Sporulation, bacterial cell envelopes and the origin of life

Abstract

Electron cryotomography (ECT) enables the 3D reconstruction of intact cells in a near-native state. Images produced by ECT have led to the proposal that an ancient sporulation-like event gave rise to the second membrane in diderm bacteria. Tomograms of sporulating monoderm and diderm bacterial cells show how sporulation can lead to the generation of diderm cells. Tomograms of Gram-negative and Gram-positive cell walls and purified sacculi suggest that they are more closely related than previously thought and support the hypothesis that they share a common origin. Mapping the distribution of cell envelope architectures onto a recent phylogenetic tree of life indicates that the diderm cell plan, and therefore the sporulation-like event that gave rise to it, must be very ancient. One explanation for this model is that during the cataclysmic transitions of the early Earth, cellular evolution may have gone through a bottleneck in which only spores survived, which implies that the last bacterial common ancestor was a spore.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Sporulation in Gram-positive and Gram-negative bacteria.
Figure 2: Model for how the outer membrane arose as a byproduct of sporulation and how losses then led to the diversity of modern bacterial cell plans.
Figure 3: Peptidoglycan remodelling during sporulation.
Figure 4: Rooted phylogenetic trees that represent relationships between bacterial phyla.

References

  1. 1

    Gram, C. Ueber die isolirte firbung der schizomyceten iu schnitt-und trockenpriparate. Fortschitte Med. 2, 185–189 (in German) (1884).

  2. 2

    Sutcliffe, I. C. A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol. 18, 464–470 (2010).

  3. 3

    Gupta, R. S. Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol. Mol. Biol. Rev. 62, 1435–1491 (1998).

  4. 4

    Silhavy, T. J., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2, a000414 (2010).

  5. 5

    Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805–814 (2008).

  6. 6

    Gupta, R. S. & Golding, G. B. Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes. J. Mol. Evol. 37, 573–582 (1993).

  7. 7

    Koch, A. L. Were Gram-positive rods the first bacteria? Trends Microbiol. 11, 166–170 (2003).

  8. 8

    Lake, J. A., Herbold, C. W., Rivera, M. C., Servin, J. A. & Skophammer, R. G. Rooting the tree of life using nonubiquitous genes. Mol. Biol. Evol. 24, 130–136 (2007).

  9. 9

    Skophammer, R. G., Servin, J. A., Herbold, C. W. & Lake, J. A. Evidence for a Gram-positive, eubacterial root of the tree of life. Mol. Biol. Evol. 24, 1761–1768 (2007).

  10. 10

    Tocheva, E. I. et al. Peptidoglycan remodeling and conversion of an inner membrane into an outer membrane during sporulation. Cell 146, 799–812 (2011).

  11. 11

    Swithers, K. S., Fournier, G. P., Green, A. G., Gogarten, J. P. & Lapierre, P. Reassessment of the lineage fusion hypothesis for the origin of double membrane bacteria. PLoS ONE 6, e23774 (2011).

  12. 12

    Gupta, R. S. Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie Van Leeuwenhoek 100, 171–182 (2011).

  13. 13

    Lake, J. A. Evidence for an early prokaryotic endosymbiosis. Nature 460, 967–971 (2009).

  14. 14

    Kay, D. & Warren, S. C. Sporulation in Bacillus subtilis. Morphological changes. Biochem. J. 109, 819–824 (1968).

  15. 15

    Tan, I. S. & Ramamurthi, K. S. Spore formation in Bacillus subtilis. Environ. Microbiol. Rep. 6, 212–225 (2014).

  16. 16

    Marchandin, H. et al. Negativicoccus succinicivorans gen. nov., sp. nov., isolated from human clinical samples, emended description of the family Veillonellaceae and description of Negativicutes classis nov., Selenomonadales ord. nov. and Acidaminococcaceae fam. nov. in the bacterial phylum Firmicutes. Int. J. Syst. Evol. Microbiol. 60, 1271–1279 (2010).

  17. 17

    Yutin, N. & Galperin, M. Y. A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ. Microbiol. 15, 2631–2641 (2013).

  18. 18

    Kane, M. D. & Breznak, J. A. Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch. Microbiol. 156, 91–98 (1991).

  19. 19

    Campbell, C., Sutcliffe, I. C. & Gupta, R. S. Comparative proteome analysis of Acidaminococcus intestini supports a relationship between outer membrane biogenesis in Negativicutes and Proteobacteria. Arch. Microbiol. 196, 307–310 (2014).

  20. 20

    Mergenhagen, S. E. Polysaccharide–lipid complexes from Veillonella parvula. J. Bacteriol. 90, 1730–1734 (1965).

  21. 21

    Tocheva, E. I. et al. Peptidoglycan transformations during Bacillus subtilis sporulation. Mol. Microbiol. 88, 673–686 (2013).

  22. 22

    Gan, L. & Jensen, G. J. Electron tomography of cells. Q. Rev. Biophys. 45, 27–56 (2012).

  23. 23

    Errington, J. L-form bacteria, cell walls and the origins of life. Open Biol. 3, 120143 (2013).

  24. 24

    Vollmer, W. Bacterial outer membrane evolution via sporulation? Nat. Chem. Biol. 8, 14–18 (2011).

  25. 25

    Typas, A., Banzhaf, M., Gross, C. A. & Vollmer, W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 10, 123–136 (2011).

  26. 26

    Vollmer, W. & Bertsche, U. Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochim. Biophys. Acta 1778, 1714–1734 (2008).

  27. 27

    Verwer, R. W., Nanninga, N., Keck, W. & Schwarz, U. Arrangement of glycan chains in the sacculus of Escherichia coli. J. Bacteriol. 136, 723–729 (1978).

  28. 28

    Dmitriev, B. A. et al. Tertiary structure of bacterial murein: the scaffold model. J. Bacteriol. 185, 3458–3468 (2003).

  29. 29

    Vollmer, W. & Holtje, J. V. The architecture of the murein (peptidoglycan) in Gram-negative bacteria: vertical scaffold or horizontal layer(s)? J. Bacteriol. 186, 5978–5987 (2004).

  30. 30

    Gan, L., Chen, S. & Jensen, G. J. Molecular organization of Gram-negative peptidoglycan. Proc. Natl Acad. Sci. USA 105, 18953–18957 (2008).

  31. 31

    Vollmer, W., Blanot, D. & de Pedro, M. A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167 (2008).

  32. 32

    Schleifer, K. H. & Kandler, O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36, 407–477 (1972).

  33. 33

    McPherson, D. C., Driks, A. & Popham, D. L. Two class A high-molecular-weight penicillin-binding proteins of Bacillus subtilis play redundant roles in sporulation. J. Bacteriol. 183, 6046–6053 (2001).

  34. 34

    Sauvage, E., Kerff, F., Terrak, M., Ayala, J. A. & Charlier, P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32, 234–258 (2008).

  35. 35

    Foster, S. & Popham, D. in Bacillus subtilis And Its Close Relatives: From Genes to Cells (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 21–41 (American Society for Microbiology, 2002).

  36. 36

    Verwer, R. W. & Nanninga, N. Electron microscopy of isolated cell walls of Bacillus subtilis var. niger. Arch. Microbiol. 109, 195–197 (1976).

  37. 37

    Dominguez-Escobar, J. et al. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333, 225–228 (2011).

  38. 38

    Garner, E. C. et al. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333, 222–225 (2011).

  39. 39

    Hayhurst, E. J., Kailas, L., Hobbs, J. K. & Foster, S. J. Cell wall peptidoglycan architecture in Bacillus subtilis. Proc. Natl Acad. Sci. USA 105, 14603–14608 (2008).

  40. 40

    Beeby, M., Gumbart, J. C., Roux, B. & Jensen, G. J. Architecture and assembly of the Gram-positive cell wall. Mol. Microbiol. 88, 664–672 (2013).

  41. 41

    Meyer, P., Gutierrez, J., Pogliano, K. & Dworkin, J. Cell wall synthesis is necessary for membrane dynamics during sporulation of Bacillus subtilis. Mol. Microbiol. 76, 956–970 (2010).

  42. 42

    de Pedro, M. A. & Cava, F. Structural constraints and dynamics of bacterial cell wall architecture. Front. Microbiol. 6, 449 (2015).

  43. 43

    Hoiczyk, E. & Baumeister, W. Envelope structure of four gliding filamentous cyanobacteria. J. Bacteriol. 177, 2387–2395 (1995).

  44. 44

    Desmarais, S. M., De Pedro, M. A., Cava, F. & Huang, K. C. Peptidoglycan at its peaks: how chromatographic analyses can reveal bacterial cell wall structure and assembly. Mol. Microbiol. 89, 1–13 (2013).

  45. 45

    Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006).

  46. 46

    Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is linked to a new root for the Archaea. Proc. Natl Acad. Sci. USA 112, 6670–6675 (2015).

  47. 47

    Wu, D. et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462, 1056–1060 (2009).

  48. 48

    Puigbo, P., Wolf, Y. I. & Koonin, E. V. Seeing the Tree of Life behind the phylogenetic forest. BMC Biol. 11, 46 (2013).

  49. 49

    Lake, J. A., Skophammer, R. G., Herbold, C. W. & Servin, J. A. Genome beginnings: rooting the tree of life. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 2177–2185 (2009).

  50. 50

    Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).

  51. 51

    Gogarten, J. P. et al. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl Acad. Sci. USA 86, 6661–6665 (1989).

  52. 52

    Gouy, R., Baurain, D. & Philippe, H. Rooting the tree of life: the phylogenetic jury is still out. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140329 (2015).

  53. 53

    Cavalier-Smith, T. Rooting the tree of life by transition analyses. Biol. Direct 1, 19 (2006).

  54. 54

    Valas, R. E. & Bourne, P. E. Structural analysis of polarizing indels: an emerging consensus on the root of the tree of life. Biol. Direct 4, 30 (2009).

  55. 55

    Lake, J. A. & Sinsheimer, J. S. The deep roots of the rings of life. Genome Biol. Evol. 5, 2440–2448 (2013).

  56. 56

    Nigou, J., Gilleron, M., Brando, T. & Puzo, G. Structural analysis of mycobacterial lipoglycans. Appl. Biochem. Biotechnol. 118, 253–267 (2004).

  57. 57

    Uenishi, Y., Fujita, Y., Kusunose, N., Yano, I. & Sunagawa, M. Comprehensive analysis of mycolic acid subclass and molecular species composition of Mycobacterium bovis BCG Tokyo 172 cell wall skeleton (SMP-105). J. Microbiol. Methods 72, 149–156 (2008).

  58. 58

    Senaratne, R. H. et al. Expression of a gene for a porin-like protein of the OmpA family from Mycobacterium tuberculosis H37Rv. J. Bacteriol. 180, 3541–3547 (1998).

  59. 59

    Niederweis, M., Danilchanka, O., Huff, J., Hoffmann, C. & Engelhardt, H. Mycobacterial outer membranes: in search of proteins. Trends Microbiol. 18, 109–116 (2010).

  60. 60

    Hillmann, D., Eschenbacher, I., Thiel, A. & Niederweis, M. Expression of the major porin gene mspA is regulated in Mycobacterium smegmatis. J. Bacteriol. 189, 958–967 (2007).

  61. 61

    Song, H., Sandie, R., Wang, Y., Andrade-Navarro, M. A. & Niederweis, M. Identification of outer membrane proteins of Mycobacterium tuberculosis. Tuberculosis 88, 526–544 (2008).

  62. 62

    Remmert, M., Biegert, A., Linke, D., Lupas, A. N. & Soding, J. Evolution of outer membrane β-barrels from an ancestral ββ hairpin. Mol. Biol. Evol. 27, 1348–1358 (2010).

  63. 63

    Cavalier-Smith, T. The neomuran revolution and phagotrophic origin of eukaryotes and cilia in the light of intracellular coevolution and a revised tree of life. Cold Spring Harb. Perspect. Biol. 6, a016006 (2014).

  64. 64

    Sutcliffe, I. C. Cell envelope architecture in the Chloroflexi: a shifting frontline in a phylogenetic turf war. Environ. Microbiol. 13, 279–282 (2011).

  65. 65

    Houben, E. N., Korotkov, K. V. & Bitter, W. Take five — Type VII secretion systems of Mycobacteria. Biochim. Biophys. Acta 1843, 1707–1716 (2014).

  66. 66

    Lombard, J., Lopez-Garcia, P. & Moreira, D. The early evolution of lipid membranes and the three domains of life. Nat. Rev. Microbiol. 10, 507–515 (2012).

  67. 67

    Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211 (2015).

  68. 68

    Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).

  69. 69

    Hug, L. A. et al. Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages. Environ. Microbiol. 18, 159–173 (2016).

  70. 70

    Setlow, P. I will survive: DNA protection in bacterial spores. Trends Microbiol. 15, 172–180 (2007).

  71. 71

    Nicholson, W. L. Ancient micronauts: interplanetary transport of microbes by cosmic impacts. Trends Microbiol. 17, 243–250 (2009).

  72. 72

    Wolf, Y. I. & Koonin, E. V. Genome reduction as the dominant mode of evolution. Bioessays 35, 829–837 (2013).

  73. 73

    Doolittle, W. F. Phylogenetic classification and the universal tree. Science 284, 2124–2129 (1999).

Download references

Acknowledgements

Cryotomography in the Jensen laboratory is supported, in part, by the US National Institutes of Health (including grant RO1 GM101425), the Howard Hughes Medical institute (HHMI) and the Beckman Institute at California Institute of Technology (Caltech), Pasadena, USA. Further support for this publication came from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. The authors thank C. Cleland, T. Nordheim, L. Brengman, K. Willford and J. Eisen for helpful discussions about the early Earth and possible roots of the tree of life.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Elitza I. Tocheva or Grant J. Jensen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tocheva, E., Ortega, D. & Jensen, G. Sporulation, bacterial cell envelopes and the origin of life. Nat Rev Microbiol 14, 535–542 (2016). https://doi.org/10.1038/nrmicro.2016.85

Download citation

Further reading