Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Extracellular electron transfer mechanisms between microorganisms and minerals

Key Points

  • Specific microorganisms use metal-containing minerals as electron sinks for heterotrophy-based respiration and electron and/or energy sources for autotrophic growth.

  • The microbial cell envelope is an electrical and physical barrier that can be overcome by pathways that consist of redox proteins (for example, c-type cytochromes) and structural proteins, which span the entire width of the microbial cell envelope and enable the exchange of electrons with extracellular minerals.

  • Some microorganisms can extend their redox-active surface beyond the confines of the cell envelope by forming microbial nanowires, which transfer electrons to distal minerals.

  • c-Type cytochromes, microbial nanowires and other cellular structures are, or are suggested to be, involved in intercellular electron transfer between the same or different species or even domains.

  • Minerals that contain metal ions can also function as electrical conductors and batteries to facilitate electron exchange among different groups of microorganisms.

  • Microorganisms with extracellular electron transfer capabilities have been harnessed for the bioremediation of environmental contaminants, the production of biofuels, the production of nanomaterials with novel properties and biomining of copper, gold and other metals.


Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Electrical interplay between microorganisms and minerals.
Figure 2: The proposed Mtr, Pcc, Pio and Mto extracellular electron transfer pathways.
Figure 3: The proposed microbial structures for intercellular electron transfer.


  1. 1

    Lovley, D. R., Stolz, J. F., Nord, G. L. & Phillips, E. J. P. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330, 252–254 (1987).

    CAS  Google Scholar 

  2. 2

    Lovley, D. R. & Phillips, E. J. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54, 1472–1480 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Myers, C. R. & Nealson, K. H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240, 1319–1321 (1988).

    CAS  PubMed  Google Scholar 

  4. 4

    Lovley, D. R., Phillips, E. J. & Lonergan, D. J. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl. Environ. Microbiol. 55, 700–706 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Jiao, Y., Kappler, A., Croal, L. R. & Newman, D. K. Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1. Appl. Environ. Microbiol. 71, 4487–4496 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Emerson, D. & Moyer, C. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl. Environ. Microbiol. 63, 4784–4792 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Shelobolina, E. et al. Microbial lithotrophic oxidation of structural Fe(II) in biotite. Appl. Environ. Microbiol. 78, 5746–5752 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Bose, A., Gardel, E. J., Vidoudez, C., Parra, E. A. & Girguis, P. R. Electron uptake by iron-oxidizing phototrophic bacteria. Nat. Commun. 5, 3391 (2014).

    CAS  PubMed  Google Scholar 

  9. 9

    Kato, S., Hashimoto, K. & Watanabe, K. Microbial interspecies electron transfer via electric currents through conductive minerals. Proc. Natl Acad. Sci. USA 109, 10042–10046 (2012). This article demonstrates that semiconductive minerals facilitate electron transfer between microbial cells of different species.

    CAS  PubMed  Google Scholar 

  10. 10

    Byrne, J. M. et al. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 347, 1473–1476 (2015). This article shows an emerging function of mixed-valance minerals for acting as environmental batteries to support microbial metabolisms.

    CAS  PubMed  Google Scholar 

  11. 11

    Zhao, L. et al. Biological redox cycling of iron in nontronite and its potential application in nitrate removal. Environ. Sci. Technol. 49, 5493–5501 (2015).

    CAS  PubMed  Google Scholar 

  12. 12

    Albers, S. V. & Meyer, B. H. The archaeal cell envelope. Nat. Rev. Microbiol. 9, 414–426 (2011).

    CAS  PubMed  Google Scholar 

  13. 13

    Shi, L., Squier, T. C., Zachara, J. M. & Fredrickson, J. K. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol. Microbiol. 65, 12–20 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Melton, E. D., Swanner, E. D., Behrens, S., Schmidt, C. & Kappler, A. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat. Rev. Microbiol. 12, 797–808 (2014).

    CAS  PubMed  Google Scholar 

  15. 15

    Shi, L., Tien, M., Fredrickson, J. K., Zachara, J. M. & Rosso, K. M. in Redox Proteins in Supercomplexes and Signalosomes (eds Louro, R. & Diaz-Moreno, I.) 187–216 (CRC Press, 2016).

    Google Scholar 

  16. 16

    Liu, Y. et al. A trans-outer membrane porin–cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA. Environ. Microbiol. Rep. 6, 776–785 (2014). This article describes a new class of trans-outer membrane protein complexes for electron transfer during extracellular reduction of minerals.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Bird, L. J., Bonnefoy, V. & Newman, D. K. Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol. 19, 330–340 (2011).

    CAS  PubMed  Google Scholar 

  18. 18

    Liu, J. et al. Identification and characterization of MtoA: a decaheme c-type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1. Front. Microbiol. 3, 37 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101 (2005). This is the first description of direct electron transfer to minerals and between microbial cells through microbial nanowires.

    CAS  PubMed  Google Scholar 

  20. 20

    Summers, Z. M. et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330, 1413–1415 (2010). This article shows the direct involvement of microbial nanowires and multihaem c -type cytochromes in interspecies electron transfer.

    CAS  PubMed  Google Scholar 

  21. 21

    Rotaru, A. E. et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 7, 408–415 (2014).

    CAS  Google Scholar 

  22. 22

    Rotaru, A. E. et al. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl. Environ. Microbiol. 80, 4599–4605 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. 23

    Pfeffer, C. et al. Filamentous bacteria transport electrons over centimetre distances. Nature 491, 218–221 (2012). This article provides direct evidence that cable bacteria transfer electrons across centimetre distances.

    CAS  PubMed  Google Scholar 

  24. 24

    Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H. E. & Boetius, A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590 (2015).

    CAS  PubMed  Google Scholar 

  25. 25

    McGlynn, S. E., Chadwick, G. L., Kempes, C. P. & Orphan, V. J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535 (2015).

    CAS  PubMed  Google Scholar 

  26. 26

    Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P. & Woodward, J. C. Humic substances as electron acceptors for microbial respiration. Nature 382, 445–448 (1996).

    CAS  Google Scholar 

  27. 27

    Roden, E. et al. Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nat. Geosci. 3, 417–421 (2010).

    CAS  Google Scholar 

  28. 28

    Lovley, D. R., Phillips, E. J. P., Gorby, Y. A. & Landa, E. R. Microbial reduction of uranium. Nature 350, 413–416 (1991).

    CAS  Google Scholar 

  29. 29

    Gralnick, J. A., Vali, H., Lies, D. P. & Newman, D. K. Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. Proc. Natl Acad. Sci. USA 103, 4669–4674 (2006).

    CAS  PubMed  Google Scholar 

  30. 30

    Bond, D. R., Holmes, D. E., Tender, L. M. & Lovley, D. R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295, 483–485 (2002).

    CAS  PubMed  Google Scholar 

  31. 31

    Liu, F. et al. Promoting direct interspecies electron transfer with activated carbon. Energy Environ. Sci. 5, 8982–8989 (2012).

    CAS  Google Scholar 

  32. 32

    Anderson, R. T. et al. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl. Environ. Microbiol. 69, 5884–5891 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Rawlings, D. E., Dew, D. & du Plessis, C. Biomineralization of metal-containing ores and concentrates. Trends Biotechnol. 21, 38–44 (2003).

    CAS  PubMed  Google Scholar 

  34. 34

    Liu, F. et al. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environ. Microbiol. 17, 648–655 (2015).

    CAS  PubMed  Google Scholar 

  35. 35

    Beliaev, A. S. & Saffarini, D. A. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J. Bacteriol. 180, 6292–6297 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Beliaev, A. S., Saffarini, D. A., McLaughlin, J. L. & Hunnicutt, D. MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol. Microbiol. 39, 722–730 (2001).

    CAS  PubMed  Google Scholar 

  37. 37

    Myers, J. M. & Myers, C. R. Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. J. Bacteriol. 182, 67–75 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Myers, C. R. & Myers, J. M. MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of Shewanella putrefaciens MR-1. Appl. Environ. Microbiol. 68, 5585–5594 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Coursolle, D. & Gralnick, J. A. Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1. Mol. Microbiol. 77, 995–1008 (2010).

    CAS  PubMed  Google Scholar 

  40. 40

    Sturm, G. et al. A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime. ISME J. 9, 1802–1811 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. 41

    Marritt, S. J. et al. A functional description of CymA, an electron-transfer hub supporting anaerobic respiratory flexibility in Shewanella. Biochem. J. 444, 465–474 (2012).

    CAS  PubMed  Google Scholar 

  42. 42

    McMillan, D. G., Marritt, S. J., Butt, J. N. & Jeuken, L. J. Menaquinone-7 is specific cofactor in tetraheme quinol dehydrogenase CymA. J. Biol. Chem. 287, 14215–14225 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    McMillan, D. G. et al. Protein–protein interaction regulates the direction of catalysis and electron transfer in a redox enzyme complex. J. Am. Chem. Soc. 135, 10550–10556 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Firer-Sherwood, M. A., Bewley, K. D., Mock, J. Y. & Elliott, S. J. Tools for resolving complexity in the electron transfer networks of multiheme cytochromes c. Metallomics 3, 344–348 (2011).

    CAS  PubMed  Google Scholar 

  45. 45

    Leys, D. et al. Crystal structures at atomic resolution reveal the novel concept of “electron-harvesting” as a role for the small tetraheme cytochrome c. J. Biol. Chem. 277, 35703–35711 (2002).

    CAS  PubMed  Google Scholar 

  46. 46

    Leys, D. et al. Structure and mechanism of the flavocytochrome c fumarate reductase of Shewanella putrefaciens MR-1. Nat. Struct. Biol. 6, 1113–1117 (1999).

    CAS  PubMed  Google Scholar 

  47. 47

    Ross, D. E. et al. Characterization of protein–protein interactions involved in iron reduction by Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 73, 5797–5808 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Hartshorne, R. S. et al. Characterization of an electron conduit between bacteria and the extracellular environment. Proc. Natl Acad. Sci. USA 106, 22169–22174 (2009). This is the first report of a porin–cytochrome protein complex that transfers electrons across the microbial outer membrane, which is an electrical and physical barrier, during extracellular reduction of minerals.

    CAS  PubMed  Google Scholar 

  49. 49

    Richardson, D. J. et al. The 'porin–cytochrome' model for microbe-to-mineral electron transfer. Mol. Microbiol. 85, 201–212 (2012).

    CAS  PubMed  Google Scholar 

  50. 50

    White, G. F. et al. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals. Proc. Natl Acad. Sci. USA 110, 6346–6351 (2013).

    CAS  PubMed  Google Scholar 

  51. 51

    Shi, L. et al. Isolation of a high-affinity functional protein complex between OmcA and MtrC: two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1. J. Bacteriol. 188, 4705–4714 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Shi, L. et al. Direct involvement of type II secretion system in extracellular translocation of Shewanella oneidensis outer membrane cytochromes MtrC and OmcA. J. Bacteriol. 190, 5512–5516 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Lower, B. H. et al. Specific bonds between an iron oxide surface and outer membrane cytochromes MtrC and OmcA from Shewanella oneidensis MR-1. J. Bacteriol. 189, 4944–4952 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Lower, B. H. et al. Antibody recognition force microscopy shows that outer membrane cytochromes OmcA and MtrC are expressed on the exterior surface of Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 75, 2931–2935 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Xiong, Y. et al. High-affinity binding and direct electron transfer to solid metals by the Shewanella oneidensis MR-1 outer membrane c-type cytochrome OmcA. J. Am. Chem. Soc. 128, 13978–13979 (2006).

    CAS  PubMed  Google Scholar 

  56. 56

    Zhang, H. et al. In vivo identification of the outer membrane protein OmcA–MtrC interaction network in Shewanella oneidensis MR-1 cells using novel hydrophobic chemical cross-linkers. J. Proteome Res. 7, 1712–1720 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Meitl, L. A. et al. Electrochemical interaction of Shewanella oneidensis MR-1 and its outer membrane cytochromes OmcA and MtrC with hematite electrodes. Geochim. Cosmochim. Acta 2009, 5292–5307 (2009).

    Google Scholar 

  58. 58

    Johs, A., Shi, L., Droubay, T., Ankner, J. F. & Liang, L. Characterization of the decaheme c-type cytochrome OmcA in solution and on hematite surfaces by small angle X-ray scattering and neutron reflectometry. Biophys. J. 98, 3035–3043 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Gorby, Y. A. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl Acad. Sci. USA 103, 11358–11363 (2006).

    CAS  PubMed  Google Scholar 

  60. 60

    Pirbadian, S. et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl Acad. Sci. USA 111, 12883–12888 (2014).

    CAS  PubMed  Google Scholar 

  61. 61

    Pirbadian, S. & El-Naggar, M. Y. Multistep hopping and extracellular charge transfer in microbial redox chains. Phys. Chem. Chem. Phys. 14, 13802–13808 (2012).

    CAS  PubMed  Google Scholar 

  62. 62

    Marsili, E. et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl Acad. Sci. USA 105, 3968–3973 (2008).

    CAS  PubMed  Google Scholar 

  63. 63

    von Canstein, H., Ogawa, J., Shimizu, S. & Lloyd, J. R. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 74, 615–623 (2008).

    CAS  PubMed  Google Scholar 

  64. 64

    Coursolle, D., Baron, D. B., Bond, D. R. & Gralnick, J. A. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J. Bacteriol. 192, 467–474 (2010).

    CAS  PubMed  Google Scholar 

  65. 65

    Kotloski, N. J. & Gralnick, J. A. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio 4, e00553-12 (2013).

    PubMed  PubMed Central  Google Scholar 

  66. 66

    Shi, Z. et al. Redox reactions of reduced flavin mononucleotide (FMN), riboflavin (RBF), and anthraquinone-2,6-disulfonate (AQDS) with ferrihydrite and lepidocrocite. Environ. Sci. Technol. 46, 11644–11652 (2012).

    CAS  PubMed  Google Scholar 

  67. 67

    Shi, Z., Zachara, J., Wang, Z., Shi, L. & Fredrickson, J. Reductive dissolution of goethite and hematite by reduced flavins. Geochim. Cosmochim. Acta 121, 139–154 (2013).

    CAS  Google Scholar 

  68. 68

    Clarke, T. A. et al. Structure of a bacterial cell surface decaheme electron conduit. Proc. Natl Acad. Sci. USA 108, 9384–9389 (2011). This article shows for the first time the structure at atomic resolution of the microbial terminal reductases that transfer electrons to mineral surfaces.

    CAS  PubMed  Google Scholar 

  69. 69

    Edwards, M. J. et al. The X-ray crystal structure of Shewanella oneidensis OmcA reveals new insight at the microbe–mineral interface. FEBS Lett. 588, 1886–1890 (2014).

    CAS  PubMed  Google Scholar 

  70. 70

    Edwards, M. J. et al. The crystal structure of the extracellular 11-heme cytochrome UndA reveals a conserved 10-heme motif and defined binding site for soluble iron chelates. Structure 20, 1275–1284 (2012).

    CAS  PubMed  Google Scholar 

  71. 71

    Edwards, M. J. et al. Redox linked flavin sites in extracellular decaheme proteins involved in microbe-mineral electron transfer. Sci. Rep. 5, 11677 (2015).

    PubMed  PubMed Central  Google Scholar 

  72. 72

    Breuer, M., Rosso, K. M. & Blumberger, J. Electron flow in multiheme bacterial cytochromes is a balancing act between heme electronic interaction and redox potentials. Proc. Natl Acad. Sci. USA 111, 611–616 (2014). This paper describes a design principle that enables rapid electron transfer by multihaem c -type cytochromes that are key components of microbial extracellular electron transfer pathways and nanowires.

    CAS  PubMed  Google Scholar 

  73. 73

    Okamoto, A., Hashimoto, K., Nealson, K. H. & Nakamura, R. Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proc. Natl Acad. Sci. USA 110, 7856–7861 (2013). This paper provides the first evidence that secreted flavins function as cofactors of microbial terminal metal reductases, which represents an alternative to the proposed electron shuttle function of flavins.

    CAS  PubMed  Google Scholar 

  74. 74

    Wang, Z. et al. Effects of soluble flavin on heterogeneous electron transfer between surface-exposed bacterial cytochromes and iron oxides. Geochim. Cosmochim. Acta 163, 299–310 (2015).

    CAS  Google Scholar 

  75. 75

    Jiao, Y. & Newman, D. K. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J. Bacteriol. 189, 1765–1773 (2007). This paper shows that the homologues of microbial proteins that are used for extracellular Fe(III) reduction are also directly involved in extracellular Fe(II) oxidation.

    CAS  PubMed  Google Scholar 

  76. 76

    Fredrickson, J. K. et al. Towards environmental systems biology of Shewanella. Nat. Rev. Microbiol. 6, 592–603 (2008).

    CAS  PubMed  Google Scholar 

  77. 77

    Shi, L., Rosso, K. M., Zachara, J. M. & Fredrickson, J. K. Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: a genomic perspective. Biochem. Soc. Trans. 40, 1261–1267 (2012).

    CAS  PubMed  Google Scholar 

  78. 78

    Emerson, D. et al. Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics. Front. Microbiol. 4, 254 (2013).

    PubMed  PubMed Central  Google Scholar 

  79. 79

    Levar, C. E., Chan, C. H., Mehta-Kolte, M. G. & Bond, D. R. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors. mBio 5, e02034 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Zacharoff, L., Chan, C. H. & Bond, D. R. Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens. Bioelectrochemistry 107, 7–13 (2015).

    PubMed  Google Scholar 

  81. 81

    Lloyd, J. R. et al. Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. Biochem. J. 369, 153–161 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Morgado, L., Bruix, M., Pessanha, M., Londer, Y. Y. & Salgueiro, C. A. Thermodynamic characterization of a triheme cytochrome family from Geobacter sulfurreducens reveals mechanistic and functional diversity. Biophys. J. 99, 293–301 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Leang, C., Coppi, M. V. & Lovley, D. R. OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J. Bacteriol. 185, 2096–2103 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Qian, X., Reguera, G., Mester, T. & Lovley, D. R. Evidence that OmcB and OmpB of Geobacter sulfurreducens are outer membrane surface proteins. FEMS Microbiol. Lett. 277, 21–27 (2007).

    CAS  PubMed  Google Scholar 

  85. 85

    Liu, Y., Fredrickson, J. K., Zachara, J. M. & Shi, L. Direct involvement of ombB. omaB and omc B genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA. Front. Microbiol. 6, 1075 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. 86

    Cologgi, D. L., Lampa-Pastirk, S., Speers, A. M., Kelly, S. D. & Reguera, G. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc. Natl Acad. Sci. USA 108, 15248–15252 (2011).

    CAS  PubMed  Google Scholar 

  87. 87

    Shi, L., Fredrickson, J. & Zachara, J. Genomic analyses of bacterial porin–cytochrome gene clusters. Front. Microbiol. 5, 657 (2014).

    PubMed  PubMed Central  Google Scholar 

  88. 88

    Bird, L. J. et al. Nonredundant roles for cytochrome c2 and two high-potential iron–sulfur proteins in the photoferrotroph Rhodopseudomonas palustris TIE-1. J. Bacteriol. 196, 850–858 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. 89

    Liu, J. et al. Fe3–xTixO4 nanoparticles as tunable probes of microbial metal oxidation. J. Am. Chem. Soc. 135, 8896–8907 (2013). This is the first publication to show that a multihaem c -type cytochrome oxidizes solid-phase Fe(II)-containing minerals directly and that mineral properties, such as redox potential, have a great effect on electron transfer at the mineral–cytochrome interface.

    CAS  PubMed  Google Scholar 

  90. 90

    Beckwith, C. et al. Characterization of MtoD from Sideroxydans lithotrophicus: a cytochrome c electron shuttle used in lithoautotrophic growth. Front. Microbiol. 6, 332 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. 91

    Ross, D. E., Flynn, J. M., Baron, D. B., Gralnick, J. A. & Bond, D. R. Towards electrosynthesis in Shewanella: energetics of reversing the mtr pathway for reductive metabolism. PLoS ONE 6, e16649 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Breuer, M., Zarzycki, P., Blumberger, J. & Rosso, K. M. Thermodynamics of electron flow in the bacterial deca-heme cytochrome MtrF. J. Am. Chem. Soc. 134, 9868–9871 (2012).

    CAS  PubMed  Google Scholar 

  93. 93

    Ilbert, M. & Bonnefoy, V. Insight into the evolution of the iron oxidation pathways. Biochim. Biophys. Acta 1827, 161–175 (2013).

    CAS  PubMed  Google Scholar 

  94. 94

    Singer, E. et al. Mariprofundus ferrooxydans PV-1 the first genome of a marine Fe(II) oxidizing Zetaproteobacterium. PLoS ONE 6, e25386 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Wang, Z. et al. A previously uncharacterized, nonphotosynthetic member of the Chromatiaceae is the primary CO2-fixing constituent in a self-regenerating biocathode. Appl. Environ. Microbiol. 81, 699–712 (2015).

    PubMed  PubMed Central  Google Scholar 

  96. 96

    Carlson, H. K. et al. Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria. Proc. Natl Acad. Sci. USA 109, 1702–1707 (2012).

    CAS  PubMed  Google Scholar 

  97. 97

    Castelle, C. et al. A new iron-oxidizing/O2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile Acidithiobacillus ferrooxidans. J. Biol. Chem. 283, 25803–25811 (2008). This paper describes a protein complex that couples extracellular oxidation of Fe(II) with intracellular reduction of O 2 and probably NAD.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Shrestha, P. M. et al. Transcriptomic and genetic analysis of direct interspecies electron transfer. Appl. Environ. Microbiol. 79, 2397–2404 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Kato, S., Hashimoto, K. & Watanabe, K. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environ. Microbiol. 14, 1646–1654 (2012).

    CAS  PubMed  Google Scholar 

  100. 100

    Cruz Viggi, C. et al. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environ. Sci. Technol. 48, 7536–7543 (2014).

    CAS  PubMed  Google Scholar 

  101. 101

    Chen, S. et al. Promoting interspecies electron transfer with biochar. Sci. Rep. 4, 5019 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Chen, S. et al. Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures. Bioresour. Technol. 173, 82–86 (2014).

    CAS  PubMed  Google Scholar 

  103. 103

    Feliciano, G. T., da Silva, A. J., Reguera, G. & Artacho, E. Molecular and electronic structure of the peptide subunit of Geobacter sulfurreducens conductive pili from first principles. J. Phys. Chem. A 116, 8023–8030 (2012).

    CAS  PubMed  Google Scholar 

  104. 104

    Reardon, P. N. & Mueller, K. T. Structure of the type IVa major pilin from the electrically conductive bacterial nanowires of Geobacter sulfurreducens. J. Biol. Chem. 288, 29260–29266 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Malvankar, N. S. et al. Structural basis for metallic-like conductivity in microbial nanowires. mBio 6, e00084 (2015). This publication proposes the molecular structural basis for metallic-like electron transfer by Geobacter spp. nanowires.

    PubMed  PubMed Central  Google Scholar 

  106. 106

    Vargas, M. et al. Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. mBio 4, e00105-13 (2013).

    PubMed  PubMed Central  Google Scholar 

  107. 107

    Malvankar, N. S. et al. Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol. 6, 573–579 (2011).

    PubMed  Google Scholar 

  108. 108

    Malvankar, N. S., Yalcin, S. E., Tuominen, M. T. & Lovley, D. R. Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy. Nat. Nanotechnol. 9, 1012–1017 (2014).

    CAS  PubMed  Google Scholar 

  109. 109

    Adhikari, R. Y., Malvankar, N. S., Tuominen, M. T. & Lovley, D. R. Conductivity of individual Geobacter pili. RSC Adv. 6, 8354–8357 (2016).

    CAS  Google Scholar 

  110. 110

    Lee, K. et al. Metallic transport in polyaniline. Nature 441, 65–68 (2006).

    CAS  PubMed  Google Scholar 

  111. 111

    Heeger, A. J. Semiconducting and metallic polymers: The fourth generation of polymeric materials (Nobel Lecture). Angew. Chem. Int. Ed Engl. 40, 2591–2611 (2001).

    CAS  PubMed  Google Scholar 

  112. 112

    Craig, L., Pique, M. E. & Tainer, J. A. Type IV pilus structure and bacterial pathogenicity. Nat. Rev. Microbiol. 2, 363–378 (2004).

    CAS  PubMed  Google Scholar 

  113. 113

    Xiao, K. et al. Low energy atomic models suggesting a pilus structure that could account for electrical conductivity of Geobacter sulfurreducens pili. Sci. Rep. 6, 23385 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Yan, H. et al. Inter-aromatic distances in Geobacter sulfurreducens pili relevant to biofilm charge transport. Adv. Mater. 27, 1908–1911 (2015).

    CAS  PubMed  Google Scholar 

  115. 115

    Feliciano, G. T., Steidl, R. J. & Reguera, G. Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations. Phys. Chem. Chem. Phys. 17, 22217–22226 (2015). This publication proposes the molecular structural basis of electron hopping by Geobacter spp. nanowire, which is an alternative to the metallic-like electron transfer mechanism.

    CAS  PubMed  Google Scholar 

  116. 116

    Lampa-Pastirk, S. et al. Thermally activated charge transport in microbial protein nanowires. Sci. Rep. 6, 23517 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Nielsen, L. P., Risgaard-Petersen, N., Fossing, H., Christensen, P. B. & Sayama, M. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463, 1071–1074 (2010).

    CAS  PubMed  Google Scholar 

  118. 118

    Schauer, R. et al. Succession of cable bacteria and electric currents in marine sediment. ISME J. 8, 1314–1322 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Risgaard-Petersen, N., Revil, A., Meister, P. & Nielsen, L.P. Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment. Geochim. Cosmochim. Acta 92, 1–13 (2012).

    CAS  Google Scholar 

  120. 120

    Seitaj, D. et al. Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins. Proc. Natl Acad. Sci. USA 112, 13278–13283 (2015).

    CAS  PubMed  Google Scholar 

  121. 121

    Sulu-Gambari, F. et al. Cable bacteria control iron–phosphorus dynamics in sediments of a coastal hypoxic basin. Environ. Sci. Technol. 50, 1227–1233 (2016).

    CAS  PubMed  Google Scholar 

  122. 122

    Malkin, S. Y. et al. Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor. ISME J. 8, 1843–1854 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Malkin, S. Y. & Meysman, F. J. Rapid redox signal transmission by “cable bacteria” beneath a photosynthetic biofilm. Appl. Environ. Microbiol. 81, 948–956 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Risgaard-Petersen, N. et al. Cable bacteria in freshwater sediments. Appl. Environ. Microbiol. 81, 6003–6011 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Meysman, F. J., Risgaard-Petersen, N., Malkin, S. Y. & Nielsen, L. P. The geochemical fingerprint of microbial long-distance electron transport in the seafloor. Geochim. Cosmochim. Acta 152, 122–142 (2015).

    CAS  Google Scholar 

  126. 126

    Knittel, K. & Boetius, A. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63, 311–334 (2009).

    CAS  PubMed  Google Scholar 

  127. 127

    Beal, E. J., House, C. H. & Orphan, V. J. Manganese- and iron-dependent marine methane oxidation. Science 325, 184–187 (2009). The first report to show that intracellular oxidation of methane is coupled to extracellular reduction of Mn( IV )-bearing and Fe(III)-bearing minerals by archaea.

    CAS  PubMed  Google Scholar 

  128. 128

    Watts, M. P. & Lloyd, J. R. in Microbial Metal Respiration (eds Gescher, J. & Kappler, A.) 161–202 (Springer-Verlag, 2013).

    Google Scholar 

  129. 129

    Lovley, D. R. et al. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339, 297–300 (1989).

    CAS  Google Scholar 

  130. 130

    Aulenta, F., Rossetti, S., Amalfitano, S., Majone, M. & Tandoi, V. Conductive magnetite nanoparticles accelerate the microbial reductive dechlorination of trichloroethene by promoting interspecies electron transfer processes. ChemSusChem 6, 433–436 (2013).

    CAS  PubMed  Google Scholar 

  131. 131

    De Windt, W., Aelterman, P. & Verstraete, W. Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ. Microbiol. 7, 314–325 (2005).

    CAS  PubMed  Google Scholar 

  132. 132

    Lee, J. H., Han, J., Choi, H. & Hur, H. G. Effects of temperature and dissolved oxygen on Se(IV) removal and Se(0) precipitation by Shewanella sp. HN-41. Chemosphere 68, 1898–1905 (2007).

    CAS  PubMed  Google Scholar 

  133. 133

    Pearce, C. I. et al. Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens. Shewanella oneidensis and Veillonella atypica. Environ. Technol. 30, 1313–1326 (2009).

    CAS  PubMed  Google Scholar 

  134. 134

    Dippon, U., Pantke, C., Porsch, K., Larese-Casanova, P. & Kappler, A. Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe(II)-oxidizer Acidovorax sp. BoFeN1. Environ. Sci. Technol. 46, 6556–6565 (2012).

    CAS  PubMed  Google Scholar 

  135. 135

    Miot, J. et al. Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation. Geochim. Cosmochim. Acta 139, 327–343 (2014).

    CAS  Google Scholar 

  136. 136

    Byrne, J. M. et al. Controlled cobalt doping in biogenic magnetite nanoparticles. J. R. Soc. Interface 10, 20130134 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137

    Bond, D. R. & Lovley, D. R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69, 1548–1555 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Bretschger, O. et al. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl. Environ. Microbiol. 73, 7003–7012 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Kim, B. H., Chang, I. S. & Gadd, G. M. Challenges in microbial fuel cell development and operation. Appl. Microbiol. Biotechnol. 76, 485–494 (2007).

    CAS  PubMed  Google Scholar 

  140. 140

    Tender, L. M. et al. The first demostration of a microbial fuel cell a viable power supply: powering a meterorological buoy. J. Power Sources 179, 571–575 (2008).

    CAS  Google Scholar 

  141. 141

    Rabaey, K. & Rozendal, R. A. Microbial electrosynthesis — revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8, 706–716 (2010).

    CAS  PubMed  Google Scholar 

  142. 142

    Lovley, D. R. & Nevin, K. P. Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr. Opin. Biotechnol. 24, 385–390 (2013).

    CAS  PubMed  Google Scholar 

  143. 143

    Babauta, J., Renslow, R., Lewandowski, Z. & Beyenal, H. Electrochemically active biofilms: facts and fiction. A review. Biofouling 28, 789–812 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Torres, C. I. et al. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol. Rev. 34, 3–17 (2010).

    CAS  PubMed  Google Scholar 

  145. 145

    Hamelers, H. V., Ter Heijne, A., Stein, N., Rozendal, R. A. & Buisman, C. J. Butler–Volmer–Monod model for describing bio-anode polarization curves. Bioresour. Technol. 102, 381–387 (2011).

    CAS  PubMed  Google Scholar 

  146. 146

    Renslow, R. et al. Modelling biofilms with dual extracellular electron transfer mechanisms. Phys. Chem. Chem. Phys. 15, 19262–19283 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147

    Lloyd, J. R., Sole, V. A., Van Praagh, C. V. & Lovley, D. R. Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Appl. Environ. Microbiol. 66, 3743–3749 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148

    Brookshaw, D. R., Coker, V. S., Lloyd, J. R., Vaughan, D. J. & Pattrick, R. A. Redox interactions between Cr(VI) and Fe(II) in bioreduced biotite and chlorite. Environ. Sci. Technol. 48, 11337–11342 (2014).

    CAS  PubMed  Google Scholar 

  149. 149

    Cutting, R. S. et al. Optimizing Cr(VI) and Tc(VII) remediation through nanoscale biomineral engineering. Environ. Sci. Technol. 44, 2577–2584 (2010).

    CAS  PubMed  Google Scholar 

  150. 150

    Crean, D. E., Coker, V. S., van der Laan, G. & Lloyd, J. R. Engineering biogenic magnetite for sustained Cr(VI) remediation in flow-through systems. Environ. Sci. Technol. 46, 3352–3359 (2012).

    CAS  PubMed  Google Scholar 

  151. 151

    Zhang, T., Bain, T. S., Nevin, K. P., Barlett, M. A. & Lovley, D. R. Anaerobic benzene oxidation by Geobacter species. Appl. Environ. Microbiol. 78, 8304–8310 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152

    Zhang, T. et al. Anaerobic benzene oxidation via phenol in Geobacter metallireducens. Appl. Environ. Microbiol. 79, 7800–7806 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153

    Zhang, T. et al. Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens. Front. Microbiol. 5, 245 (2014).

    PubMed  PubMed Central  Google Scholar 

  154. 154

    Sekar, R. & DiChristina, T. J. Microbially driven Fenton reaction for degradation of the widespread environmental contaminant 1,4-dioxane. Environ. Sci. Technol. 48, 12858–12867 (2014).

    CAS  PubMed  Google Scholar 

  155. 155

    Sugio, T., Wakabayashi, M., Kanao, T. & Takeuchi, F. Isolation and characterization of Acidithiobacillus ferrooxidans strain D3-2 active in copper bioleaching from a copper mine in Chile. Biosci. Biotechnol. Biochem. 72, 998–1004 (2008).

    CAS  PubMed  Google Scholar 

  156. 156

    Valdes, J. et al. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 9, 597 (2008).

    PubMed  PubMed Central  Google Scholar 

  157. 157

    Gonzalez, R., Gentina, J. C. & Acevedo, F. Biooxidation of a gold concentrate in a continuous stirred tank reactor: mathematical model and optimal configuration. Biochem. Engineer. J. 19, 33–42 (2004).

    CAS  Google Scholar 

Download references


The authors acknowledge research grant funding from the Office of Biological and Environmental Research/Subsurface Biogeochemical Research Program of the US Department of Energy (L.S., H.D., G.R., H.B. and J.K.F.), the US National Science Foundation (H.D., G.R. and H.B.), the US National Institutes of Health and National Institute of Environmental Health Sciences (L.S. and G.R.), the US Office of Naval Research (H.B.), the National Natural Science Foundation of China (H.D., A.L., J.L. and H.Q.Y.), the 973 program of China (A.L.) and the One-Hundred Talented Researchers Project of the Chinese Academy of Science (H.Q.Y.). The authors also thank D. Lovley, J. Gralnick and an anonymous reviewer for their constructive comments.

Author information



Corresponding authors

Correspondence to Liang Shi or Hailiang Dong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides


Autotrophic growth

A metabolic process that supports microbial growth and uses light or chemical energy to fix CO2 for the synthesis of organic matter.

Respiratory terminal electron acceptors

A group of oxidizing agents, such as O2, NO3 and Fe(III), that receive the electrons that are released from the metabolic oxidation of organic and inorganic substrates by microorganisms.

Dissimilatory metal-reducing microorganisms

These microorganisms carry out a biochemical reaction during which metal ions are reduced but not incorporated into the cells.

Semiconductive minerals

Minerals the conductivity of which is between that of insulators and that of most metals.


A cell envelope structure that consists of proteins or glycoproteins and is on the cell surface.

Quinone and quinol

A group of aromatic compounds that act as mobile components of the electron transport chain in the cytoplasmic membrane and can receive and donate electrons (quinone is the oxidized form and quinol the reduced form).

Photoreaction centre

A pigment–protein complex in the inner cytoplasmic membrane of photosynthetic bacterial cells, where it converts solar energy to chemical energy to support bacterial growth.

Multistep hopping mechanism

A redox conduction process in which electrons transfer sequentially from one charge-localizing redox centre (for example, the haem iron) to an adjacent one, such as along the haem chain of multihaem c-type cytochromes (c-Cyts).


A group of organic compounds with a tricyclic aromatic moiety that can exist in three different redox states: oxidized (0 electron), semiquinone (1 electron) and reduced (2 electrons).

Bacterial type IVa pilins

Pilins that have the following characteristics: a leader peptide of 5–6 amino acids, an average polypeptide of 150 amino acids, an N-methylated amino-terminal residue of phenylalanine and an average disulfide-bonded region (D-region) of 22 amino acids.

Metallic-like electron transfer

A conduction process in which electrons are delocalized and can move freely without thermal activation, as in metals and conductive polymers.


An electrode that accepts electrons.


An electrode that donates electrons.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Dong, H., Reguera, G. et al. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 14, 651–662 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing