Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Advancing microbial sciences by individual-based modelling

Abstract

Remarkable technological advances have revealed ever more properties and behaviours of individual microorganisms, but the novel data generated by these techniques have not yet been fully exploited. In this Opinion article, we explain how individual-based models (IBMs) can be constructed based on the findings of such techniques and how they help to explore competitive and cooperative microbial interactions. Furthermore, we describe how IBMs have provided insights into self-organized spatial patterns from biofilms to the oceans of the world, phage–CRISPR dynamics and other emergent phenomena. Finally, we discuss how combining individual-based observations with IBMs can advance our understanding at both the individual and population levels, leading to the new approach of microbial individual-based ecology (μIBE).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified overview of approaches that are useful for modelling communities and single cells.
Figure 2: Using individual-based models to predict complex systems.
Figure 3: Using individual-based models to predict evolution.

Similar content being viewed by others

References

  1. Brehm-Stecher, B. F. & Johnson, E. A. Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 68, 538–559 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Balagaddé, F. K., You, L., Hansen, C. L., Arnold, F. H. & Quake, S. R. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309, 137–140 (2005).

    PubMed  Google Scholar 

  3. Groisman, A. et al. A microfluidic chemostat for experiments with bacterial and yeast cells. Nat. Methods 2, 685–689 (2005).

    CAS  PubMed  Google Scholar 

  4. Keymer, J. E., Galajda, P., Muldoon, C., Park, S. & Austin, R. H. Bacterial metapopulations in nanofabricated landscapes. Proc. Natl Acad. Sci. USA 103, 17290–17295 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wagner, M. Single-cell ecophysiology of microbes as revealed by raman microspectroscopy or secondary ion mass spectrometry imaging. Annu. Rev. Microbiol. 63, 411–429 (2009).

    CAS  PubMed  Google Scholar 

  6. Zengler, K. Central role of the cell in microbial ecology. Microbiol. Mol. Biol. Rev. 73, 712–729 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tadmor, A. D., Ottesen, E. A., Leadbetter, J. R. & Phillips, R. Probing individual environmental bacteria for viruses by using microfluidic digital PCR. Science 333, 58–62 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Musat, N., Foster, R., Vagner, T., Adam, B. & Kuypers, M. M. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol. Rev. 36, 486–511 (2012).

    CAS  PubMed  Google Scholar 

  9. Dénervaud, N. et al. A chemostat array enables the spatio-temporal analysis of the yeast proteome. Proc. Natl Acad. Sci. USA 110, 15842–15847 (2013).

    PubMed  PubMed Central  Google Scholar 

  10. Wessel, A. K., Hmelo, L., Parsek, M. R. & Whiteley, M. Going local: technologies for exploring bacterial microenvironments. Nat. Rev. Microbiol. 11, 337–348 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hol, F. J. & Dekker, C. Zooming in to see the bigger picture: microfluidic and nanofabrication tools to study bacteria. Science 346, 1251821 (2014).

    PubMed  Google Scholar 

  12. Zhang, Q. et al. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science 333, 1764–1767 (2011).

    CAS  PubMed  Google Scholar 

  13. Gunawardena, J. Models in biology: 'accurate descriptions of our pathetic thinking'. BMC Biol. 12, 29 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. Evans, M. R. et al. Do simple models lead to generality in ecology? Trends Ecol. Evol. 28, 578–583 (2013).

    PubMed  Google Scholar 

  15. Horn, H. & Lackner, S. in Productive Biofilms (eds Muffler, K. & Ulber, R.) 53–76 (Springer, 2014).

    Google Scholar 

  16. Klapper, I. & Dockery, J. Mathematical description of microbial biofilms. SIAM Rev. 52, 221–265 (2010).

    Google Scholar 

  17. Hellweger, F. L. & Bucci, V. A bunch of tiny individuals — individual-based modeling for microbes. Ecol. Model. 220, 8–22 (2009).

    Google Scholar 

  18. Kreft, J.-U. et al. Mighty small: Observing and modeling individual microbes becomes big science. Proc. Natl Acad. Sci. USA 110, 18027–18028 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. DeAngelis, D. L. & Mooij, W. M. Individual-based modeling of ecological and evolutionary processes. Annu. Rev. Ecol. Evol. Syst. 36, 147–168 (2005).

    Google Scholar 

  20. Grimm, V. et al. Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310, 987–991 (2005).

    PubMed  Google Scholar 

  21. Railsback, S. F. & Grimm, V. Agent-Based and Individual-Based Modeling: A Practical Introduction. (Princeton Univ. Press, 2012).

    Google Scholar 

  22. Sher, D., Thompson, J. W., Kashtan, N., Croal, L. & Chisholm, S. W. Response of Prochlorococcus ecotypes to co-culture with diverse marine bacteria. ISME J. 5, 1125–1132 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Amin, S. A., Parker, M. S. & Armbrust, E. V. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 76, 667–684 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Clegg, R. J., Dyson, R. J. & Kreft, J.-U. Repair rather than segregation of damage is the optimal unicellular aging strategy. BMC Biol. 12, 52 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Lardon, L. A. et al. iDynoMiCS: next-generation individual-based modelling of biofilms. Environ. Microbiol. 13, 2416–2434 (2011).

    CAS  PubMed  Google Scholar 

  27. Mina, P., di Bernardo, M., Savery, N. J. & Tsaneva-Atanasova, K. Modelling emergence of oscillations in communicating bacteria: a structured approach from one to many cells. J. R. Soc. Interface 10, 20120612 (2013).

    PubMed  PubMed Central  Google Scholar 

  28. Iranzo, J., Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Evolutionary dynamics of the prokaryotic adaptive immunity system CRISPR–Cas in an explicit ecological context. J. Bacteriol. 195, 3834–3844 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Davey, H. M. & Kell, D. B. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol. Rev. 60, 641–696 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Musat, N. et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc. Natl Acad. Sci. USA 105, 17861–17866 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dusny, C., Fritzsch, F. S., Frick, O. & Schmid, A. Isolated microbial single cells and resulting micropopulations grow faster in controlled environments. Appl. Environ. Microbiol. 78, 7132–7136 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Avery, S. V. Microbial cell individuality and the underlying sources of heterogeneity. Nat. Rev. Microbiol. 4, 577–587 (2006).

    CAS  PubMed  Google Scholar 

  33. Ackermann, M. Microbial individuality in the natural environment. ISME J. 7, 465–467 (2013).

    CAS  PubMed  Google Scholar 

  34. Labhsetwar, P., Cole, J. A., Roberts, E., Price, N. D. & Luthey-Schulten, Z. A. Heterogeneity in protein expression induces metabolic variability in a modeled Escherichia coli population. Proc. Natl Acad. Sci. USA 110, 14006–14011 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mitchell, J. G., Okubo, A. & Fuhrman, J. A. Microzones surrounding phytoplankton form the basis for a stratified marine microbial ecosystem. Nature 316, 58–59 (1985).

    CAS  Google Scholar 

  36. Blackburn, N., Fenchel, T. & Mitchell, J. Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282, 2254–2256 (1998).

    CAS  PubMed  Google Scholar 

  37. Capra, E. J. & Laub, M. T. Evolution of two-component signal transduction systems. Annu. Rev. Microbiol. 66, 325–347 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kiviet, D. J. et al. Stochasticity of metabolism and growth at the single-cell level. Nature 514, 376–379 (2014).

    CAS  PubMed  Google Scholar 

  39. Huh, D. & Paulsson, J. Non-genetic heterogeneity from stochastic partitioning at cell division. Nat. Genet. 43, 95–100 (2011).

    CAS  PubMed  Google Scholar 

  40. Korobkova, E., Emonet, T., Vilar, J. M., Shimizu, T. S. & Cluzel, P. From molecular noise to behavioural variability in a single bacterium. Nature 428, 574–578 (2004).

    CAS  PubMed  Google Scholar 

  41. Bucci, V., Nunez-Milland, D., Twining, B. S. & Hellweger, F. L. Microscale patchiness leads to large and important intraspecific internal nutrient heterogeneity in phytoplankton. Aquat. Ecol. 46, 101–118 (2012).

    Google Scholar 

  42. Klausen, M. et al. Biofilm formation by Pseudomonas aeruginosa wild-type, flagella and type IV pili mutants. Mol. Microbiol. 48, 1511–1524 (2003).

    CAS  PubMed  Google Scholar 

  43. Klausen, M., Aaes-Jørgensen, A., Molin, S. & Tolker-Nielsen, T. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol. Microbiol. 50, 61–68 (2003).

    CAS  PubMed  Google Scholar 

  44. Picioreanu, C. et al. Microbial motility involvement in biofilm structure formation — a 3D modelling study. Water Sci. Technol. 55, 337–343 (2007).

    CAS  PubMed  Google Scholar 

  45. Barken, K. B. et al. Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ. Microbiol. 10, 2331–2343 (2008).

    CAS  PubMed  Google Scholar 

  46. Kussell, E. & Leibler, S. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075–2078 (2005).

    CAS  PubMed  Google Scholar 

  47. Wolf, D. M., Vazirani, V. V. & Arkin, A. P. Diversity in times of adversity: probabilistic strategies in microbial survival games. J. Theor. Biol. 234, 227–253 (2005).

    PubMed  Google Scholar 

  48. Hellweger, F. L., Kravchuk, E. S., Novotny, V. & Gladyshev, M. I. Agent-based modeling of the complex life cycle of a cyanobacterium (Anabaena) in a shallow reservoir. Limnol. Oceanogr. 53, 1227–1241 (2008).

    Google Scholar 

  49. Whiteley, M. et al. Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860–864 (2001).

    CAS  PubMed  Google Scholar 

  50. Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. & Davies, D. G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184, 1140–1154 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hentzer, M., Eberl, L. & Givskov, M. Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation. Biofilms 2, 37–61 (2005).

    Google Scholar 

  52. Dötsch, A. et al. The Pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms using RNA sequencing. PLoS ONE 7, e31092 (2012).

    PubMed  PubMed Central  Google Scholar 

  53. Kreft, J.-U. in Food-Borne Microbes: Shaping the Host Ecosystem (eds Jaykus, L. A., Wang, H. H. & Schlesinger, L. S.) 347–377 (ASM Press, 2009).

    Google Scholar 

  54. Xavier, J. B., Picioreanu, C. & van Loosdrecht, M. C. Assessment of three-dimensional biofilm models through direct comparison with confocal microscopy imaging. Water Sci. Technol. 49, 177–185 (2004).

    CAS  PubMed  Google Scholar 

  55. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).

    CAS  PubMed  Google Scholar 

  56. Maisonneuve, E. & Gerdes, K. Molecular mechanisms underlying bacterial persisters. Cell 157, 539–548 (2014).

    CAS  PubMed  Google Scholar 

  57. O'Connor, J. R., Kuwada, N. J., Huangyutitham, V., Wiggins, P. A. & Harwood, C. S. Surface sensing and lateral subcellular localization of WspA, the receptor in a chemosensory-like system leading to c-di-GMP production. Mol. Microbiol. 86, 720–729 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Siryaporn, A., Kuchma, S. L., O'Toole, G. A. & Gitai, Z. Surface attachment induces Pseudomonas aeruginosa virulence. Proc. Natl Acad. Sci. USA 111, 16860–16865 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rice, A. R., Hamilton, M. A. & Camper, A. K. Apparent surface associated lag time in growth of primary biofilm cells. Microb. Ecol. 40, 8–15 (2000).

    CAS  PubMed  Google Scholar 

  60. Kreft, J.-U. Biofilms promote altruism. Microbiology 150, 2751–2760 (2004).

    CAS  PubMed  Google Scholar 

  61. Momeni, B., Waite, A. J. & Shou, W. Spatial self-organization favors heterotypic cooperation over cheating. eLife 2, e00960 (2013).

    PubMed  PubMed Central  Google Scholar 

  62. Harcombe, W. R. et al. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Estrela, S. & Brown, S. P. Metabolic and demographic feedbacks shape the emergent spatial structure and function of microbial communities. PLoS Comput. Biol. 9, e1003398 (2013).

    PubMed  PubMed Central  Google Scholar 

  64. Batstone, D. J., Picioreanu, C. & van Loosdrecht, M. C. Multidimensional modelling to investigate interspecies hydrogen transfer in anaerobic biofilms. Water Res. 40, 3099–3108 (2006).

    CAS  PubMed  Google Scholar 

  65. Momeni, B., Brileya, K. A., Fields, M. W. & Shou, W. Strong inter-population cooperation leads to partner intermixing in microbial communities. eLife 2, e00230 (2013).

    PubMed  PubMed Central  Google Scholar 

  66. Wang, G. & Or, D. Trophic interactions induce spatial self-organization of microbial consortia on rough surfaces. Sci. Rep. 4, 6757 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. Matsumoto, S. et al. Experimental and simulation analysis of community structure of nitrifying bacteria in a membrane-aerated biofilm. Water Sci. Technol. 55, 283–290 (2007).

    CAS  PubMed  Google Scholar 

  68. Matsumoto, S. et al. Microbial community structure in autotrophic nitrifying granules characterized by experimental and simulation analyses. Environ. Microbiol. 12, 192–206 (2010).

    CAS  PubMed  Google Scholar 

  69. Clark, J. R., Daines, S. J., Lenton, T. M., Watson, A. J. & Williams, H. T. P. Individual-based modelling of adaptation in marine microbial populations using genetically defined physiological parameters. Ecol. Model. 222, 3823–3837 (2011).

    Google Scholar 

  70. Clark, J. R., Lenton, T. M., Williams, H. T. P. & Daines, S. J. Environmental selection and resource allocation determine spatial patterns in picophytoplankton cell size. Limnol. Oceanogr. 58, 1008–1022 (2013).

    Google Scholar 

  71. Koonin, E. V. & Wolf, Y. I. Evolution of the CRISPR–Cas adaptive immunity systems in prokaryotes: models and observations on virus–host coevolution. Mol. Biosyst. 11, 20–27 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. Emonet, T. & Cluzel, P. Relationship between cellular response and behavioral variability in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 105, 3304–3309 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rudge, T. J., Steiner, P. J., Phillips, A. & Haseloff, J. Computational modeling of synthetic microbial biofilms. ACS Synth. Biol. 1, 345–352 (2012).

    CAS  PubMed  Google Scholar 

  74. Stevens, J. T. & Myers, C. J. Dynamic modeling of cellular populations within iBioSim. ACS Synth. Biol. 2, 223–229 (2013).

    CAS  PubMed  Google Scholar 

  75. Nielsen, H. B. et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol. 32, 822–828 (2014).

    CAS  PubMed  Google Scholar 

  76. Feist, A. M., Herrgard, M. J., Thiele, I., Reed, J. L. & Palsson, B. O. Reconstruction of biochemical networks in microorganisms. Nat. Rev. Microbiol. 7, 129–143 (2009).

    CAS  PubMed  Google Scholar 

  77. Lewis, N. E., Nagarajan, H. & Palsson, B. O. Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 10, 291–305 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Klitgord, N. & Segrè, D. Environments that induce synthetic microbial ecosystems. PLoS Comput. Biol. 6, e1001002 (2010).

    PubMed  PubMed Central  Google Scholar 

  79. Fuhrman, J., Follows, M. & Forde, S. Applying '-omics' data in marine microbial oceanography. Eos Trans. Am. Geophys. Union 94, 241–241 (2013).

    Google Scholar 

  80. Merkey, B. V., Lardon, L. A., Seoane, J. M., Kreft, J.-U. & Smets, B. F. Growth dependence of conjugation explains limited plasmid invasion in biofilms: an individual-based modelling study. Environ. Microbiol. 13, 2435–2452 (2011).

    CAS  PubMed  Google Scholar 

  81. Renslow, R., Lewandowski, Z. & Beyenal, H. Biofilm image reconstruction for assessing structural parameters. Biotechnol. Bioeng. 108, 1383–1394 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. MacLean, R. C. & Gudelj, I. Resource competition and social conflict in experimental populations of yeast. Nature 441, 498–501 (2006).

    CAS  PubMed  Google Scholar 

  83. Kerr, B., Neuhauser, C., Bohannan, B. J. & Dean, A. M. Local migration promotes competitive restraint in a host–pathogen 'tragedy of the commons'. Nature 442, 75–78 (2006).

    CAS  PubMed  Google Scholar 

  84. Costa, E., Pérez, J. & Kreft, J.-U. Why is metabolic labour divided in nitrification? Trends Microbiol. 14, 213–219 (2006).

    CAS  PubMed  Google Scholar 

  85. van Kessel, M. A. H. J. et al. Complete nitrification by a single microorganism. Nature 528, 555–559 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Grimm, V. et al. The ODD protocol: a review and first update. Ecol. Model. 221, 2760–2768 (2010).

    Google Scholar 

  88. Gharasoo, M., Centler, F., Fetzer, I. & Thullner, M. How the chemotactic characteristics of bacteria can determine their population patterns. Soil Biol. Biochem. 69, 346–358 (2014).

    CAS  Google Scholar 

  89. Wimpenny, J. W. T. & Colasanti, R. A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol. Ecol. 22, 1–16 (1997).

    CAS  Google Scholar 

  90. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. bioRxiv http://dx.doi.org/10.1101/036103 (2016).

  91. Milferstedt, K., Pos, M. N. & Morgenroth, E. Analyzing characteristic length scales in biofilm structures. Biotechnol. Bioeng. 102, 368–379 (2009).

    CAS  PubMed  Google Scholar 

  92. Kreft, J.-U., Booth, G. & Wimpenny, J. W. T. BacSim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144, 3275–3287 (1998).

    CAS  PubMed  Google Scholar 

  93. Heldal, M., Scanlan, D. J., Norland, S., Thingstad, F. & Mann, N. H. Elemental composition of single cells of various strains of marine Prochlorococcus and Synechococcus using X-ray microanalysis. Limnol. Oceanogr. 48, 1732–1743 (2003).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank their colleagues C. Picioreanu, J. Xavier, B. Smets, V. Grimm, T. Banitz, I. Klapper, T. Curtis, H. Kettle, R. Allen, O. Soyer, T. Grosskopf and many other fellow participants of two workshops for many stimulating discussions: a US National Institute for Mathematical and Biological Synthesis (NIMBioS) workshop in June 2011 in the USA (US National Science Foundation Award #EF-0832858) and the 'Understanding Microbial Communities' workshop that was funded by the Isaac Newton Institute (INI) in Cambridge, UK, held in December 2014. The authors also thank B. Momeni for unpublished images, and S. Matsumoto and C. Picioreanu for sharing data. The authors are grateful to the UK National Centre for the Replacement, Refinement & Reduction of Animals in Research (NC3Rs) for funding their development of individual-based models (IBMs) for the gut environment (eGUT grant NC/K000683/1), to the US National Science Foundation for funding the development and application of IBMs for phytoplankton, and to the Natural Environment Research Council (NERC), UK, for National Capability funding for marine ecosystem modelling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Ulrich Kreft.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information 1 (box)

Primer of some modelling approaches used in microbial ecology (PDF 419 kb)

Supplementary information 2 (box)

Software for individual-based modelling in microbial ecology (PDF 212 kb)

Supplementary information 3 (table)

Generic open source platforms for individual-based modelling in microbial ecology (PDF 287 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hellweger, F., Clegg, R., Clark, J. et al. Advancing microbial sciences by individual-based modelling. Nat Rev Microbiol 14, 461–471 (2016). https://doi.org/10.1038/nrmicro.2016.62

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2016.62

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology