Advancing microbial sciences by individual-based modelling

Abstract

Remarkable technological advances have revealed ever more properties and behaviours of individual microorganisms, but the novel data generated by these techniques have not yet been fully exploited. In this Opinion article, we explain how individual-based models (IBMs) can be constructed based on the findings of such techniques and how they help to explore competitive and cooperative microbial interactions. Furthermore, we describe how IBMs have provided insights into self-organized spatial patterns from biofilms to the oceans of the world, phage–CRISPR dynamics and other emergent phenomena. Finally, we discuss how combining individual-based observations with IBMs can advance our understanding at both the individual and population levels, leading to the new approach of microbial individual-based ecology (μIBE).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Simplified overview of approaches that are useful for modelling communities and single cells.
Figure 2: Using individual-based models to predict complex systems.
Figure 3: Using individual-based models to predict evolution.

References

  1. 1

    Brehm-Stecher, B. F. & Johnson, E. A. Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 68, 538–559 (2004).

  2. 2

    Balagaddé, F. K., You, L., Hansen, C. L., Arnold, F. H. & Quake, S. R. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309, 137–140 (2005).

  3. 3

    Groisman, A. et al. A microfluidic chemostat for experiments with bacterial and yeast cells. Nat. Methods 2, 685–689 (2005).

  4. 4

    Keymer, J. E., Galajda, P., Muldoon, C., Park, S. & Austin, R. H. Bacterial metapopulations in nanofabricated landscapes. Proc. Natl Acad. Sci. USA 103, 17290–17295 (2006).

  5. 5

    Wagner, M. Single-cell ecophysiology of microbes as revealed by raman microspectroscopy or secondary ion mass spectrometry imaging. Annu. Rev. Microbiol. 63, 411–429 (2009).

  6. 6

    Zengler, K. Central role of the cell in microbial ecology. Microbiol. Mol. Biol. Rev. 73, 712–729 (2009).

  7. 7

    Tadmor, A. D., Ottesen, E. A., Leadbetter, J. R. & Phillips, R. Probing individual environmental bacteria for viruses by using microfluidic digital PCR. Science 333, 58–62 (2011).

  8. 8

    Musat, N., Foster, R., Vagner, T., Adam, B. & Kuypers, M. M. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol. Rev. 36, 486–511 (2012).

  9. 9

    Dénervaud, N. et al. A chemostat array enables the spatio-temporal analysis of the yeast proteome. Proc. Natl Acad. Sci. USA 110, 15842–15847 (2013).

  10. 10

    Wessel, A. K., Hmelo, L., Parsek, M. R. & Whiteley, M. Going local: technologies for exploring bacterial microenvironments. Nat. Rev. Microbiol. 11, 337–348 (2013).

  11. 11

    Hol, F. J. & Dekker, C. Zooming in to see the bigger picture: microfluidic and nanofabrication tools to study bacteria. Science 346, 1251821 (2014).

  12. 12

    Zhang, Q. et al. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science 333, 1764–1767 (2011).

  13. 13

    Gunawardena, J. Models in biology: 'accurate descriptions of our pathetic thinking'. BMC Biol. 12, 29 (2014).

  14. 14

    Evans, M. R. et al. Do simple models lead to generality in ecology? Trends Ecol. Evol. 28, 578–583 (2013).

  15. 15

    Horn, H. & Lackner, S. in Productive Biofilms (eds Muffler, K. & Ulber, R.) 53–76 (Springer, 2014).

  16. 16

    Klapper, I. & Dockery, J. Mathematical description of microbial biofilms. SIAM Rev. 52, 221–265 (2010).

  17. 17

    Hellweger, F. L. & Bucci, V. A bunch of tiny individuals — individual-based modeling for microbes. Ecol. Model. 220, 8–22 (2009).

  18. 18

    Kreft, J.-U. et al. Mighty small: Observing and modeling individual microbes becomes big science. Proc. Natl Acad. Sci. USA 110, 18027–18028 (2013).

  19. 19

    DeAngelis, D. L. & Mooij, W. M. Individual-based modeling of ecological and evolutionary processes. Annu. Rev. Ecol. Evol. Syst. 36, 147–168 (2005).

  20. 20

    Grimm, V. et al. Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310, 987–991 (2005).

  21. 21

    Railsback, S. F. & Grimm, V. Agent-Based and Individual-Based Modeling: A Practical Introduction. (Princeton Univ. Press, 2012).

  22. 22

    Sher, D., Thompson, J. W., Kashtan, N., Croal, L. & Chisholm, S. W. Response of Prochlorococcus ecotypes to co-culture with diverse marine bacteria. ISME J. 5, 1125–1132 (2011).

  23. 23

    Amin, S. A., Parker, M. S. & Armbrust, E. V. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 76, 667–684 (2012).

  24. 24

    Clegg, R. J., Dyson, R. J. & Kreft, J.-U. Repair rather than segregation of damage is the optimal unicellular aging strategy. BMC Biol. 12, 52 (2014).

  25. 25

    Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101 (2015).

  26. 26

    Lardon, L. A. et al. iDynoMiCS: next-generation individual-based modelling of biofilms. Environ. Microbiol. 13, 2416–2434 (2011).

  27. 27

    Mina, P., di Bernardo, M., Savery, N. J. & Tsaneva-Atanasova, K. Modelling emergence of oscillations in communicating bacteria: a structured approach from one to many cells. J. R. Soc. Interface 10, 20120612 (2013).

  28. 28

    Iranzo, J., Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Evolutionary dynamics of the prokaryotic adaptive immunity system CRISPR–Cas in an explicit ecological context. J. Bacteriol. 195, 3834–3844 (2013).

  29. 29

    Davey, H. M. & Kell, D. B. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol. Rev. 60, 641–696 (1996).

  30. 30

    Musat, N. et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc. Natl Acad. Sci. USA 105, 17861–17866 (2008).

  31. 31

    Dusny, C., Fritzsch, F. S., Frick, O. & Schmid, A. Isolated microbial single cells and resulting micropopulations grow faster in controlled environments. Appl. Environ. Microbiol. 78, 7132–7136 (2012).

  32. 32

    Avery, S. V. Microbial cell individuality and the underlying sources of heterogeneity. Nat. Rev. Microbiol. 4, 577–587 (2006).

  33. 33

    Ackermann, M. Microbial individuality in the natural environment. ISME J. 7, 465–467 (2013).

  34. 34

    Labhsetwar, P., Cole, J. A., Roberts, E., Price, N. D. & Luthey-Schulten, Z. A. Heterogeneity in protein expression induces metabolic variability in a modeled Escherichia coli population. Proc. Natl Acad. Sci. USA 110, 14006–14011 (2013).

  35. 35

    Mitchell, J. G., Okubo, A. & Fuhrman, J. A. Microzones surrounding phytoplankton form the basis for a stratified marine microbial ecosystem. Nature 316, 58–59 (1985).

  36. 36

    Blackburn, N., Fenchel, T. & Mitchell, J. Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282, 2254–2256 (1998).

  37. 37

    Capra, E. J. & Laub, M. T. Evolution of two-component signal transduction systems. Annu. Rev. Microbiol. 66, 325–347 (2012).

  38. 38

    Kiviet, D. J. et al. Stochasticity of metabolism and growth at the single-cell level. Nature 514, 376–379 (2014).

  39. 39

    Huh, D. & Paulsson, J. Non-genetic heterogeneity from stochastic partitioning at cell division. Nat. Genet. 43, 95–100 (2011).

  40. 40

    Korobkova, E., Emonet, T., Vilar, J. M., Shimizu, T. S. & Cluzel, P. From molecular noise to behavioural variability in a single bacterium. Nature 428, 574–578 (2004).

  41. 41

    Bucci, V., Nunez-Milland, D., Twining, B. S. & Hellweger, F. L. Microscale patchiness leads to large and important intraspecific internal nutrient heterogeneity in phytoplankton. Aquat. Ecol. 46, 101–118 (2012).

  42. 42

    Klausen, M. et al. Biofilm formation by Pseudomonas aeruginosa wild-type, flagella and type IV pili mutants. Mol. Microbiol. 48, 1511–1524 (2003).

  43. 43

    Klausen, M., Aaes-Jørgensen, A., Molin, S. & Tolker-Nielsen, T. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol. Microbiol. 50, 61–68 (2003).

  44. 44

    Picioreanu, C. et al. Microbial motility involvement in biofilm structure formation — a 3D modelling study. Water Sci. Technol. 55, 337–343 (2007).

  45. 45

    Barken, K. B. et al. Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ. Microbiol. 10, 2331–2343 (2008).

  46. 46

    Kussell, E. & Leibler, S. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075–2078 (2005).

  47. 47

    Wolf, D. M., Vazirani, V. V. & Arkin, A. P. Diversity in times of adversity: probabilistic strategies in microbial survival games. J. Theor. Biol. 234, 227–253 (2005).

  48. 48

    Hellweger, F. L., Kravchuk, E. S., Novotny, V. & Gladyshev, M. I. Agent-based modeling of the complex life cycle of a cyanobacterium (Anabaena) in a shallow reservoir. Limnol. Oceanogr. 53, 1227–1241 (2008).

  49. 49

    Whiteley, M. et al. Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860–864 (2001).

  50. 50

    Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. & Davies, D. G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184, 1140–1154 (2002).

  51. 51

    Hentzer, M., Eberl, L. & Givskov, M. Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation. Biofilms 2, 37–61 (2005).

  52. 52

    Dötsch, A. et al. The Pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms using RNA sequencing. PLoS ONE 7, e31092 (2012).

  53. 53

    Kreft, J.-U. in Food-Borne Microbes: Shaping the Host Ecosystem (eds Jaykus, L. A., Wang, H. H. & Schlesinger, L. S.) 347–377 (ASM Press, 2009).

  54. 54

    Xavier, J. B., Picioreanu, C. & van Loosdrecht, M. C. Assessment of three-dimensional biofilm models through direct comparison with confocal microscopy imaging. Water Sci. Technol. 49, 177–185 (2004).

  55. 55

    Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).

  56. 56

    Maisonneuve, E. & Gerdes, K. Molecular mechanisms underlying bacterial persisters. Cell 157, 539–548 (2014).

  57. 57

    O'Connor, J. R., Kuwada, N. J., Huangyutitham, V., Wiggins, P. A. & Harwood, C. S. Surface sensing and lateral subcellular localization of WspA, the receptor in a chemosensory-like system leading to c-di-GMP production. Mol. Microbiol. 86, 720–729 (2012).

  58. 58

    Siryaporn, A., Kuchma, S. L., O'Toole, G. A. & Gitai, Z. Surface attachment induces Pseudomonas aeruginosa virulence. Proc. Natl Acad. Sci. USA 111, 16860–16865 (2014).

  59. 59

    Rice, A. R., Hamilton, M. A. & Camper, A. K. Apparent surface associated lag time in growth of primary biofilm cells. Microb. Ecol. 40, 8–15 (2000).

  60. 60

    Kreft, J.-U. Biofilms promote altruism. Microbiology 150, 2751–2760 (2004).

  61. 61

    Momeni, B., Waite, A. J. & Shou, W. Spatial self-organization favors heterotypic cooperation over cheating. eLife 2, e00960 (2013).

  62. 62

    Harcombe, W. R. et al. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115 (2014).

  63. 63

    Estrela, S. & Brown, S. P. Metabolic and demographic feedbacks shape the emergent spatial structure and function of microbial communities. PLoS Comput. Biol. 9, e1003398 (2013).

  64. 64

    Batstone, D. J., Picioreanu, C. & van Loosdrecht, M. C. Multidimensional modelling to investigate interspecies hydrogen transfer in anaerobic biofilms. Water Res. 40, 3099–3108 (2006).

  65. 65

    Momeni, B., Brileya, K. A., Fields, M. W. & Shou, W. Strong inter-population cooperation leads to partner intermixing in microbial communities. eLife 2, e00230 (2013).

  66. 66

    Wang, G. & Or, D. Trophic interactions induce spatial self-organization of microbial consortia on rough surfaces. Sci. Rep. 4, 6757 (2014).

  67. 67

    Matsumoto, S. et al. Experimental and simulation analysis of community structure of nitrifying bacteria in a membrane-aerated biofilm. Water Sci. Technol. 55, 283–290 (2007).

  68. 68

    Matsumoto, S. et al. Microbial community structure in autotrophic nitrifying granules characterized by experimental and simulation analyses. Environ. Microbiol. 12, 192–206 (2010).

  69. 69

    Clark, J. R., Daines, S. J., Lenton, T. M., Watson, A. J. & Williams, H. T. P. Individual-based modelling of adaptation in marine microbial populations using genetically defined physiological parameters. Ecol. Model. 222, 3823–3837 (2011).

  70. 70

    Clark, J. R., Lenton, T. M., Williams, H. T. P. & Daines, S. J. Environmental selection and resource allocation determine spatial patterns in picophytoplankton cell size. Limnol. Oceanogr. 58, 1008–1022 (2013).

  71. 71

    Koonin, E. V. & Wolf, Y. I. Evolution of the CRISPR–Cas adaptive immunity systems in prokaryotes: models and observations on virus–host coevolution. Mol. Biosyst. 11, 20–27 (2014).

  72. 72

    Emonet, T. & Cluzel, P. Relationship between cellular response and behavioral variability in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 105, 3304–3309 (2008).

  73. 73

    Rudge, T. J., Steiner, P. J., Phillips, A. & Haseloff, J. Computational modeling of synthetic microbial biofilms. ACS Synth. Biol. 1, 345–352 (2012).

  74. 74

    Stevens, J. T. & Myers, C. J. Dynamic modeling of cellular populations within iBioSim. ACS Synth. Biol. 2, 223–229 (2013).

  75. 75

    Nielsen, H. B. et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol. 32, 822–828 (2014).

  76. 76

    Feist, A. M., Herrgard, M. J., Thiele, I., Reed, J. L. & Palsson, B. O. Reconstruction of biochemical networks in microorganisms. Nat. Rev. Microbiol. 7, 129–143 (2009).

  77. 77

    Lewis, N. E., Nagarajan, H. & Palsson, B. O. Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 10, 291–305 (2012).

  78. 78

    Klitgord, N. & Segrè, D. Environments that induce synthetic microbial ecosystems. PLoS Comput. Biol. 6, e1001002 (2010).

  79. 79

    Fuhrman, J., Follows, M. & Forde, S. Applying '-omics' data in marine microbial oceanography. Eos Trans. Am. Geophys. Union 94, 241–241 (2013).

  80. 80

    Merkey, B. V., Lardon, L. A., Seoane, J. M., Kreft, J.-U. & Smets, B. F. Growth dependence of conjugation explains limited plasmid invasion in biofilms: an individual-based modelling study. Environ. Microbiol. 13, 2435–2452 (2011).

  81. 81

    Renslow, R., Lewandowski, Z. & Beyenal, H. Biofilm image reconstruction for assessing structural parameters. Biotechnol. Bioeng. 108, 1383–1394 (2011).

  82. 82

    MacLean, R. C. & Gudelj, I. Resource competition and social conflict in experimental populations of yeast. Nature 441, 498–501 (2006).

  83. 83

    Kerr, B., Neuhauser, C., Bohannan, B. J. & Dean, A. M. Local migration promotes competitive restraint in a host–pathogen 'tragedy of the commons'. Nature 442, 75–78 (2006).

  84. 84

    Costa, E., Pérez, J. & Kreft, J.-U. Why is metabolic labour divided in nitrification? Trends Microbiol. 14, 213–219 (2006).

  85. 85

    van Kessel, M. A. H. J. et al. Complete nitrification by a single microorganism. Nature 528, 555–559 (2015).

  86. 86

    Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).

  87. 87

    Grimm, V. et al. The ODD protocol: a review and first update. Ecol. Model. 221, 2760–2768 (2010).

  88. 88

    Gharasoo, M., Centler, F., Fetzer, I. & Thullner, M. How the chemotactic characteristics of bacteria can determine their population patterns. Soil Biol. Biochem. 69, 346–358 (2014).

  89. 89

    Wimpenny, J. W. T. & Colasanti, R. A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol. Ecol. 22, 1–16 (1997).

  90. 90

    Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. bioRxiv http://dx.doi.org/10.1101/036103 (2016).

  91. 91

    Milferstedt, K., Pos, M. N. & Morgenroth, E. Analyzing characteristic length scales in biofilm structures. Biotechnol. Bioeng. 102, 368–379 (2009).

  92. 92

    Kreft, J.-U., Booth, G. & Wimpenny, J. W. T. BacSim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144, 3275–3287 (1998).

  93. 93

    Heldal, M., Scanlan, D. J., Norland, S., Thingstad, F. & Mann, N. H. Elemental composition of single cells of various strains of marine Prochlorococcus and Synechococcus using X-ray microanalysis. Limnol. Oceanogr. 48, 1732–1743 (2003).

Download references

Acknowledgements

The authors thank their colleagues C. Picioreanu, J. Xavier, B. Smets, V. Grimm, T. Banitz, I. Klapper, T. Curtis, H. Kettle, R. Allen, O. Soyer, T. Grosskopf and many other fellow participants of two workshops for many stimulating discussions: a US National Institute for Mathematical and Biological Synthesis (NIMBioS) workshop in June 2011 in the USA (US National Science Foundation Award #EF-0832858) and the 'Understanding Microbial Communities' workshop that was funded by the Isaac Newton Institute (INI) in Cambridge, UK, held in December 2014. The authors also thank B. Momeni for unpublished images, and S. Matsumoto and C. Picioreanu for sharing data. The authors are grateful to the UK National Centre for the Replacement, Refinement & Reduction of Animals in Research (NC3Rs) for funding their development of individual-based models (IBMs) for the gut environment (eGUT grant NC/K000683/1), to the US National Science Foundation for funding the development and application of IBMs for phytoplankton, and to the Natural Environment Research Council (NERC), UK, for National Capability funding for marine ecosystem modelling.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jan-Ulrich Kreft.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information 1 (box)

Primer of some modelling approaches used in microbial ecology (PDF 419 kb)

Supplementary information 2 (box)

Software for individual-based modelling in microbial ecology (PDF 212 kb)

Supplementary information 3 (table)

Generic open source platforms for individual-based modelling in microbial ecology (PDF 287 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hellweger, F., Clegg, R., Clark, J. et al. Advancing microbial sciences by individual-based modelling. Nat Rev Microbiol 14, 461–471 (2016). https://doi.org/10.1038/nrmicro.2016.62

Download citation

Further reading