Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spatial structure, cooperation and competition in biofilms

Key Points

  • Bacteria often exist in biofilms, which are surface-adhering or free-floating groups of cells that are bound together by a secreted polymer matrix. These microbial collectives are important for bacterial occupation of diverse ecological niches, they contribute to biogeochemical cycling, and they cause disease in multicellular organisms.

  • Within biofilms, bacteria interact with each other closely through cooperative phenotypes, such as the production of digestive enzymes, and antagonistic phenotypes, such as the expression of type V or type VI secretion systems. The evolutionary dynamics of these social phenotypes depend on their costs and their effects on other cells.

  • Many bacterial social phenotypes involve the secretion of products that affect neighbours in a distance-dependent manner. As a result, interaction networks within biofilms are largely determined by the spatial structure of the biofilms — that is, the arrangement in space of different clones, strains and species.

  • When biofilms are segregated into clonal clusters, the neighbourhood of a given cell mostly contains clonemates, and natural selection often favours the secretion of compounds that benefit all recipient cells. However, when different strains and species are spatially mixed within biofilms, cells primarily interact with other genotypes and antagonistic behaviour is often favoured. Under certain circumstances, between-species commensalism or mutualism can also evolve and remain stable against cheating.

  • Cooperative and antagonistic phenotypes fall under the control of sophisticated sensory mechanisms, such as competition sensing and quorum sensing, that evolved to help account for the variation in exposure to other strains and species in space and time. These regulatory mechanisms help to reduce the marginal costs of social phenotypes, maximize their fitness impacts and ensure that the correct recipient cells are targeted.

  • Both cooperative and antagonistic behaviours feed back onto population spatial structure by locally altering the growth rates of other cells and thus changing local biofilm composition.

  • Many bacteria and unicellular eukaryotes have evolved strategies for actively altering biofilm population structure, either through selective adhesion that spatially assorts the biofilm into groups that contain one or more specific genotypes or through the secretion of extracellular matrix components that spatially organize biofilm-dwelling cells.

Abstract

Bacteria often live within matrix-embedded communities, termed biofilms, which are now understood to be a major mode of microbial life. The study of biofilms has revealed their vast complexity both in terms of resident species composition and phenotypic diversity. Despite this complexity, theoretical and experimental work in the past decade has identified common principles for understanding microbial biofilms. In this Review, we discuss how the spatial arrangement of genotypes within a community influences the cooperative and competitive cell–cell interactions that define biofilm form and function. Furthermore, we argue that a perspective rooted in ecology and evolution is fundamental to progress in microbiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatial structuring in microbial biofilms and its influence on the evolution of social phenotypes.
Figure 2: Simulations and experiments exploring social phenotypes in biofilms.
Figure 3: The influence of social phenotypes on the spatial structure of biofilm communities.
Figure 4: Effects of structural matrix secretion on competition in biofilms.

Similar content being viewed by others

References

  1. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108 (2004).

    CAS  PubMed  Google Scholar 

  2. Hobley, L., Harkins, C., MacPhee, C. E. & Stanley-Wall, N. R. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol. Rev. 39, 649–669 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Arnosti, C. Microbial extracellular enzymes and the marine carbon cycle. Annu. Rev. Mar. Sci. 3, 401–425 (2011).

    Google Scholar 

  4. Battin, T. J., Kaplan, L. A., Newbold, J. D. & Hansen, C. M. E. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426, 439–442 (2003).

    CAS  PubMed  Google Scholar 

  5. Macfarlane, S., Bahrami, B. & Macfarlane, G. T. Mucosal biofilm communities in the human intestinal tract. Adv. Appl. Microbiol. 75, 111–143 (2011).

    CAS  PubMed  Google Scholar 

  6. Hoiby, N., Bjarnsholt, T., Givskov, M., Molin, S. & Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 35, 322–332 (2010).

    PubMed  Google Scholar 

  7. Bixler, G. D. & Bhushan, B. Biofouling: lessons from nature. Philos. Trans. A Math. Phys. Eng. Sci. 370, 2381–2417 (2012).

    CAS  PubMed  Google Scholar 

  8. Drescher, K., Shen, Y., Bassler, B. L. & Stone, H. A. Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. Proc. Natl Acad. Sci. USA 110, 4345–4350 (2013).

    CAS  PubMed  Google Scholar 

  9. Harding, J. L. & Reynolds, M. M. Combating medical device fouling. Trends Biotechnol. 32, 140–146 (2014).

    CAS  PubMed  Google Scholar 

  10. Nadell, C. D. et al. Cutting through the complexity of cell collectives. Proc. Biol. Sci. 280, 20122770 (2013).

    PubMed  PubMed Central  Google Scholar 

  11. Nadell, C. D., Xavier, J. B. & Foster, K. R. The sociobiology of biofilms. FEMS Microbiol. Rev. 33, 206–224 (2009).

    CAS  PubMed  Google Scholar 

  12. Visca, P., Imperi, F. & Lamont, I. Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol. 15, 22–30 (2007).

    CAS  PubMed  Google Scholar 

  13. Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004). A key proof-of-principle investigation finding that secreted siderophores can act as public goods that are susceptible to the evolution of cheating behaviour.

    CAS  PubMed  Google Scholar 

  14. Allison, S. D. Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol. Lett. 8, 626–635 (2005).

    Google Scholar 

  15. Absalon, C., Van Dellen, K. & Watnick, P. I. A communal bacterial adhesin anchors biofilm and bystander cells to surfaces. PLoS Pathog. 7, e1002210 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Xavier, J. B., Kim, W. & Foster, K. R. A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Mol. Microbiol. 79, 166–179 (2011).

    CAS  PubMed  Google Scholar 

  17. Flemming, H.-C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    CAS  PubMed  Google Scholar 

  18. West, S. A., Diggle, S. P., Buckling, A., Gardner, A. & Griffins, A. S. The social lives of microbes. Annu. Rev. Ecol. Evol. Syst. 38, 53–77 (2007).

    Google Scholar 

  19. Meibom, K. L. et al. The Vibrio cholerae chitin utilization program. Proc. Natl Acad. Sci. USA 101, 2524–2529 (2004).

    CAS  PubMed  Google Scholar 

  20. Drescher, K., Nadell, C., Stone, H., Wingreen, N. & Bassler, B. Solutions to the public goods dilemma in bacterial biofilms. Curr. Biol. 24, 50–55 (2014).

    CAS  PubMed  Google Scholar 

  21. Cordero, O. X., Ventouras, L. A., DeLong, E. F. & Polz, M. F. Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proc. Natl Acad. Sci. USA 109, 20059–20064 (2012).

    CAS  PubMed  Google Scholar 

  22. Matz, C. et al. Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. Proc. Natl Acad. Sci. USA 102, 16819–16824 (2005).

    CAS  PubMed  Google Scholar 

  23. Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rendueles, O. & Ghigo, J. M. Mechanisms of competition in biofilm communities. Microbiol. Spectr. 3, 3 (2015).

    Google Scholar 

  25. Riley, M. A. & Wertz, J. E. Bacteriocins: evolution, ecology, and application. Annu. Rev. Microbiol. 56, 117–137 (2002).

    CAS  PubMed  Google Scholar 

  26. Hayes, C. S., Aoki, S. K. & Low, D. A. Bacterial contact-dependent delivery systems. Annu. Rev. Genet. 44, 71–90 (2010).

    CAS  PubMed  Google Scholar 

  27. Ho, B. T., Dong, T. G. & Mekalanos, J. J. A view to a kill: the bacterial type VI secretion system. Cell Host Microbe. 15, 9–21 (2014).

    CAS  PubMed  Google Scholar 

  28. Russell, A. B., Peterson, S. B. & Mougous, J. D. Type VI secretion system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12, 137–148 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Basler, M., Ho, B. T. & Mekalanos, J. J. Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell 152, 884–894 (2013). A report showing that the T6SS of P. aeruginosa is deployed in response to the T6SS-mediated attack from other species in the vicinity.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nadell, C. D. & Bassler, B. L. A fitness trade-off between local competition and dispersal in Vibrio cholerae biofilms. Proc. Natl Acad. Sci. USA 108, 14181–14185 (2011).

    CAS  PubMed  Google Scholar 

  31. Schluter, J., Nadell, C. D., Bassler, B. L. & Foster, K. R. Adhesion as a weapon in microbial competition. ISME J. 9, 139–149 (2015).

    CAS  PubMed  Google Scholar 

  32. Kim, W., Racimo, F., Schluter, J., Levy, S. B. & Foster, K. R. Importance of positioning for microbial evolution. Proc. Natl Acad. Sci. USA 111, E1639–E1647 (2014).

    CAS  PubMed  Google Scholar 

  33. Rumbaugh, K. P. et al. Quorum sensing and the social evolution of bacterial virulence. Curr. Biol. 19, 341–345 (2009). A study demonstrating that phenotypes that are regulated by quorum sensing can be exploited by cheating mutants within a population of P. aeruginosa during infection of a mouse model system.

    CAS  PubMed  Google Scholar 

  34. Inglis, R. F., Gardner, A., Cornelis, P. & Buckling, A. Spite and virulence in the bacterium Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 106, 5703–5707 (2009).

    CAS  PubMed  Google Scholar 

  35. Brown, S. P., Inglis, R. F. & Taddei, F. Evolutionary ecology of microbial wars: within-host competition and (incidental) virulence. Evol. Appl. 2, 32–39 (2009).

    PubMed  PubMed Central  Google Scholar 

  36. Levin, S. A. Complex adaptive systems: exploring the known, the unknown, and the unknowable. Bull. Am. Math. Soc. 40, 3–19 (2003).

    Google Scholar 

  37. Persat, A. et al. The mechanical world of bacteria. Cell 161, 988–997 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Stacy, A., McNally, L., Darch, S., Brown, S. P. & Whiteley, M. The biogeography of polymicrobial infection. Nat. Rev. Microbiol. 14, 93–105 (2015). A major recent review of processes that generate the spatial structure of different bacterial strains and species in microbial communities associated with infection.

    PubMed  PubMed Central  Google Scholar 

  39. Driscoll, W. W. & Pepper, J. W. Theory for the evolution of diffusible external goods. Evolution 64, 2682–2687 (2010).

    PubMed  Google Scholar 

  40. Lion, S. & van Baalen, M. Self-structuring in spatial evolutionary ecology. Ecol. Lett. 11, 277–295 (2008).

    PubMed  Google Scholar 

  41. O'Toole, G. A. & Wong, G. C. Sensational biofilms: surface sensing in bacteria. Curr. Opin. Microbiol. 30, 139–146 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Millet, Y. A. et al. Insights into Vibrio cholerae intestinal colonization from monitoring fluorescently labeled bacteria. PLoS Pathog. 10, e1004405 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Anderson, M. S., Garcia, E. C. & Cotter, P. A. Kind discrimination and competitive exclusion mediated by contact-dependent growth inhibition systems shape biofilm community structure. PLoS Pathog. 10, e1004076 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Nadell, C. D., Foster, K. R. & Xavier, J. B. Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS Comput. Biol. 6, e1000716 (2010).

    PubMed  PubMed Central  Google Scholar 

  45. Thomas, C. D. & Kunin, W. E. The spatial structure of populations. J. Animal Ecol. 68, 647–657 (1999).

    Google Scholar 

  46. Hallatschek, O., Hersen, P., Ramanathan, S. & Nelson, D. R. Genetic drift at expanding frontiers promotes gene segregation. Proc. Natl Acad. Sci. USA 104, 19926–19930 (2007). A theoretical and experimental paper that outlines how spatial structure emerges along the leading edge of expanding bacterial colonies owing to genetic drift, which generates clonal patches of one genotype.

    CAS  PubMed  Google Scholar 

  47. Weber, M. F., Poxleitner, G., Hebisch, E., Frey, E. & Opitz, M. Chemical warfare and survival strategies in bacterial range expansions. J. R. Soc. Interface 11, 20140172 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. van Gestel, J., Weissing, F. J., Kuipers, O. P. & Kovacs, A. T. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms. ISME J. 8, 2069–2079 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mitri, S., Clarke, E. & Foster, K. R. Resource limitation drives spatial organization in microbial groups. ISME J. 10, 1471–1482 (2016).

    CAS  PubMed  Google Scholar 

  50. Van Dyken, J. D., Muller, M. J. I., Mack, K. M. L. & Desai, M. M. Spatial population expansion promotes the evolution of cooperation in an experimental prisoner's dilemma. Curr. Biol. 23, 919–923 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Müller, M., Neugeboren, B. I., Nelson, D. R. & Murray, A. W. Genetic drift opposes mutualism during spatial population expansion. Proc. Natl Acad. Sci. USA 111, 1037–1042 (2014). Research demonstrating that genetic drift in expanding S. cerevisiae colonies generates a spatial structure that inhibits cooperation between two genotypes in a synthetic system. By contrast, strong mutualism is shown to counteract the lineage-segregating influence of radial population growth.

    PubMed  Google Scholar 

  52. Buttery, N. et al. Structured growth and genetic drift raise relatedness in the social amoeba Dictyostelium discoideum. Biol. Lett. 8, 794–797 (2012).

    PubMed  PubMed Central  Google Scholar 

  53. Poilane, I., Karjalainen, T., Barc, M.-C., Bourlioux, P. & Collignon, A. Protease activity of Clostridium difficile strains. Can. J. Microbiol. 44, 157–161 (1998).

    CAS  PubMed  Google Scholar 

  54. Hungate, R. The anaerobic mesophilic cellulolytic bacteria. Bacteriol. Rev. 14, 1 (1950).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gilbert, H. J. & Hazlewood, G. P. Bacterial cellulases and xylanases. Microbiology 139, 187–194 (1993).

    CAS  Google Scholar 

  56. Ross-Gillespie, A., Gardner, A., West, S. A. & Griffin, A. S. Frequency dependence and cooperation: theory and a test with bacteria. Am. Nat. 170, 331–342 (2007).

    PubMed  Google Scholar 

  57. Kümmerli, R., Schiessl, K. T., Waldvogel, T., McNeill, K. & Ackermann, M. Habitat structure and the evolution of diffusible siderophores in bacteria. Ecol. Lett. 17, 1536–1544 (2014).

    PubMed  Google Scholar 

  58. West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4, 597–607 (2006).

    CAS  PubMed  Google Scholar 

  59. Köhler, T., Buckling, A. & van Delden, C. Cooperation and virulence of clinical Pseudomonas aeruginosa populations. Proc. Natl Acad. Sci. USA 106, 6339–6344 (2009).

    PubMed  Google Scholar 

  60. Andersen, S. B. et al. Long-term social dynamics drive loss of function in pathogenic bacteria. Proc. Natl Acad. Sci. USA 112, 10756–10761 (2015).

    CAS  PubMed  Google Scholar 

  61. Allen, B., Gore, J. & Nowak, M. A. Spatial dilemmas of diffusible public goods. eLife 2, e01169 (2013).

    PubMed  PubMed Central  Google Scholar 

  62. Borenstein, D. B., Meir, Y., Shaevitz, J. W. & Wingreen, N. S. Non-local interaction via diffusible resource prevents coexistence of cooperators and cheaters in a lattice model. PLoS ONE 8, e63304 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Damore, J. A. & Gore, J. Understanding microbial cooperation. J. Theor. Biol. 299, 31–41 (2012).

    PubMed  Google Scholar 

  64. Dobay, A., Bagheri, H. C., Messina, A., Kümmerli, R. & Rankin, D. J. Interaction effects of cell diffusion, cell density and public goods properties on the evolution of cooperation in digital microbes. J. Evol. Biol. 27, 1869–1877 (2014).

    CAS  PubMed  Google Scholar 

  65. Popat, R. et al. Quorum-sensing and cheating in bacterial biofilms. Proc. Biol. Sci. 279, 4765–4771 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hamilton, W. D. The genetical evolution of social behaviour I. J. Theor. Biol. 7, 1–16 (1964).

    CAS  PubMed  Google Scholar 

  67. Hamilton, W. D. The genetical evolution of social behaviour II. J. Theor. Biol. 7, 17–52 (1964). Landmark papers in evolutionary biology, establishing the fundamental theory and broad-ranging importance of genetic identity between individuals for the evolution of cooperation.

    CAS  PubMed  Google Scholar 

  68. Mitri, S., Xavier, J. B. & Foster, K. R. Social evolution in multispecies biofilms. Proc. Natl Acad. Sci. USA 108, 10839–10846 (2011).

    CAS  PubMed  Google Scholar 

  69. Kümmerli, R., Griffin, A. S., West, S. A., Buckling, A. & Harrison, F. Viscous medium promotes cooperation in the pathogenic bacterium Pseudomonas aeruginosa. Proc. Biol. Sci. 276, 3531–3538 (2009).

    PubMed  PubMed Central  Google Scholar 

  70. Julou, T. et al. Cell–cell contacts confine public goods diffusion inside Pseudomonas aeruginosa clonal microcolonies. Proc. Natl Acad. Sci. USA 110, 12577–12582 (2013).

    CAS  PubMed  Google Scholar 

  71. Seminara, A. et al. Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix. Proc. Natl Acad. Sci. USA 109, 1116–1121 (2012).

    CAS  PubMed  Google Scholar 

  72. Datta, M. S., Korolev, K. S., Cvijovic, I., Dudley, C. & Gore, J. Range expansion promotes cooperation in an experimental microbial metapopulation. Proc. Natl Acad. Sci. USA 110, 7354–7359 (2013). This paper and reference 50 provide evidence that genetic drift in expanding metapopulations of S. cerevisiae generates a spatial structure which favours the use of a cooperative enzyme by a single genotype.

    PubMed  Google Scholar 

  73. Korolev, K. S., Xavier, J. B., Nelson, D. R. & Foster, K. R. A. Quantitative test of population genetics using spatiogenetic patterns in bacterial colonies. Am. Nat. 178, 538–552 (2011).

    PubMed  PubMed Central  Google Scholar 

  74. Hol, F. J. H. et al. Spatial structure facilitates cooperation in a social dilemma: empirical evidence from a bacterial community. PLoS ONE 8, e77042 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Mitri, S. & Foster, K. R. The genotypic view of social interactions in microbial communities. Annu. Rev. Genet. 47, 247–273 (2013).

    CAS  PubMed  Google Scholar 

  76. Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).

    CAS  PubMed  Google Scholar 

  77. Oliveria, N. M. et al. Biofilm formation as a response to ecological competition. PLoS Biol. 13, e1002191 (2015).

    PubMed  Google Scholar 

  78. Pfeiffer, T. Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504–507 (2001).

    CAS  PubMed  Google Scholar 

  79. Xavier, J. B. & Foster, K. R. Cooperation and conflict in microbial biofilms. Proc. Natl Acad. Sci. USA 104, 876–881 (2007).

    CAS  PubMed  Google Scholar 

  80. Durrett, R. & Levin, S. Allelopathy in spatially distributed populations. J. Theor. Biol. 185, 165–171 (1997).

    CAS  PubMed  Google Scholar 

  81. Ratcliff, W. & Denison, R. Alternative actions for antibiotics. Science 332, 547–548 (2011).

    CAS  PubMed  Google Scholar 

  82. Abrudan, M. I. et al. Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proc. Natl Acad. Sci. USA 112, 11054–11059 (2015).

    CAS  PubMed  Google Scholar 

  83. Borgeaud, S., Metzger, L. C., Scrignari, T. & Blokesch, M. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 347, 63–67 (2015).

    CAS  PubMed  Google Scholar 

  84. Gardner, A. & West, S. A. Spite and the scale of competition. J. Evol. Biol. 17, 1195–1203 (2004).

    CAS  PubMed  Google Scholar 

  85. Bucci, V., Nadell, C. D. & Xavier, J. B. The evolution of bacteriocin production in bacterial biofilms. Am. Nat. 178, E162–E173 (2011).

    PubMed  Google Scholar 

  86. Tait, K. & Sutherland, I. W. Antagonistic interactions amongst bacteriocin-producing enteric bacteria in dual species biofilms. J. Appl. Microbiol. 93, 345–352 (2002).

    CAS  PubMed  Google Scholar 

  87. Borenstein, D. B., Ringel, P., Basler, M. & Wingreen, N. S. Established microbial colonies can survive type VI secretion assault. PLoS Comput. Biol. 11, e1004520 (2015).

    PubMed  PubMed Central  Google Scholar 

  88. Wexler, A. G. et al. Human symbionts inject and neutralize antibacterial toxins to persist in the gut. Proc. Natl Acad. Sci. USA 113, 3639–3644 (2016).

    CAS  PubMed  Google Scholar 

  89. Alteri, C. J. et al. Multicellular bacteria deploy the type VI secretion system to preemptively strike neighboring cells. PLoS Pathog. 9, e1003608 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Karlsson, F. H., Nookaew, I., Petranovic, D. & Nielsen, J. Prospects for systems biology and modeling of the gut microbiome. Trends Biotechnol. 29, 251–258 (2011).

    CAS  PubMed  Google Scholar 

  91. Morris, J. J., Lenski, R. E. & Zinser, E. R. The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, e00036-12 (2012).

    PubMed  PubMed Central  Google Scholar 

  92. Tripp, H. J. et al. SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452, 741–744 (2008).

    CAS  PubMed  Google Scholar 

  93. Oliveira, N. M., Niehus, R. & Foster, K. R. Evolutionary limits to cooperation in microbial communities. Proc. Natl Acad. Sci. USA 111, 17941–17946 (2014).

    CAS  PubMed  Google Scholar 

  94. Estrela, S. & Brown, S. P. Metabolic and demographic feedbacks shape the emergent spatial structure and function of microbial communities. PLoS Comput. Biol. 9, e1003398 (2013).

    PubMed  PubMed Central  Google Scholar 

  95. Momeni, B., Waite, A. J. & Shou, W. Spatial self-organization favors heterotypic cooperation over cheating. eLife 2, e00960 (2013). A study in which synthetic obligate mutualist strains of S. cerevisiae are found to spatially exclude a cheating strain in surface-bound colonies in a manner that promotes cooperation between mutualists.

    PubMed  PubMed Central  Google Scholar 

  96. Morris, B. E. L., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).

    CAS  PubMed  Google Scholar 

  97. Callaghan, A. et al. The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation. Environ. Microbiol. 14, 101–113 (2012).

    CAS  PubMed  Google Scholar 

  98. Schink, B. Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek 81, 257–261 (2002).

    CAS  PubMed  Google Scholar 

  99. Pande, S. et al. Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME J. 8, 953–962 (2014).

    CAS  PubMed  Google Scholar 

  100. Rakoff-Nahoum, S., Foster, K. R. & Comstock, L. The evolution of cooperation within the gut microbiota. Nature 533, 255–259 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Estrela, S., Trisos, C. H. & Brown, S. P. From metabolism to ecology: cross-feeding interactions shape the balance between polymicrobial conflict and mutualism. Am. Nat. 180, 566–576 (2012).

    PubMed  PubMed Central  Google Scholar 

  102. Momeni, B., Brileya, K. A., Fields, M. W. & Shou, W. Strong inter-population cooperation leads to partner intermixing in microbial communities. eLife 2, e00230 (2013).

    PubMed  PubMed Central  Google Scholar 

  103. Kümmerli, R., Jiricny, N., Clarke, L. S., West, S. A. & Griffin, A. S. Phenotypic plasticity of a cooperative behaviour in bacteria. J. Evol. Biol. 22, 589–598 (2009).

    PubMed  Google Scholar 

  104. Kümmerli, R. & Brown, S. P. Molecular and regulatory properties of a public good shape the evolution of cooperation. Proc. Natl Acad. Sci. USA 107, 18921–18926 (2010).

    PubMed  Google Scholar 

  105. Brown, S. P. & Taddei, F. The durability of public goods changes the dynamics and nature of social dilemmas. PLoS ONE 2, e593 (2007).

    PubMed  PubMed Central  Google Scholar 

  106. Mellbye, B. & Schuster, M. Physiological framework for the regulation of quorum sensing-dependent public goods in Pseudomonas aeruginosa. J. Bacteriol. 196, 1155–1164 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Cornforth, D. M. & Foster, K. R. Competition sensing: the social side of bacterial stress responses. Nat. Rev. Microbiol. 11, 285–293 (2013).

    CAS  PubMed  Google Scholar 

  108. Schuster, M., Sexton, D. J., Diggle, S. P. & Greenberg, E. P. Acyl-homoserine lactone quorum sensing: from evolution to application. Annu. Rev. Microbiol. 67, 43–63 (2013).

    CAS  PubMed  Google Scholar 

  109. Ng, W.-L. & Bassler, B. L. Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 43, 197–222 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Redfield, R. J. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10, 365–370 (2002).

    CAS  PubMed  Google Scholar 

  111. Cornforth, D. M. et al. Combinatorial quorum sensing allows bacteria to resolve their social and physical environment. Proc. Natl Acad. Sci. USA 111, 4280–4284 (2014).

    CAS  PubMed  Google Scholar 

  112. Kim, M. K., Ingremeau, F., Zhao, A., Bassler, B. L. & Stone, H. A. Local and global consequences of flow on bacterial quorum sensing. Nat. Microbiol. 1, 15005 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Nadell, C. D., Xavier, J. B., Levin, S. A. & Foster, K. R. The evolution of quorum sensing in bacterial biofilms. PLoS Biol. 6, e14 (2008).

    PubMed  PubMed Central  Google Scholar 

  114. Schluter, J., Schoech, A., Foster, K. R. & Mitri, S. The evolution of quorum sensing as a mechanism to infer kinship. PLoS Comput. Biol. 12, e1004848 (2016).

    PubMed  PubMed Central  Google Scholar 

  115. van der Ploeg, J. R. Regulation of bacteriocin production in Streptococcus mutans by the quorum-sensing system required for development of genetic competence. J. Bacteriol. 187, 3980–3989 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Fontaine, L. et al. Quorum-sensing regulation of the production of Blp bacteriocins in Streptococcus thermophilus. J. Bacteriol. 189, 7195–7205 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Risøen, P. A., Brurberg, M. B., Eijsink, V. G. & Nes, I. F. Functional analysis of promoters involved in quorum sensing-based regulation of bacteriocin production in Lactobacillus. Mol. Microbiol. 37, 619–628 (2000).

    PubMed  Google Scholar 

  118. LeRoux, M., Peterson, S. B. & Mougous, J. D. Bacterial danger sensing. J. Mol. Biol. 427, 3744–3753 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Korgaonkar, A. K. & Whiteley, M. Pseudomonas aeruginosa enhances production of an antimicrobial in response to N-acetylglucosamine and peptidoglycan. J. Bacteriol. 193, 909–917 (2011).

    CAS  PubMed  Google Scholar 

  120. Dong, T. G. et al. Generation of reactive oxygen species by lethal attacks from competing microbes. Proc. Natl Acad. Sci. USA 112, 2181–2186 (2015).

    CAS  PubMed  Google Scholar 

  121. LeRoux, M. et al. Kin cell lysis is a danger signal that activates antibacterial pathways of Pseudomonas aeruginosa. eLife 4, e05701 (2015). An investigation showing that cell lysate upregulates the T6SS of P. aeruginosa such that cells attack when they detect cues of clonemate death in the near surroundings.

    PubMed Central  Google Scholar 

  122. Nakamaru, M., Matsuda, H. & Iwasa, Y. The evolution of cooperation in a lattice-structured population. J. Theor. Biol. 184, 65–81 (1997).

    CAS  PubMed  Google Scholar 

  123. Durrett, R. & Levin, S. The importance of being discrete (and spatial). Theor. Popul. Biol. 46, 363–394 (1994).

    Google Scholar 

  124. Mitteldorf, J. & Wilson, D. S. Population viscosity and the evolution of altruism. J. Theor. Biol. 204, 481–496 (2000).

    CAS  PubMed  Google Scholar 

  125. Ratzke, C. & Gore, J. Self-organized patchiness facilitates survival in cooperatively growing Bacillus subtilis populations. Nat. Microbiol. 1, 16022 (2016).

    CAS  PubMed  Google Scholar 

  126. Hallatschek, O. & Nelson, D. R. Gene surfing in expanding populations. Theor. Popul. Biol. 73, 158–170 (2008).

    PubMed  Google Scholar 

  127. Kerr, B., Riley, M. A., Feldman, M. W. & Bohannan, B. J. M. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418, 171–174 (2002).

    CAS  PubMed  Google Scholar 

  128. Pande, S. et al. Privatization of cooperative benefits stabilizes mutualistic cross-feeding interactions in spatially structured environments. ISME J. 10, 1413–1423 (2016).

    PubMed  Google Scholar 

  129. Tolker-Nielsen, T. & Molin, S. Spatial organization of microbial biofilm communities. Microb. Ecol. 40, 75–84 (2000).

    CAS  PubMed  Google Scholar 

  130. Rendueles, O. et al. Rapid and widespread de novo evolution of kin discrimination. Proc. Natl Acad. Sci. USA 112, 9076–9081 (2015).

    CAS  PubMed  Google Scholar 

  131. Strassmann, J. E., Gilbert, O. M. & Queller, D. C. Kin discrimination and cooperation in microbes. Annu. Rev. Microbiol. 65, 349–367 (2011).

    CAS  PubMed  Google Scholar 

  132. Oldewurtel, E. R., Kouzel, N., Dewenter, L., Henseler, K. & Maier, B. Differential interaction forces govern bacterial sorting in early biofilms. eLife 4, e10811 (2015).

    PubMed  PubMed Central  Google Scholar 

  133. Smukalla, S. et al. FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 135, 726–737 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Dawkins, R. The Selfish Gene (Oxford Univ. Press, 1989).

    Google Scholar 

  135. Maynard Smith, J. & Szathmary, E. The Major Transitions in Evolution (Oxford Univ. Press, 1995).

    Google Scholar 

  136. Tarnita, C. E., Taubes, C. H. & Nowak, M. A. Evolutionary construction by staying together and coming together. J. Theor. Biol. 320, 10–22 (2013).

    PubMed  Google Scholar 

  137. Claessen, D., Rozen, D. E., Kuipers, O. P., Søgaard-Andersen, L. & van Wezel, G. P. Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat. Rev. Microbiol. 12, 115–124 (2014).

    CAS  PubMed  Google Scholar 

  138. Ratcliff, W. C., Denison, R. F., Borrello, M. & Travisano, M. Experimental evolution of multicellularity. Proc. Natl Acad. Sci. USA 109, 1595–1600 (2012).

    CAS  PubMed  Google Scholar 

  139. Koschwanez, J. H., Foster, K. R. & Murray, A. Improved use of a public good selects for the evolution of undifferentiated multicellularity. eLife 2, e00367 (2013).

    PubMed  PubMed Central  Google Scholar 

  140. Koschwanez, J. H., Foster, K. R. & Murray, A. W. Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity. PLoS Biol. 9, e1001122 (2011).

    CAS  PubMed  Google Scholar 

  141. Justice, S. S., Hunstad, D. A., Cegelski, L. & Hultgren, S. J. Morphological plasticity as a bacterial survival strategy. Nat. Rev. Microbiol. 6, 162–168 (2008).

    CAS  PubMed  Google Scholar 

  142. Persat, A., Stone, H. A. & Gitai, Z. The curved shape of Caulobacter crescentus enhances surface colonization in flow. Nat. Commun. 5, 3824 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Drescher, K. et al. Architectural transitions in Vibrio cholerae biofilms at single-cell resolution. Proc. Natl Acad. Sci. USA 113, E2066–E2072 (2016).

    CAS  PubMed  Google Scholar 

  144. Teschler, J. K. et al. Living in the matrix: assembly and control of Vibrio cholerae biofilms. Nat. Rev. Microbiol. 13, 255–268 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Berk, V. et al. Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science 337, 236–239 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Nadell, C. D., Drescher, K., Wingreen, N. S. & Bassler, B. L. Extracellular matrix structure governs invasion resistance in bacterial biofilms. ISME J. 9, 1700–1709 (2015).

    PubMed  PubMed Central  Google Scholar 

  147. Smith, D. R. et al. In situ proteolysis of the Vibrio cholerae matrix protein RbmA promotes biofilm recruitment. Proc. Natl Acad. Sci. USA 112, 10491–10496 (2015).

    CAS  PubMed  Google Scholar 

  148. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappinscott, H. M. Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745 (1995).

    CAS  PubMed  Google Scholar 

  149. Roberts, A. E., Kragh, K. N., Bjarnsholt, T. & Diggle, S. P. The limitations of in vitro experimentation in understanding biofilms and chronic infection. J. Mol. Biol. 427, 3646–3661 (2015).

    CAS  PubMed  Google Scholar 

  150. Rusconi, R., Garren, M. & Stocker, R. Microfluidics expanding the frontiers of microbial ecology. Annu. Rev. Biophys. 43, 65–91 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Earle, K. A. et al. Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe 18, 478–488 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Harrison, F., Muruli, A., Higgins, S. & Diggle, S. P. Development of an ex vivo porcine lung model for studying growth, virulence, and signaling of Pseudomonas aeruginosa. Infect. Immun. 82, 3312–3323 (2014).

    PubMed  PubMed Central  Google Scholar 

  153. Welch, J. L. M., Rossetti, B. J., Rieken, C. W., Dewhirst, F. E. & Borisy, G. G. Biogeography of a human oral microbiome at the micron scale. Proc. Natl Acad. Sci. USA 113, E791–E800 (2016).

    Google Scholar 

  154. Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: network, competition, and stability. Science 350, 663–666 (2015).

    CAS  PubMed  Google Scholar 

  155. Hamilton, W. D. Altruism and related phenomena, mainly in social insects. Annu. Rev. Ecol. Evol. Syst. 3, 192–232 (1972).

    Google Scholar 

  156. Foster, K. R. & Wenseleers, T. A general model for the evolution of mutualisms. J. Evol. Biol. 19, 1283–1293 (2006).

    CAS  PubMed  Google Scholar 

  157. Kreft, J. U., Picioreanu, C., Wimpenny, J. W. T. & van Loosdrecht, M. C. M. Individual-based modelling of biofilms. Microbiology 147, 2897–2912 (2001).

    CAS  PubMed  Google Scholar 

  158. Xavier, J. B., Picioreanu, C. & van Loosdrecht, M. C. M. A framework for multidimensional modelling of activity and structure of multispecies biofilms. Environ. Microbiol. 7, 1085–1103 (2005).

    CAS  PubMed  Google Scholar 

  159. Kreft, J. U. Biofilms promote altruism. Microbiology 150, 2751–2760 (2004). A landmark individual-based modelling study demonstrating how the spatial structure of cell lineages can promote the evolution of cooperation in biofilms.

    CAS  PubMed  Google Scholar 

  160. Schluter, J. & Foster, K. R. The evolution of mutualism in gut microbiota via host epithelial selection. PLoS Biol. 10, e1001424 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Zhao, K. et al. Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms. Nature 497, 388–391 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A. Persat, A. Stacy, D. Cornforth, N. Oliveira, W. Kim, S. Diggle and two anonymous reviewers for providing comments on the manuscript. P. Singh and R. Hartmann provided invaluable help in the preparation of figure 4d. Work in the contributing laboratories was supported by European Research Council grant 242670 (K.R.F.), The Max Planck Society (K.D.), the Human Frontier Science Program (K.D.) and the Alexander von Humboldt Foundation (C.D.N.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carey D. Nadell or Kevin R. Foster.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Microbiota

The community of microorganisms that live in association with a particular host organism (for example, the gut microbiota) or abiotic environment (for example, the soil microbiota).

Social phenotypes

Phenotypes that exert an effect (either positive or negative) on the reproductive output of other individuals and which evolved, in part, because of this fitness effect that they exert.

Type VI secretion system

(T6SS). A mechanism for killing neighbouring cells by the extension of a phage-tail-derived structure to putatively puncture adjacent cells and deliver toxic effectors.

Dispersal

The process by which cells depart from a community, either individually or collectively. Dispersal can be active, in response to stresses such as nutrient limitation, or passive, owing to biofilm erosion by fluid flow.

Genetic drift

A change in allele frequency in a population due to random sampling of organisms across generations (for example, due to stochasticity in reproductive success).

Public goods

Substances that are secreted into the extracellular space that provide a benefit to other cells in the vicinity.

Cheating mutants

Genotypes that gain a relative fitness advantage by receiving the benefits of an evolved cooperative trait of other genotypes, such as a public good, without contributing to the cooperative interaction themselves.

Ecological productivity

The total biomass produced by a strain or species in a given environmental setting

Antibiotics

Molecules that are produced by various microorganisms and act as toxins against other microorganisms; some antibiotics have been co-opted as pharmaceuticals for the treatment of microbial infections.

Bacteriocins

Antibiotics that are produced by bacteria and specifically target other bacteria. Bacteriocins often occur as toxin–antitoxin pairs that are encoded on the same plasmid or in the same genomic neighbourhood.

Contact-dependent inhibition

A mechanism of inhibiting the growth of neighbouring cells by the extension of a helical structure to contact target cells and deliver toxic effector molecules.

Syntrophic relationships

Interactions in which one species benefits by using the product of another as a nutrient source; the producing species may in turn benefit from the removal of this product.

Flocculation

Aggregation of yeast cells to form large multicellular groups that precipitate from liquid cultures and exhibit heightened stress tolerance.

Greenbeard gene

A gene (or a set of closely linked genes) that is responsible for both an identifying phenotypic trait and a cooperative behaviour that targets that identifying trait, ensuring that the greenbeard gene bearer preferentially benefits other bearers of the greenbeard gene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadell, C., Drescher, K. & Foster, K. Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol 14, 589–600 (2016). https://doi.org/10.1038/nrmicro.2016.84

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2016.84

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology