Key Points
-
Bacteria and archaea use protein filament systems to organize cellular processes in time and space. Filaments can act as static scaffolds or as dynamic motors.
-
In some cases, these filament systems function analogously to components of the eukaryotic cytoskeleton, and the term 'prokaryotic cytoskeletons' has been adopted and broadened to include many different filament systems in small cells.
-
Many of the proteins that form these filaments fall into a small number of groups. The three largest and most-studied groups are the actin superfamily, the tubulin superfamily and filaments formed by coiled coil proteins.
-
Within a filament family, the structural basis of filament formation is typically conserved, whereas the biological functions of the related filaments are often divergent. This observation is important for our understanding of ancient evolutionary events and processes.
-
Remarkable progress has been made in understanding how filament systems function, although in most cases, the molecular mechanisms remain unclear. Structural biology, cryo-electron tomography of cells and advanced light microscopy methods are making important contributions to our mechanistic understanding.
-
An emerging theme is that although some filaments function by forming large filaments, in many cases, short filaments formed from tens of monomers function in a highly dynamic way to organize local processes.
Abstract
Most, if not all, bacterial and archaeal cells contain at least one protein filament system. Although these filament systems in some cases form structures that are very similar to eukaryotic cytoskeletons, the term 'prokaryotic cytoskeletons' is used to refer to many different kinds of protein filaments. Cytoskeletons achieve their functions through polymerization of protein monomers and the resulting ability to access length scales larger than the size of the monomer. Prokaryotic cytoskeletons are involved in many fundamental aspects of prokaryotic cell biology and have important roles in cell shape determination, cell division and nonchromosomal DNA segregation. Some of the filament-forming proteins have been classified into a small number of conserved protein families, for example, the almost ubiquitous tubulin and actin superfamilies. To understand what makes filaments special and how the cytoskeletons they form enable cells to perform essential functions, the structure and function of cytoskeletal molecules and their filaments have been investigated in diverse bacteria and archaea. In this Review, we bring these data together to highlight the diverse ways that linear protein polymers can be used to organize other molecules and structures in bacteria and archaea.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bi, E. & Lutkenhaus, J. FtsZ ring structure associated with division in Escherichia coli. Nature 354, 161–164 (1991).
de Boer, P., Crossley, R. & Rothfield, L. The essential bacterial cell-division protein FtsZ is a GTPase. Nature 359, 254–256 (1992).
RayChaudhuri, D. & Park, J. T. Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature 359, 251–254 (1992).
Löwe, J. & Amos, L. A. Crystal structure of the bacterial cell-division protein FtsZ. Nature 391, 203–206 (1998).
Mukherjee, A., Dai, K. & Lutkenhaus, J. Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. Proc. Natl Acad. Sci. USA 90, 1053–1057 (1993).
Wang, X. & Lutkenhaus, J. FtsZ ring: the eubacterial division apparatus conserved in archaebacteria. Mol. Microbiol. 21, 313–319 (1996).
Bork, P., Sander, C. & Valencia, A. An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc. Natl Acad. Sci. USA 89, 7290–7294 (1992). This study provids the first evidence, from sequence, that FtsA and MreB are related to eukaryotic actin.
van den Ent, F., Amos, L. A. & Löwe, J. Prokaryotic origin of the actin cytoskeleton. Nature 413, 39–44 (2001). This study provides structural evidence that MreB is a member of the actin superfamily.
Jones, L. J. F., Carballido-López, R. & Errington, J. Control of cell shape in bacteria. Cell 104, 913–922 (2001).
Ausmees, N., Kuhn, J. R. & Jacobs-Wagner, C. The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell 115, 705–713 (2003). This paper reports the discovery of crescentin and the first demonstration that coiled coil proteins could have cytoskeletal roles in prokaryotes.
Derman, A. I. et al. Phylogenetic analysis identifies many uncharacterized actin-like proteins (Alps) in bacteria: regulated polymerization, dynamic instability and treadmilling in Alp7A. Mol. Microbiol. 73, 534–552 (2009).
Duggin, I. G. et al. CetZ tubulin-like proteins control archaeal cell shape. Nature 519, 362–365 (2015).
Ettema, T. J. G., Lindås, A.-C. & Bernander, R. An actin-based cytoskeleton in archaea. Mol. Microbiol. 80, 1052–1061 (2011). This paper reports the discovery of crenactin and a careful survey of actin superfamily members across bacteria and archaea.
Obita, T. et al. Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449, 735–739 (2007).
Szwedziak, P., Wang, Q., Freund, S. M. & Löwe, J. FtsA forms actin-like protofilaments. EMBO J. 31, 2249–2260 (2012).
Bartlett, T. M. et al. A periplasmic polymer curves Vibrio cholerae and promotes pathogenesis. Cell 168, 172–185.e15 (2017). This article reports the discovery and characterization of CrvA, which forms a cytoskeleton within the periplasm.
Kühn, J. et al. Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus. EMBO J. 29, 327–339 (2010). This study identifies the bactofilin class as being widespread in bacteria and characterizes a pair of bactofilins in Caulobacter.
Ramamurthi, K. S. & Losick, R. ATP-driven self-assembly of a morphogenetic protein in Bacillus subtilis. Mol. Cell 31, 406–414 (2008).
Amos, L. A. & Löwe, J. in Prokaryotic Cytoskeletons (eds Löwe, J. & Amos, L. A.) 1–26 (Springer International Publishing, 2017).
Nogales, E., Downing, K. H., Amos, L. A. & Löwe, J. Tubulin and FtsZ form a distinct family of GTPases. Nat. Struct. Mol. Biol. 5, 451–458 (1998). A comparison and analysis of the then recently solved FtsZ and tubulin structures establishing the clear relatedness of the two proteins.
Erickson, H. P., Anderson, D. E. & Osawa, M. FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol. Mol. Biol. Rev. 74, 504–528 (2010).
Lindås, A.-C. & Bernander, R. The cell cycle of archaea. Nat. Rev. Microbiol. 11, 627–638 (2013).
Haeusser, D. P. & Margolin, W. Splitsville: structural and functional insights into the dynamic bacterial Z ring. Nat. Rev. Microbiol. 14, 305–319 (2016).
Bisson-Filho, A. W. et al. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355, 739–743 (2017). This study images the divisome and peptidoglycan in live Bacillus subtilis , which supported a model for division in which peptidoglycan remodelling activities are propelled around the division plane by treadmilling FtsZ filaments.
Yang, X. et al. GTPase activity–coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis. Science 355, 744–747 (2017).
Loose, M. & Mitchison, T. J. The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns. Nat. Cell Biol. 16, 38–46 (2014).
Strauss, M. P. et al. 3D-SIM super resolution microscopy reveals a bead-like arrangement for FtsZ and the division machinery: implications for triggering cytokinesis. PLOS Biol. 10, e1001389 (2012).
Coltharp, C., Buss, J., Plumer, T. M. & Xiao, J. Defining the rate-limiting processes of bacterial cytokinesis. Proc. Natl Acad. Sci. USA 113, E1044–E1053 (2016).
Wagstaff, J. M. et al. A polymerization-associated structural switch in FtsZ that enables treadmilling of model filaments. mBio 8, e00254–00217 (2017).
Szwedziak, P., Wang, Q., Bharat, T. A. M., Tsim, M. & Löwe, J. Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division. eLife 3, e04601 (2015).
Yao, Q. et al. Short FtsZ filaments can drive asymmetric cell envelope constriction at the onset of bacterial cytokinesis. EMBO J. 36, 1577–1589 (2017). This study performs cryo-ET of cells early in division from many species, making it clear that in many cases, constriction initiates asymmetrically, ruling out some models for division.
Vaughan, S., Wickstead, B., Gull, K. & Addinall, S. G. Molecular evolution of FtsZ protein sequences encoded within the genomes of archaea, bacteria, and eukaryota. J. Mol. Evol. 58, 19–29 (2004).
Osteryoung, K. W. & Pyke, K. A. Division and dynamic morphology of plastids. Annu. Rev. Plant Biol. 65, 443–472 (2014).
Kiefel, B. R., Gilson, P. R. & Beech, P. L. Diverse eukaryotes have retained mitochondrial homologues of the bacterial division protein FtsZ. Protist 155, 105–115 (2004).
Uebe, R. & Schüler, D. Magnetosome biogenesis in magnetotactic bacteria. Nat. Rev. Microbiol. 14, 621–637 (2016).
Richter, M. et al. Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. J. Bacteriol. 189, 4899–4910 (2007).
Müller, F. D. et al. The FtsZ-like protein ftszm of magnetospirillum gryphiswaldense likely interacts with its generic homolog and is required for biomineralization under nitrate deprivation. J. Bacteriol. 196, 650–659 (2014).
Aylett, C. H. S. & Duggin, I. G. in Prokaryotic Cytoskeletons (eds Löwe, J. & Amos, L. A.) 393–417 (Springer International Publishing, 2017).
Fink, G. & Aylett, C. H. S. in Prokaryotic Cytoskeletons (eds Löwe, J. & Amos, L. A.) 323–356 (Springer International Publishing, 2017).
Tinsley, E. & Khan, S. A. A novel FtsZ-like protein is involved in replication of the anthrax toxin-encoding pXO1 plasmid in Bacillus anthracis. J. Bacteriol. 188, 2829–2835 (2006).
Larsen, R. A. et al. Treadmilling of a prokaryotic tubulin-like protein, TubZ, required for plasmid stability in Bacillus thuringiensis. Genes Dev. 21, 1340–1352 (2007).
Kraemer, J. A. et al. A phage tubulin assembles dynamic filaments by an atypical mechanism to center viral DNA within the host cell. Cell 149, 1488–1499 (2012).
Chaikeeratisak, V. et al. Assembly of a nucleus-like structure during viral replication in bacteria. Science 355, 194–197 (2017).
Fink, G. & Löwe, J. Reconstitution of a prokaryotic minus end-tracking system using TubRC centromeric complexes and tubulin-like protein TubZ filaments. Proc. Natl Acad. Sci. USA 112, E1845–E1850 (2015).
Erb, M. L. et al. A bacteriophage tubulin harnesses dynamic instability to center DNA in infected cells. eLife 3, e03197 (2014).
Montabana, E. A. & Agard, D. A. Bacterial tubulin TubZ-Bt transitions between a two-stranded intermediate and a four-stranded filament upon GTP hydrolysis. Proc. Natl Acad. Sci. USA 111, 3407–3412 (2014).
Zehr, E. A. et al. The structure and assembly mechanism of a novel three-stranded tubulin filament that centers phage DNA. Structure 22, 539–548 (2014).
Jenkins, C. et al. Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc. Natl Acad. Sci. USA 99, 17049–17054 (2002).
Schlieper, D., Oliva, M. A., Andreu, J. M. & Löwe, J. Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc. Natl Acad. Sci. USA 102, 9170–9175 (2005).
Pilhofer, M., Ladinsky, M. S., McDowall, A. W., Petroni, G. & Jensen, G. J. Microtubules in bacteria: ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton. PLOS Biol. 9, e1001213 (2011).
Deng, X. et al. Four-stranded mini microtubules formed by Prosthecobacter BtubAB show dynamic instability. Proc. Natl Acad. Sci. USA 114, E5950–E5958 (2017). This study uses cryo-EM and total internal reflection fluorescence microscopy (TIRF) imaging to demonstrate the remarkable similarity in structure and behaviour of four-stranded bacterial minimicrotubules to eukayrotic counterparts.
Yutin, N. & Koonin, E. V. Archaeal origin of tubulin. Biol. Direct 7, 10 (2012).
Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).
Makarova, K. S. & Koonin, E. V. Two new families of the FtsZ-tubulin protein superfamily implicated in membrane remodeling in diverse bacteria and archaea. Biol. Direct 5, 33 (2010).
Dominguez, R. & Holmes, K. C. Actin structure and function. Annu. Rev. Biophys. 40, 169–186 (2011).
Errington, J. Bacterial morphogenesis and the enigmatic MreB helix. Nat. Rev. Microbiol. 13, 241–248 (2015).
Szwedziak, P. & Löwe, J. Do the divisome and elongasome share a common evolutionary past? Curr. Opin. Microbiol. 16, 745–751 (2013).
van den Ent, F., Izoré, T., Bharat, T. A., Johnson, C. M. & Löwe, J. Bacterial actin MreB forms antiparallel double filaments. eLife 3, e02634 (2014). This study reports evidence to show that MreB forms antiparallel double filaments in cells, which places important constraints on how it can function.
Salje, J., van den Ent, F., de Boer, P. & Löwe, J. Direct membrane binding by bacterial actin MreB. Mol. Cell 43, 478–487 (2011).
Billaudeau, C. et al. Contrasting mechanisms of growth in two model rod-shaped bacteria. Nat. Commun. 8 15370 (2017).
Domínguez-Escobar, J. et al. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333, 225–228 (2011).
Garner, E. C. et al. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333, 222–225 (2011). One of several papers imaging MreB and associated enzymes in live cells that shows that short MreB filaments move rapidly around the circumference of the cell, powered by cell wall synthesis, in contradiction of then prevailing ideas.
Teeffelen, S. van et al. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc. Natl Acad. Sci. USA 108, 15822–15827 (2011).
Fenton, A. K., Lambert, C., Wagstaff, P. C. & Sockett, R. E. Manipulating each MreB of Bdellovibrio bacteriovorus gives diverse morphological and predatory phenotypes. J. Bacteriol. 192, 1299–1311 (2010).
Kawai, Y., Asai, K. & Errington, J. Partial functional redundancy of MreB isoforms, MreB, Mbl and MreBH, in cell morphogenesis of Bacillus subtilis. Mol. Microbiol. 73, 719–731 (2009).
Jacquier, N., Frandi, A., Pillonel, T., Viollier, P. H. & Greub, G. Cell wall precursors are required to organize the chlamydial division septum. Nat. Commun. 5, 3578 (2014).
Ouellette, S. P., Karimova, G., Subtil, A. & Ladant, D. Chlamydia co-opts the rod shape-determining proteins MreB and Pbp2 for cell division. Mol. Microbiol. 85, 164–178 (2012).
Em, M. et al. Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA. EMBO J. 29, 315–326 (2010).
Schumacher, D. & Søgaard-Andersen, L. Regulation of cell polarity in motility and cell division in Myxococcus xanthus. Annu. Rev. Microbiol. 71, 61–78 (2017).
Luciano, J. et al. Emergence and modular evolution of a novel motility machinery in bacteria. PLOS Genet. 7, e1002268 (2011).
Trachtenberg, S. et al. Structure of the cytoskeleton of Spiroplasma melliferum BC3 and its interactions with the cell membrane. J. Mol. Biol. 378, 778–789 (2008).
Gitai, Z., Dye, N. A., Reisenauer, A., Wachi, M. & Shapiro, L. MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 120, 329–341 (2005).
Shiomi, D. & Margolin, W. Dimerization or oligomerization of the actin-like FtsA protein enhances the integrity of the cytokinetic Z ring. Mol. Microbiol. 66, 1396–1415 (2007).
Ent, F. van den & Löwe, J. Crystal structure of the cell division protein FtsA from Thermotoga maritima. EMBO J. 19, 5300–5307 (2000).
Osawa, M. & Erickson, H. P. Liposome division by a simple bacterial division machinery. Proc. Natl Acad. Sci. USA 110, 11000–11004 (2013).
Krupka, M. et al. Escherichia coli FtsA. forms lipid-bound minirings that antagonize lateral interactions between FtsZ. protofilaments. Nat. Commun. 8, 15957 (2017).
Scheffel, A. et al. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440, 110–114 (2006).
Komeili, A., Li, Z., Newman, D. K. & Jensen, G. J. Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311, 242–245 (2006).
Katzmann, E. et al. Magnetosome chains are recruited to cellular division sites and split by asymmetric septation. Mol. Microbiol. 82, 1316–1329 (2011).
Löwe, J., He, S., Scheres, S. H. W. & Savva, C. G. X-Ray and cryo-EM structures of monomeric and filamentous actin-like protein MamK reveal changes associated with polymerization. Proc. Natl Acad. Sci. USA 113, 13396–13401 (2016).
Toro-Nahuelpan, M. et al. Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament. BMC Biol. 14, 88 (2016).
Oda, T., Iwasa, M., Aihara, T., Maéda, Y. & Narita, A. The nature of the globular- to fibrous-actin transition. Nature 457, 441–445 (2009).
Gayathri, P. et al. A bipolar spindle of antiparallel ParM filaments drives bacterial plasmid segregation. Science 338, 1334–1337 (2012).
Abreu, N. et al. Interplay between two bacterial actin homologs, MamK and MamK-Like, is required for the alignment of magnetosome organelles in Magnetospirillum magneticum AMB-1. J. Bacteriol. 196, 3111–3121 (2014).
Rioux, J.-B. et al. A second actin-like MamK protein in Magnetospirillum magneticum AMB-1 encoded outside the genomic magnetosome island. PLOS ONE 5, e9151 (2010).
Gayathri, P. & Harne, S. in Prokaryotic Cytoskeletons (eds Löwe, J. & Amos, L. A.) 299–321 (Springer International Publishing, 2017).
Gerdes, K., Larsen, J. E. & Molin, S. Stable inheritance of plasmid R1 requires two different loci. J. Bacteriol. 161, 292–298 (1985).
Møller-Jensen, J. et al. Bacterial mitosis. Mol. Cell 12, 1477–1487 (2003).
Bharat, T. A. M., Murshudov, G. N., Sachse, C. & Löwe, J. Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles. Nature 523, 106–110 (2015). This study is the culmination of many years of work on ParM, providing an essentially complete description of structure and function.
Salje, J., Gayathri, P. & Löwe, J. The ParMRC system: molecular mechanisms of plasmid segregation by actin-like filaments. Nat. Rev. Microbiol. 8, 683–692 (2010).
Rivera, C. R., Kollman, J. M., Polka, J. K., Agard, D. A. & Mullins, R. D. Architecture and assembly of a divergent member of the ParM family of bacterial actin-like proteins. J. Biol. Chem. 286, 14282–14290 (2011).
Popp, D. et al. Structure and filament dynamics of the pSK41 actin-like ParM protein: implications for plasmid DNA segregation. J. Biol. Chem. 285, 10130–10140 (2010).
Becker, E. et al. DNA segregation by the bacterial actin AlfA during Bacillus subtilis growth and development. EMBO J. 25, 5919–5931 (2006).
Polka, J. K., Kollman, J. M., Agard, D. A. & Mullins, R. D. The structure and assembly dynamics of plasmid actin AlfA imply a novel mechanism of DNA segregation. J. Bacteriol. 191, 6219–6230 (2009).
Polka, J. K., Kollman, J. M. & Mullins, R. D. Accessory factors promote AlfA-dependent plasmid segregation by regulating filament nucleation, disassembly, and bundling. Proc. Natl Acad. Sci. USA 111, 2176–2181 (2014).
Tanaka, T. Functional analysis of the stability determinant AlfB of pBET131, a miniplasmid derivative of Bacillus subtilis (natto) Plasmid pLS32. J. Bacteriol. 192, 1221–1230 (2010).
Donovan, C. et al. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria. Nucleic Acids Res. 43, 5002–5016 (2015).
Yuan, Y. et al. Effects of actin-like proteins encoded by two Bacillus pumilus phages on unstable lysogeny, revealed by genomic analysis. Appl. Environ. Microbiol. 81, 339–350 (2015).
Popp, D. et al. Novel actin-like filament structure from Clostridium tetani. J. Biol. Chem. 287, 21121–21129 (2012).
Derman, A. I. et al. Alp7R regulates expression of the actin-like protein Alp7A in Bacillus subtilis. J. Bacteriol. 194, 2715–2724 (2012).
Schumacher, M. A. et al. Segrosome structure revealed by a complex of ParR with centromere DNA. Nature 450, 1268–1271 (2007).
Hara, F. et al. An actin homolog of the Archaeon Thermoplasma acidophilum that retains the ancient characteristics of eukaryotic actin. J. Bacteriol. 189, 2039–2045 (2007).
Lindås, A.-C., Valegård, K. & Ettema, T. J. G. in Prokaryotic Cytoskeletons (eds Löwe, J. & Amos, L. A.) 379–392 (Springer International Publishing, 2017).
Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).
Makarova, K. S., Yutin, N., Bell, S. D. & Koonin, E. V. Evolution of diverse cell division and vesicle formation systems in Archaea. Nat. Rev. Microbiol. 8, 731–741 (2010).
Izoré, T., Kureisaite-Ciziene, D., McLaughlin, S. H. & Löwe, J. Crenactin forms actin-like double helical filaments regulated by arcadin-2. eLife 5, e21600 (2016). This paper reports the cryo-EM structure of a crenactin filament, which showed that it is extremely similar to eukaryotic actin.
Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).
Lin, L. & Thanbichler, M. Nucleotide-independent cytoskeletal scaffolds in bacteria. Cytoskeleton 70, 409–423 (2013).
Chernyatina, A. A., Guzenko, D. & Strelkov, S. V. Intermediate filament structure: the bottom-up approach. Curr. Opin. Cell Biol. 32, 65–72 (2015).
Herrmann, H. & Aebi, U. Intermediate filaments: structure and assembly. Cold Spring Harb. Perspect. Biol. 8, a018242 (2016).
Crick, F. H. C. Is α-keratin a coiled coil? Nature 170, 882–883 (1952).
Walshaw, J., Gillespie, M. D. & Kelemen, G. H. A novel coiled-coil repeat variant in a class of bacterial cytoskeletal proteins. J. Struct. Biol. 170, 202–215 (2010).
Snider, N. T. & Omary, M. B. Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat. Rev. Mol. Cell. Biol. 15, 163–177 (2014).
Cabeen, M. T., Herrmann, H. & Jacobs-Wagner, C. The domain organization of the bacterial intermediate filament-like protein crescentin is important for assembly and function. Cytoskeleton 68, 205–219 (2011).
Cabeen, M. T. et al. Bacterial cell curvature through mechanical control of cell growth. EMBO J. 28, 1208–1219 (2009).
Charbon, G., Cabeen, M. T. & Jacobs-Wagner, C. Bacterial intermediate filaments: in vivo assembly, organization, and dynamics of crescentin. Genes Dev. 23, 1131–1144 (2009).
Ingerson-Mahar, M., Briegel, A., Werner, J. N., Jensen, G. J. & Gitai, Z. The metabolic enzyme CTP synthase forms cytoskeletal filaments. Nat. Cell Biol. 12, 739–746 (2010).
Lynch, E. M. et al. Human CTP synthase filament structure reveals the active enzyme conformation. Nat. Struct. Mol. Biol. 24, 507–514 (2017).
Kelemen, G. H. in Prokaryotic Cytoskeletons (eds Löwe, J. & Amos, L. A.) 161–211 (Springer International Publishing, 2017).
Bagchi, S., Tomenius, H., Belova, L. M. & Ausmees, N. Intermediate filament-like proteins in bacteria and a cytoskeletal function in Streptomyces. Mol. Microbiol. 70, 1037–1050 (2008).
Holmes, N. A. et al. Coiled-coil protein Scy is a key component of a multiprotein assembly controlling polarized growth in Streptomyces. Proc. Natl Acad. Sci. USA 110, E397–406 (2013).
Waidner, B. et al. A novel system of cytoskeletal elements in the human pathogen Helicobacter pylori. PLOS Pathog. 5, e1000669 (2009).
Specht, M., Schätzle, S., Graumann, P. L. & Waidner, B. Helicobacter pylori possesses four coiled-coil-rich proteins that form extended filamentous structures and control cell shape and motility. J. Bacteriol. 193, 4523–4530 (2011).
Mazouni, K. et al. The Scc spirochetal coiled-coil protein forms helix-like filaments and binds to nucleic acids generating nucleoprotein structures. J. Bacteriol. 188, 469–476 (2006).
Raddi, G. et al. Three-dimensional structures of pathogenic and saprophytic Leptospira species revealed by cryo-electron tomography. J. Bacteriol. 194, 1299–1306 (2012).
Yang, R. et al. AglZ is a filament-forming coiled-coil protein required for adventurous gliding motility of Myxococcus xanthus. J. Bacteriol. 186, 6168–6178 (2004).
Ward, M. J., Lew, H. & Zusman, D. R. Social motility in Myxococcus xanthus requires FrzS, a protein with an extensive coiled-coil domain. Mol. Microbiol. 37, 1357–1371 (2000).
Berleman, J. E. et al. FrzS regulates social motility in Myxococcus xanthus by controlling exopolysaccharide production. PLOS ONE 6, e23920 (2011).
Fenton, A. K., Hobley, L., Butan, C., Subramaniam, S. & Sockett, R. E. A coiled-coil-repeat protein 'Ccrp' in Bdellovibrio bacteriovorus prevents cellular indentation, but is not essential for vibroid cell morphology. FEMS Microbiol. Lett. 313, 89–95 (2010).
Cha, J. H. & Stewart, G. C. The divIVA minicell locus of Bacillus subtilis. J. Bacteriol. 179, 1671–1683 (1997).
Marston, A. L., Thomaides, H. B., Edwards, D. H., Sharpe, M. E. & Errington, J. Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev. 12, 3419–3430 (1998).
Kaval, K. G. & Halbedel, S. Architecturally the same, but playing a different game. Virulence 3, 406–407 (2012).
Oliva, M. A. et al. Features critical for membrane binding revealed by DivIVA crystal structure. EMBO J. 29, 1988–2001 (2010).
Stahlberg, H. et al. Oligomeric structure of the Bacillus subtilis cell division protein DivIVA determined by transmission electron microscopy. Mol. Microbiol. 52, 1281–1290 (2004).
Lenarcic, R. et al. Localisation of DivIVA by targeting to negatively curved membranes. EMBO J. 28, 2272–2282 (2009).
Ramamurthi, K. S. & Losick, R. Negative membrane curvature as a cue for subcellular localization of a bacterial protein. Proc. Natl Acad. Sci. USA 106, 13541–13545 (2009).
Hempel, A. M. et al. The Ser/Thr protein kinase AfsK regulates polar growth and hyphal branching in the filamentous bacteria Streptomyces. Proc. Natl Acad. Sci. USA 109, E2371–E2379 (2012).
Kang, C.-M. et al. The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev. 19, 1692–1704 (2005).
Saalbach, G. et al. Determination of phosphorylation sites in the DivIVA cytoskeletal protein of Streptomyces coelicolor by targeted LC–MS/MS. J. Proteome Res. 12, 4187–4192 (2013).
Fiuza, M. et al. Phosphorylation of a novel cytoskeletal protein (RsmP) regulates rod-shaped morphology in Corynebacterium glutamicum. J. Biol. Chem. 285, 29387–29397 (2010).
Samson, R. Y., Dobro, M. J., Jensen, G. J. & Bell, S. D. in Prokaryotic Cytoskeletons (eds Löwe, J. & Amos, L. A.) 357–377 (Springer International Publishing, 2017).
Lindås, A.-C., Karlsson, E. A., Lindgren, M. T., Ettema, T. J. G. & Bernander, R. A unique cell division machinery in the Archaea. Proc. Natl Acad. Sci. USA 105, 18942–18946 (2008).
Dobro, M. J. et al. Electron cryotomography of ESCRT assemblies and dividing Sulfolobus cells suggests that spiraling filaments are involved in membrane scission. Mol. Biol. Cell 24, 2319–2327 (2013).
Schöneberg, J., Lee, I.-H., Iwasa, J. H. & Hurley, J. H. Reverse-topology membrane scission by the ESCRT proteins. Nat. Rev. Mol. Cell. Biol. 18, 5–17 (2017).
Samson, R. Y. et al. Molecular and structural basis of ESCRT-III recruitment to membranes during Archaeal cell division. Mol. Cell 41, 186–196 (2011).
Barry, R. M. & Gitai, Z. Self-assembling enzymes and the origins of the cytoskeleton. Curr. Opin. Microbiol. 14, 704–711 (2011).
Hay, N. A., Tipper, D. J., Gygi, D. & Hughes, C. A. Novel membrane protein influencing cell shape and multicellular swarming of Proteus mirabilis. J. Bacteriol. 181, 2008–2016 (1999).
Koch, M. K., McHugh, C. A & Hoiczyk, E. BacM, an N-terminally processed bactofilin of Myxococcus xanthus, is crucial for proper cell shape. Mol. Microbiol. 80, 1031–1051 (2011).
Sycuro, L. K. et al. Peptidoglycan crosslinking relaxation promotes Helicobacter pylori's helical shape and stomach colonization. Cell 141, 822–833 (2010).
Shi, C. et al. Atomic-resolution structure of cytoskeletal bactofilin by solid-state NMR. Sci. Adv. 1, e1501087 (2015). This paper reports the first bactofilin structure, solved de novo by solid state NMR, showing that the conserved core bactofilin sequence forms a right-handed β-helix.
Hamoen, L. W., Meile, J.-C., De Jong, W., Noirot, P. & Errington, J. SepF, a novel FtsZ-interacting protein required for a late step in cell division. Mol. Microbiol. 59, 989–999 (2006).
Duman, R. et al. Structural and genetic analyses reveal the protein SepF as a new membrane anchor for the Z ring. Proc. Natl Acad. Sci. USA 110, E4601–E4610 (2013).
Gola, S., Munder, T., Casonato, S., Manganelli, R. & Vicente, M. The essential role of SepF in mycobacterial division. Mol. Microbiol. 97, 560–576 (2015).
Gupta, S. et al. Essential protein SepF of mycobacteria interacts with FtsZ and MurG to regulate cell growth and division. Microbiology 161, 1627–1638 (2015).
Ishikawa, S., Kawai, Y., Hiramatsu, K., Kuwano, M. & Ogasawara, N. A new FtsZ-interacting protein, YlmF, complements the activity of FtsA during progression of cell division in Bacillus subtilis. Mol. Microbiol. 60, 1364–1380 (2006).
Marbouty, M., Saguez, C., Cassier-Chauvat, C. & Chauvat, F. Characterization of the FtsZ-interacting septal proteins SepF and Ftn6 in the spherical-celled Cyanobacterium Synechocystis strain PCC 6803. J. Bacteriol. 191, 6178–6185 (2009).
Bowman, G. R. et al. A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell 134, 945–955 (2008).
Ebersbach, G., Briegel, A., Jensen, G. J. & Jacobs-Wagner, C. A self-associating protein critical for chromosome attachment, division, and polar organization in caulobacter. Cell 134, 956–968 (2008).
Holmes, J. A. et al. Caulobacter PopZ forms an intrinsically disordered hub in organizing bacterial cell poles. Proc. Natl Acad. Sci. USA 113, 12490–12495 (2016). This study provides evidence that PopZ functions by high-order self-association and by interactions with other proteins via intrinsically disordered regions.
Tocheva, E. I. et al. Peptidoglycan remodeling and conversion of an inner membrane into an outer membrane during sporulation. Cell 146, 799–812 (2011).
Michie, K. A. & Löwe, J. Dynamic filaments of the bacterial cytoskeleton. Annu. Rev. Biochem. 75, 467–492 (2006).
Charon, N. W. et al. The unique paradigm of Spirochete motility and chemotaxis. Annu. Rev. Microbiol. 66, 349–370 (2012).
Izard, J. et al. Tomographic reconstruction of treponemal cytoplasmic filaments reveals novel bridging and anchoring components: filament bridging and anchoring. Mol. Microbiol. 51, 609–618 (2003).
You, Y. et al. Characterization of the cytoplasmic filament protein gene (cfpA) of Treponema pallidum subsp. pallidum. J. Bacteriol. 178, 3177–3187 (1996).
Dobro, M. J. et al. Uncharacterized bacterial structures revealed by electron cryotomography. J. Bacteriol. http://dx.doi.org/10.1128/JB.00100-17 (2017).
Ghosal, D. & Löwe, J. Collaborative protein filaments. EMBO J. 34, 2312–2320 (2015).
Löwe, J. & Amos, L. A. Evolution of cytomotive filaments: the cytoskeleton from prokaryotes to eukaryotes. Int. J. Biochem. Cell Biol. 41, 323–329 (2009).
Eun, Y.-J., Kapoor, M., Hussain, S. & Garner, E. C. Bacterial filament systems: towards understanding their emergent behavior and cellular functions. J. Biol. Chem. 290, 17181–17189 (2015).
Pilhofer, M. & Jensen, G. J. The bacterial cytoskeleton: more than twisted filaments. Curr. Opin. Cell Biol. 25, 125–133 (2013).
Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908–1912 (2007).
Rasmussen, C. G., Wright, A. J. & Müller, S. The role of the cytoskeleton and associated proteins in determination of the plant cell division plane. Plant J. 75, 258–269 (2013).
Young, K. D. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70, 660–703 (2006).
Bramkamp, M. et al. A novel component of the division-site selection system of Bacillus subtilis and a new mode of action for the division inhibitor MinCD. Mol. Microbiol. 70, 1556–1569 (2008).
Patrick, J. E. & Kearns, D. B. MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis. Mol. Microbiol. 70, 1166–1179 (2008).
Kühlbrandt, W. The resolution revolution. Science 343, 1443–1444 (2014).
He, S. & Scheres, S. H. W. Helical reconstruction in RELION. J. Struct. Biol. 198, 163–176 (2017).
Zieske, K. & Schwille, P. Reconstitution of self-organizing protein gradients as spatial cues in cell-free systems. eLife http://dx.doi.org/10.7554/eLife.03949 (2014).
Garner, E. C., Campbell, C. S., Weibel, D. B. & Mullins, R. D. Reconstitution of DNA segregation driven by assembly of a prokaryotic actin homolog. Science 315, 1270–1274 (2007).
Oikonomou, C. M., Chang, Y.-W. & Jensen, G. J. A new view into prokaryotic cell biology from electron cryotomography. Nat. Rev. Microbiol. 14, 205–220 (2016).
Ma, X., Ehrhardt, D. W. & Margolin, W. Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc. Natl Acad. Sci. USA 93, 12998–13003 (1996).
McCullough, J. et al. Structure and membrane remodeling activity of ESCRT-III helical polymers. Science 350, 1548–1551 (2015).
Dai, K. & Lutkenhaus, J. The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. J. Bacteriol. 174, 6145–6151 (1992).
Acknowledgements
The authors acknowledge support from the Medical Research Council (U105184326) and the Wellcome Trust (095514/Z/11/Z). J.W. acknowledges the Boehringer Ingelheim Fonds for his PhD fellowship.
Author information
Authors and Affiliations
Contributions
J.W. and J.L. contributed to researching data for the article. J.W. and J.L. substantially contributed to the discussion of content, wrote the article and reviewed and edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Glossary
- Endomembrane
-
Membrane binding internal compartments in eukaryotic cells.
- Segregation
-
The active partitioning of a cellular component into daughter cells at division.
- Superfamily
-
In proteins, the largest group that can be determined to have a common ancestor.
- Protofilament
-
The one-subunit-thick filament formed by repeated linear interactions between monomers; also known as a strand.
- Divisome
-
The set of proteins that divide a bacterial cell.
- Peptidoglycan
-
The peptide-crosslinked sugar polymer that is the major component of bacterial cell walls.
- Treadmilling
-
The situation in which a filament simultaneously grows and shrinks at opposite ends, leading to overall motion in the direction of growth without subunits moving.
- Magnetotactic bacteria
-
Bacteria that are able to sense magnetic fields using tiny intracellular magnets.
- Magnetosome
-
Inward bulges of the inner membrane in some bacteria that contain biomineralized iron compound crystals.
- Horizontal gene transfer
-
A process in which genetic material is transferred between genomes by any means except whole genome reproduction.
- Seam
-
The discontinuity in helical symmetry classically observed in 13 protofilament microtubules.
- Dynamic instability
-
Rapid and stochastic switching between filament growth and depolymerization, an emergent property of some filaments, notably microtubules.
- TACK superphylum
-
An archaeal clade that is a sister to the clade that includes the Asgard superphylum and the archaeal ancestor of eukaryotes. TACK: Thaumarchaeota, Aigarchaeota, Crenarchaeota and Korarchaeota.
- Elongasome
-
The set of proteins that allow bacterial cells to grow longer.
- Cytomotive filament
-
A filament that pushes or pulls other molecules in a dynamic way.
- Gliding motility
-
A mode of bacterial self-propulsion that results in smooth motion over a surface. This is achieved by different mechanisms in different organisms.
- Coiled coil
-
The structural motif formed by intertwined α-helices.
- Forespores
-
Precursors of spores, a 'cell in a cell'.
- Subtomogram averaging
-
The process of aligning subvolumes extracted from tomograms to improve signal:noise ratio and obtain high-resolution structural information.
Rights and permissions
About this article
Cite this article
Wagstaff, J., Löwe, J. Prokaryotic cytoskeletons: protein filaments organizing small cells. Nat Rev Microbiol 16, 187–201 (2018). https://doi.org/10.1038/nrmicro.2017.153
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrmicro.2017.153