towards attractants and away from repellents.

Housekeeping proteins

Proteins that are necessary for normal cellular functions and are typically encoded by constitutively expressed genes.

Catalases

Enzyme that are common to all domains of life that catalyse the degradation of hydrogen peroxide to water and oxygen.

Thioredoxins

A class of small proteins that are involved mainly in redox signalling.

Alternative sigma factors

Specialized sigma factors that react to external environmental triggers and regulate specific cell functions, such as stress tolerance, flagellar motility and virulence.

Type III secretion system

Protein machinery found in the Gram-negative bacteria that secretes effector proteins that assist in the infection of eukaryotic hosts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebre, P., De Maayer, P. & Cowan, D. Xerotolerant bacteria: surviving through a dry spell. Nat Rev Microbiol 15, 285–296 (2017). https://doi.org/10.1038/nrmicro.2017.16

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2017.16

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing