Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Virus–host interactions and their roles in coral reef health and disease

Key Points

  • Over the past 15 years, coral reef virology has identified diverse and dynamic viral consortia that are associated with different reef zones and hosts.

  • We hypothesize that viruses of bacteria and eukaryotes dynamically interact with their hosts in the water column and with scleractinian (stony) corals to influence microbial-community dynamics, coral bleaching and disease, and reef biogeochemical cycling.

  • Beyond directly affecting host health and survival, coral reef viruses are hypothesized to indirectly have an effect on reef ecosystem function by triggering the release and movement of nutrients.

  • Anthropogenic drivers of viral production, such as eutrophication and thermal anomalies, can trigger the transfer of nutrients from coral colonies to water column microbial communities and then back to benthic communities, ultimately leading to coral disease and mortality. We call this feedback loop the 'virus-mediated vortex of coral reef decline'.

Abstract

Coral reefs occur in nutrient-poor shallow waters, constitute biodiversity and productivity hotspots, and are threatened by anthropogenic disturbance. This Review provides an introduction to coral reef virology and emphasizes the links between viruses, coral mortality and reef ecosystem decline. We describe the distinctive benthic-associated and water-column- associated viromes that are unique to coral reefs, which have received less attention than viruses in open-ocean systems. We hypothesize that viruses of bacteria and eukaryotes dynamically interact with their hosts in the water column and with scleractinian (stony) corals to influence microbial community dynamics, coral bleaching and disease, and reef biogeochemical cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest that the influence of viruses on reef function is an essential component of these globally important environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transmission electron microscopy images of several types of coral-associated viruses.
Figure 2: The core coral virome in the benthic compartment of shallow-water tropical coral reefs.
Figure 3: Viruses in the water column of tropical reefs.
Figure 4: Changes in the relative abundance of members of the core coral virome with coral health state.
Figure 5: Overview of the virus-mediated vortex of coral reef decline.

Similar content being viewed by others

References

  1. Suttle, C. A. Viruses in the sea. Nature 437, 356–361 (2005).

    CAS  PubMed  Google Scholar 

  2. Chow, C.-E. T. & Suttle, C. A. Biogeography of viruses in the sea. Annu. Rev. Virol. 2, 41–66 (2015).

    CAS  PubMed  Google Scholar 

  3. Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).

    CAS  PubMed  Google Scholar 

  4. Bergh, O., Børsheim, K. Y., Bratbak, G. & Heldal, M. High abundance of viruses found in aquatic environments. Nature 340, 467–468 (1989).

    CAS  PubMed  Google Scholar 

  5. Haas, A. F. et al. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PLoS ONE 6, e27973 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hadas, E., Marie, D., Shpigel, M. & Ilan, M. Virus predation by sponges is a new nutrient-flow pathway in coral reef food webs. Limnol. Oceanogr. 51, 1548–1550 (2006).

    Google Scholar 

  7. Maldonado, M., Ribes, M. & van Duyl, F. C. in Advances in Marine Biology Vol. 62 (eds Becerro, M. A., Uriz, M. J., Maldonado, M. & Turon, X.) 113–182 (Academic Press, 2012).

    Google Scholar 

  8. Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560–563 (2008).

    CAS  PubMed  Google Scholar 

  9. Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    CAS  PubMed  Google Scholar 

  10. Graham, N. A., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).

    CAS  PubMed  Google Scholar 

  11. Lewis, J. B. Processes of organic production on coral reefs. Biol. Rev. 52, 305–347 (1977).

    CAS  Google Scholar 

  12. Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).

    Google Scholar 

  13. Darwin, C. R. The Structure and Distribution of Coral Reefs: Being the First Part of the Geology of the Voyage of the Beagle, Under the Command of Capt. Fitzroy, R. N. During the Years 1832 to 1836 2nd edn (Smith, Elder & Co., 1842).

    Google Scholar 

  14. Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Commun. 7, 10581 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Muscatine, L. in Coral Reefs: Ecosystems of the World (ed. Dubinsky, Z.) 75–88 (Elsevier, 1990).

    Google Scholar 

  16. Paul, J. H., Deflaun, M. F. & Jeffrey, W. H. Elevated levels of microbial activity in the coral surface microlayer. Mar. Ecol. Prog. Ser. 33, 29–40 (1986).

    Google Scholar 

  17. Ducklow, H. W. & Mitchell, D. Composition of mucus released by coral coelenterates. Limnol. Oceanogr. 24, 706–714 (1979).

    CAS  Google Scholar 

  18. Brown, B. E. & Bythell, J. C. Perspectives on mucus secretion in reef corals. Mar. Ecol. Prog. Ser. 296, 291–309 (2005).

    CAS  Google Scholar 

  19. Wild, C. et al. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428, 66–70 (2004).

    CAS  PubMed  Google Scholar 

  20. Garren, M. et al. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J. 8, 999–1007 (2014).

    CAS  PubMed  Google Scholar 

  21. Raina, J. B. et al. DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature 502, 677–680 (2013).

    CAS  PubMed  Google Scholar 

  22. Jokiel, P. L. & Coles, S. L. Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs 8, 155–162 (1990).

    Google Scholar 

  23. Garren, M. & Azam, F. New directions in coral reef microbial ecology. Environ. Microbiol. 14, 833–844 (2012).

    CAS  PubMed  Google Scholar 

  24. Baker, A. C. Flexibility and specificity in coral–algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu. Rev. Ecol. Evol. Syst. 34, 661–689 (2003).

    Google Scholar 

  25. Knowlton, N. & Rohwer, F. Multispecies microbial mutualisms on coral reefs: the host as a habitat. Am. Nat. 162 (4 Suppl.), S51–S62 (2003).

    PubMed  Google Scholar 

  26. Krediet, C. J., Ritchie, K. B., Paul, V. J. & Teplitski, M. Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc. Biol. Sci. 280, 20122328 (2013).

    PubMed  PubMed Central  Google Scholar 

  27. Glynn, P. W. Extensive bleaching and death of reef corals on the Pacific coast of Panama. Environ. Conserv. 10, 149–154 (1983).

    Google Scholar 

  28. Bruno, J. F. et al. Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol. 5, e124 (2007).

    PubMed  PubMed Central  Google Scholar 

  29. Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 7, 11833 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Smith, J. E. et al. Indirect effects of algae on coral: algae-mediated, microbe-induced coral mortality. Ecol. Lett. 9, 835–845 (2006).

    PubMed  Google Scholar 

  31. Vega Thurber, R. L. et al. Macroalgae decrease growth and alter bacterial community structure of the scleractinian coral, Porites astreoides. PLoS ONE 7, e44246 (2012).

    PubMed  PubMed Central  Google Scholar 

  32. Raina, J. B., Dinsdale, E. A., Willis, B. L. & Bourne, D. G. Do the organic sulfur compounds DMSP and DMS drive coral microbial associations? Trends Microbiol. 18, 101–108 (2010).

    CAS  PubMed  Google Scholar 

  33. Deschaseaux, E., Jones, G. & Swan, H. Dimethylated sulfur compounds in coral-reef ecosystems. Environ. Chem. 13, 239–251 (2016).

    CAS  Google Scholar 

  34. Ferrier-Pagès, C., Godinot, C., D'Angelo, C., Wiedenmann, J. & Grover, R. Phosphorus metabolism of reef organisms with algal symbionts. Ecol. Monogr. 86, 262–277 (2016).

    Google Scholar 

  35. Wilson, W. H. & Chapman, D. M. Observation of virus-like particles in thin sections of the plumose anemone. Metridium senile. J. Mar. Biol. Assoc. UK 81, 879–880 (2001).

    Google Scholar 

  36. Wilson, W. H., Dale, A. L., Davy, J. E. & Davy, S. K. An enemy within? Observations of virus-like particles in reef corals. Coral Reefs 24, 145–148 (2005).

    Google Scholar 

  37. Patten, N. L., Harrison, P. L. & Mitchell, J. G. Prevalence of virus-like particles within the staghorn scleractinian coral (Acropora muricata) from the Great Barrier Reef. Coral Reefs 27, 569–580 (2008).

    Google Scholar 

  38. Leruste, A., Bouvier, T. & Bettarel, Y. Enumerating viruses in coral mucus. Appl. Environ. Microbiol. 78, 6377–6379 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nguyen-Kim, H. et al. Coral mucus is a hot spot for viral infections. Appl. Environ. Microbiol. 81, 5773–5783 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bettarel, Y., Thuy, N. T., Huy, T. Q., Hoang, P. K. & Bouvier, T. Observation of virus-like particles in thin sections of the bleaching scleractinian coral Acropora cytherea. J. Mar. Biol. Assoc. UK 93, 909–912 (2013).

    Google Scholar 

  41. Pollock, F. J. et al. Abundance and morphology of virus-like particles associated with the coral Acropora hyacinthus differ between healthy and white syndrome-infected states. Mar. Ecol. Prog. Ser. 510, 39–43 (2014).

    Google Scholar 

  42. Davy, J. E. & Patten, N. L. Morphological diversity of virus-like particles within the surface microlayer of scleractinian corals. Aquat. Microb. Ecol. 47, 37–44 (2007).

    Google Scholar 

  43. Barr, J. J., Youle, M. & Rohwer, F. Innate and acquired bacteriophage-mediated immunity. Bacteriophage 3, e25857 (2013). In this paper, the authors find that phage adherence to bacteria decreases rates of microbial colonization and pathogenesis on corals, ultimately excluding certain bacteria from the coral mucosal layer by infecting and lysing these potential invaders.

    PubMed  PubMed Central  Google Scholar 

  44. Lohr, J., Munn, C. B. & Wilson, W. H. Characterization of a latent virus-like infection of symbiotic zooxanthellae. Appl. Environ. Microbiol. 73, 2976–2981 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lawrence, S. A., Wilson, W. H., Davy, J. E. & Davy, S. K. Latent virus-like infections are present in a diverse range of Symbiodinium spp. (Dinophyta). J. Phycol. 50, 984–997 (2014).

    PubMed  Google Scholar 

  46. Correa, A. M. S. et al. Viral outbreak in corals associated with an in situ bleaching event: atypical herpes-like viruses and a new megavirus infecting Symbiodinium. Front. Microbiol. 7, 127 (2016). Through the use of TEM and metagenomics, this work describes the types and abundances of viruses that are found in two coral species during a natural coral bleaching event, linking bleaching to viral induction. It also describes a new megavirus that is hypothesized to infect and potentially kill the algal endosymbionts of corals.

    PubMed  PubMed Central  Google Scholar 

  47. Wegley, L., Edwards, R., Rodriguez-Brito, B., Liu, H. & Rohwer, F. Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ. Microbiol. 9, 2707–2719 (2007).

    CAS  PubMed  Google Scholar 

  48. Weynberg, K. D., Wood-Charlson, E. M., Suttle, C. A. & van Oppen, M. J. H. Generating viral rnetagenomes from the coral holobiont. Front. Microbiol. 5, 206 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Wood-Charlson, E. M., Weynberg, K. D., Suttle, C. A., Roux, S. & Van Oppen, M. J. Metagenomic characterization of viral communities in corals: mining biological signal from methodological noise. Environ. Microbiol. 17, 3440–3449 (2015). Synthesizing previously published works along with newly generated viral metagenomes, this meta-analysis addresses all of the viral families reported in dozens of coral studies, contributing to our understanding of the core coral virome.

    PubMed  Google Scholar 

  50. Wilson, W. H. in Studies in Viral Ecology, Volume 2. Animal Host Systems (ed. Hurst, C. J.) 143–152 (Wiley, 2011).

    Google Scholar 

  51. Desalvo, M. K. et al. Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata. Mol. Ecol. 17, 3952–3971 (2008).

    CAS  PubMed  Google Scholar 

  52. Claverie, J. M. et al. Mimivirus and Mimiviridae: giant viruses with an increasing number of potential hosts, including corals and sponges. J. Invertebr. Pathol. 101, 172–180 (2009).

    CAS  PubMed  Google Scholar 

  53. Correa, A. M., Welsh, R. M. & Vega Thurber, R. L. Unique nucleocytoplasmic dsDNA and +ssRNA viruses are associated with the dinoflagellate endosymbionts of corals. ISME J. 7, 13–27 (2013).

    CAS  PubMed  Google Scholar 

  54. Daniels, C. et al. Metatranscriptome analysis of the reef-building coral Orbicella faveolata indicates holobiont response to coral disease. Front. Mar. Sci. http://dx.doi.org/10.3389/fmars.2015.00062 (2015).

  55. Dunlap, W. C. et al. KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase — an open access and searchable database of a coral genome. BMC Genomics 14, 509 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Soffer, N., Brandt, M. E., Correa, A. M. S., Smith, T. B. & Thurber, R. V. Potential role of viruses in white plague coral disease. ISME J. 8, 271–283 (2014).

    CAS  PubMed  Google Scholar 

  57. Soffer, N., Zaneveld, J. & Vega Thurber, R. Phage–bacteria network analysis and its implication for the understanding of coral disease. Environ. Microbiol. 17, 1203–1218 (2015).

    CAS  PubMed  Google Scholar 

  58. Rose, N. H., Seneca, F. O. & Palumbi, S. R. Gene networks in the wild: identifying transcriptional modules that mediate coral resistance to experimental heat stress. Genome Biol. Evol. 8, 243–252 (2016).

    CAS  Google Scholar 

  59. Moya, A. et al. Functional conservation of the apoptotic machinery from coral to man: the diverse and complex Bcl-2 and caspase repertoires of Acropora millepora. BMC Genomics 17, 1–20 (2016).

    Google Scholar 

  60. Lawrence, S. A. et al. Influence of local environmental variables on the viral consortia associated with the coral Montipora capitata from Kaneohe Bay, Hawaii, USA. Aquat. Microb. Ecol. 74, 251–262 (2015). This study uses comparative microscopy to evaluate the types of viruses that are associated with both reef water and the CSM of one common Hawaiian coral species, revealing a high diversity of viruses and a potential effect of turbidity in this coral reef system.

    Google Scholar 

  61. Weston, A. J. et al. A profile of an endosymbiont-enriched fraction of the coral Stylophora pistillata reveals proteins relevant to microbial-host interactions. Mol.Cell. Proteomics 11, M111.015487 (2012).

    PubMed  PubMed Central  Google Scholar 

  62. International Union of Microbiological Societies Virology Division. Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses (eds King, A. M. Q., Adams, M. J., Carstens, E. B. & Lefkowitz, E. J.) (Elsevier, 2011).

  63. Payet, J. P., McMinds, R., Burkepile, D. E. & Vega Thurber, R. L. Unprecedented evidence for high viral abundance and lytic activity in coral reef waters of the South Pacific Ocean. Front. Microbiol. http://dx.doi.org/10.3389/fmicb.2014.00493 (2014). Through the use of flow cytometry and production assays, this work, for the first time, quantifies the effects of lytic viral infection on bacteria and phytoplankton from a coral reef. The authors find unexpectedly high estimates of virus-mediated mortality and carbon release.

  64. Ackermann, H. W. 5,500 phages examined in the electron microscope. Arch. Virol. 152, 227–243 (2007).

    CAS  PubMed  Google Scholar 

  65. Culley, A. I. et al. The characterization of RNA viruses in tropical seawater using targeted PCR and metagenomics. mBio 5, e01210–e01214 (2014). Little research has focused on the roles of marine RNA viruses; this work uses gene markers and metagenomics to characterize highly novel viral members of marine habitats, including members of the RNA virus family Picornaviridae.

    PubMed  PubMed Central  Google Scholar 

  66. Culley, A. I. & Steward, G. F. New genera of RNA viruses in subtropical seawater, inferred from polymerase gene sequences. Appl. Environ. Microbiol. 73, 5937–5944 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Culley, A. I., Asuncion, B. F. & Steward, G. F. Detection of inteins among diverse DNA polymerase genes of uncultivated members of the Phycodnaviridae. ISME J. 3, 409–418 (2009).

    CAS  PubMed  Google Scholar 

  68. Hingamp, P. et al. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J. 7, 1678–1695 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. McDaniel, L. D., Rosario, K., Breitbart, M. & Paul, J. H. Comparative metagenomics: natural populations of induced prophages demonstrate highly unique, lower diversity viral sequences. Environ. Microbiol. 16, 570–585 (2014). In this study, metagenomes from oceanic and phage-induced samples are used to determine that gene sequences from prophages are much lower in diversity than free-living viruses in sea water.

    CAS  PubMed  Google Scholar 

  70. Knowles, B. et al. Lytic to temperate switching of viral communities. Nature 531, 466–470 (2016). This study unexpectedly finds that virus numbers decrease on coral reefs that have high microbial abundances, which suggests that viruses switch from the lytic to lysogenic cycle under such conditions. Increased numbers of annotations of prophage-like genes in microbial metagenomes confirmed this observation and indicated an alternative host–virus interaction dynamic that the authors called 'piggyback the winner'.

    CAS  PubMed  Google Scholar 

  71. Weitz, J. S. et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 9, 1352–1364 (2015). In this meta-analysis and modelling study, the authors find that viruses are responsible for not only increasing primary production and the recycling of organic matter but also for reducing the transfer of matter to higher trophic levels (that is, the viral shunt), ultimately confirming that ocean viruses have ecosystem-level effects.

    PubMed  PubMed Central  Google Scholar 

  72. Wilhelm, S. W., Brigden, S. M. & Suttle, C. A. A dilution technique for the direct measurement of viral production: a comparison in stratified and tidally mixed coastal waters. Microb. Ecol. 43, 168–173 (2002).

    CAS  PubMed  Google Scholar 

  73. Payet, J. P. & Suttle, C. A. To kill or not to kill: the balance between lytic and lysogenic viral infection is driven by trophic status. Limnol. Oceanogr. 58, 465–474 (2013).

    Google Scholar 

  74. Weinbauer, M. G., Arrieta, J.-M., Griebler, C. & Herndl, G. J. Enhanced viral production and infection of bacterioplankton during an iron induced phytoplankton bloom in the Southern Ocean. Limnol. Oceanogr. 54, 774–784 (2009).

    CAS  Google Scholar 

  75. Winget, D. M. et al. Repeating patterns of virioplankton production within an estuarine ecosystem. Proc. Natl Acad. Sci. USA 106, 11506–11511 (2011).

    Google Scholar 

  76. Bouvy, M. et al. Uncoupled viral and bacterial distributions in coral reef waters of Tuamotu Archipelago (French Polynesia). Mar. Pollut. Bull. 65, 506–515 (2012).

    CAS  PubMed  Google Scholar 

  77. Evans, C. & Brussaard, C. P. D. Regional variation in lytic and lysogenic viral infection in the Southern Ocean and its contribution to biogeochemical cycling. Appl. Environ. Microbiol. 78, 6741–6748 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Alldredge, A. L., Carlson, C. A. & Carpenter, R. C. Sources of organic carbon to coral reef flats. Oceanography 26, 108–113 (2013).

    Google Scholar 

  79. Thingstad, T. F. & Lignell, R. Theorical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 13, 19–27 (1997).

    Google Scholar 

  80. Winter, C., Bouvier, T., Weinbauer, M. G. & Thingstad, T. F. Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “Killing the Winner” hypothesis revisited. Microbiol. Mol. Biol. Rev. 74, 42–57 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Rodriguez-Brito, B. et al. Viral and microbial community dynamics in four aquatic environments. ISME J. 4, 739–751 (2010).

    PubMed  Google Scholar 

  82. Weinbauer, M. G. & Rassoulzadegan, F. Are viruses driving microbial diversification and diversity? Environ Microbiol. 6, 1–11 (2004).

    PubMed  Google Scholar 

  83. Cram, J. A., Parada, A. E. & Fuhrman, J. A. Dilution reveals how viral lysis and grazing shape microbial communities. Limnol. Oceanogr. 61, 889–905 (2016).

    Google Scholar 

  84. Rohwer, F. & Vega Thurber, R. Viruses manipulate the marine environment. Nature 459, 207–212 (2009).

    CAS  PubMed  Google Scholar 

  85. Paul, J. H. & Sullivan, M. B. Marine phage genomics: what have we learned? Curr. Opin. Microbiol. 16, 299–307 (2005).

    CAS  Google Scholar 

  86. McDaniel, L. D. et al. High frequency of horizontal gene transfer in the oceans. Science 330, 50 (2010).

    CAS  PubMed  Google Scholar 

  87. Thompson, L. R. et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc. Natl Acad. Sci. USA 108, e757–e764 (2011).

    CAS  PubMed  Google Scholar 

  88. Lindell, D. et al. Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc. Natl Acad. Sci. USA 101, 11013–11018 (2004).

    CAS  PubMed  Google Scholar 

  89. Breitbart, M. Marine viruses: truth or dare. Annu. Rev. Mar. Sci. 4, 425–448 (2012).

    Google Scholar 

  90. Breitbart, M., Thompson, L. R., Suttle, C. A. & Sullivan, M. B. Exploring the vast diversity of marine viruses. Oceanography 20, 135–139 (2007).

    Google Scholar 

  91. Paul, J. H. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J. 2, 579–589 (2008).

    CAS  PubMed  Google Scholar 

  92. Weynberg, K. D., Voolstra, C. R., Neave, M. J., Buerger, P. & van Oppen, M. J. H. From cholera to corals: viruses as drivers of virulence in a major coral bacterial pathogen. Sci. Rep. 5, 17889 (2015). This work annotates five coral-associated microbial genomes and finds unique phage-encoded virulence cassettes that may be involved in driving bacterial disease in corals.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Naumann, M. S. et al. Organic matter release by dominant hermatypic corals of the Northern Red Sea. Coral Reefs 29, 649–659 (2010).

    Google Scholar 

  94. Nelson, C. E. et al. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. ISME J. 7, 962–979 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kelly, L. W. et al. Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors. Proc. Natl Acad. Sci. USA 111, 10227–10232 (2014).

    CAS  PubMed  Google Scholar 

  96. Haas, A. F. et al. Influence of coral and algal exudates on microbially mediated reef metabolism. PeerJ 1, e108 (2013).

    PubMed  PubMed Central  Google Scholar 

  97. Kline, D. I., Kuntz, N. M., Breitbart, M., Knowlton, N. & Rohwer, F. Role of elevated organic carbon levels and microbial activity in coral mortality. Mar. Ecol. Prog. Ser. 314, 119–125 (2006).

    CAS  Google Scholar 

  98. McCliment, E. A. et al. An all-taxon microbial inventory of the Moorea coral reef ecosystem. ISME J. 6, 309–319 (2012).

    CAS  PubMed  Google Scholar 

  99. Neilan, M. K., David, I. K., Stuart, A. S. & Forest, R. Pathologies and mortality rates caused by organic carbon and nutrient stressors in three Caribbean coral species. Mar. Ecol. Prog. Ser. 294, 173–180 (2005).

    Google Scholar 

  100. Rohwer, F., Youle, M. & Vosten, D. Coral Reefs in the Microbial Seas (Plaid Press, 2010).

    Google Scholar 

  101. Smith, J. E., Price, N. N., Nelson, C. E. & Haas, A. F. Coupled changes in oxygen concentration and pH caused by metabolism of benthic coral reef organisms. Mar. Biol. 160, 2437–2447 (2013).

    CAS  Google Scholar 

  102. Barott, K. L. & Rohwer, F. L. Unseen players shape benthic competition on coral reefs. Trends Microbiol. 20, 621–628 (2012).

    CAS  PubMed  Google Scholar 

  103. Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 23, 490–497 (2015).

    PubMed  Google Scholar 

  104. Lema, K. A., Bourne, D. G. & Willis, B. L. Onset and establishment of diazotrophs and other bacterial associates in the early life history stages of the coral Acropora millepora. Mol. Ecol. 23, 4682–4695 (2014).

    CAS  PubMed  Google Scholar 

  105. Fiore, C. L., Jarett, J. K., Olson, N. D. & Lesser, M. P. Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol. 18, 455–463 (2010).

    CAS  PubMed  Google Scholar 

  106. Olson, N. D. & Lesser, M. P. Diazotrophic diversity in the Caribbean coral, Montastraea cavernosa. Arch. Microbiol. 195, 853–859 (2013).

    CAS  PubMed  Google Scholar 

  107. Taniguchi, A., Yoshida, T., Hibino, K. & Eguchi, M. Community structures of actively growing bacteria stimulated by coral mucus. J. Exp. Mar. Biol. Ecol. 469, 105–112 (2015).

    Google Scholar 

  108. Furnas, M., Alongi, D., McKinnon, D., Trott, L. & Skuza, M. Regional-scale nitrogen and phosphorus budgets for the northern (14°S) and central (17°S) Great Barrier Reef shelf ecosystem. Cont. Shelf Res. 31, 1967–1990 (2011).

    Google Scholar 

  109. Vega Thurber, R. L. et al. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob. Chang. Biol. 20, 544–554 (2014).

    PubMed  Google Scholar 

  110. Vega Thurber, R. L. et al. Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa. Proc. Natl Acad. Sci. USA 105, 18413–18418 (2008).

    CAS  PubMed  Google Scholar 

  111. Lawrence, S. A., Davy, J. E., Aeby, G. S., Wilson, W. H. & Davy, S. K. Quantification of virus-like particles suggests viral infection in corals affected by Porites tissue loss. Coral Reefs 33, 687–691 (2014).

    Google Scholar 

  112. Lawrence, S. A., Davy, J. E., Wilson, W. H., Hoegh-Guldberg, O. & Davy, S. K. Porites white patch syndrome: associated viruses and disease physiology. Coral Reefs 34, 249–257 (2015).

    Google Scholar 

  113. Vega Thurber, R. L. et al. Metagenomic analysis of stressed coral holobionts. Environ. Microbiol. 11, 2148–2163 (2009).

    PubMed  Google Scholar 

  114. Levin, R. et al. Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts. ISME J. http://dx.doi.org/10.1038/ismej.2016.154 (2016).

  115. Patten, N. L., Seymour, J. R. & Mitchell, J. G. Flow cytometric analysis of virus-like particles and heterotrophic bacteria within coral-associated reef water. J. Mar. Biol. Assoc. UK 86, 563–566 (2006).

    Google Scholar 

  116. Dinsdale, E. A. et al. Microbial ecology of four coral atolls in the Northern Line Islands. PLoS ONE 3, e1584 (2008).

    PubMed  PubMed Central  Google Scholar 

  117. McDole Somera, T. et al. Energetic differences between bacterioplankton trophic groups and coral reef resistance. Proc. Biol. Sci. 283, 20160467 (2016).

    PubMed  PubMed Central  Google Scholar 

  118. McDole, T. et al. Assessing coral reefs on a pacific-wide scale using the microbialization score. PLoS ONE 7, e43233 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Wigington, C. H. et al. Re-examination of the relationship between marine virus and microbial cell abundances. Nat. Microbiol. 1, 15024 (2016).

    CAS  PubMed  Google Scholar 

  120. Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Weinbauer, M. G. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28, 127–181 (2004).

    CAS  PubMed  Google Scholar 

  122. Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009).

    CAS  PubMed  Google Scholar 

  123. Wilhelm, S. W. & Suttle, C. A. in Microbial Biosystems: New Frontiers: Proceedings of the 8th International Symposium on Microbial Ecology, Halifax, Canada, August 9–14, 1998 (eds Bell, C., Brylinsky, M. & Johnson-Green, P.) 551–556 (Atlantic Canada Society for Microbial Ecology, 1998).

    Google Scholar 

  124. Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548 (1999).

    CAS  PubMed  Google Scholar 

  125. Zhao, Y. et al. Abundant SAR11 viruses in the ocean. Nature 494, 357–360 (2013).

    CAS  PubMed  Google Scholar 

  126. Suttle, C. A. Marine viruses — major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

    CAS  PubMed  Google Scholar 

  127. Winget, D. M., Williamson, K. E., Helton, R. R. & Wommack, K. E. Tangential flow diafiltration: an improved technique for estimation of virioplankton production. Aquat. Microb. Ecol. 41, 221–232 (2005).

    Google Scholar 

  128. Weinbauer, M. G., Rowe, J. M. & Wilhelm, S. W. in Manual of Aquatic Viral Ecology (eds Wilhelm, S. W., Weinbauer, M. G. & Suttle, C. A.) 1–8 (ASLO, 2010).

    Google Scholar 

  129. Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea — viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49, 781–788 (1999).

    Google Scholar 

  130. Weinbauer, M. G. et al. Synechococcus growth in the ocean may depend on the lysis of heterotrophic bacteria. J. Plankton Res. 33, 1465–1476 (2011).

    Google Scholar 

  131. Shelford, E. J., Middelboe, M., Møller, E. F. & Suttle, C. A. Virus-driven nitrogen cycling enhances phytoplankton growth. Aquat. Microb. Ecol. 66, 41–46 (2012).

    Google Scholar 

  132. Middelboe, M., Jørgensen, N. & Kroer, N. Effects of viruses on nutrient turnover and growth efficiency of noninfected marine bacterioplankton. Appl. Environ. Microbiol. 62, 1991–1997 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Middelboe, M. & Lyck, P. Regeneration of dissolved organic matter by viral lysis in marine microbial communities. Aquat. Microb. Ecol. 27, 187–194 (2002).

    Google Scholar 

  134. Brussaard, C. P. D. Viral control of phytoplankton populations — a review. J. Eukaryot. Microbiol. 51, 125–138 (2004).

    PubMed  Google Scholar 

  135. Baudoux, A. C. & Brussaard, C. P. D. Characterization of different viruses infecting the marine harmful algal bloom species Phaeocystis globosa. Virology 341, 80–90 (2005).

    CAS  PubMed  Google Scholar 

  136. Bratbak, G., Egge, J. & Heldal, M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar. Ecol. Prog. Ser. 93, 39–48 (1993).

    Google Scholar 

  137. Brum, J. R. et al. Ocean plankton. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015).

    PubMed  Google Scholar 

  138. Brum, J. R., Schenck, R. O. & Sullivan, M. B. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J. 7, 1738–1751 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Angly, F. E. et al. The marine viromes of four oceanic regions. PLoS Biol. 4, 2121–2131 (2006).

    CAS  Google Scholar 

  140. Breitbart, M. et al. Genomic analysis of uncultured marine viral communities. Proc. Natl Acad. Sci. USA 99, 14250–14255 (2002).

    CAS  PubMed  Google Scholar 

  141. Sakowski, E. G. et al. Ribonucleotide reductases reveal novel viral diversity and predict biological and ecological features of unknown marine viruses. Proc. Natl Acad. Sci. USA 111, 15786–15791 (2014).

    CAS  PubMed  Google Scholar 

  142. Chen, F. & Suttle, C. A. Amplification of DNA polymerase gene fragments from viruses infecting microalgae. Appl. Environ. Microbiol. 61, 1274–1278 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Culley, A. I., Lang, A. S. & Suttle, C. A. High diversity of unknown picorna-like viruses in the sea. Nature 424, 1054–1057 (2003).

    CAS  PubMed  Google Scholar 

  144. Hurwitz, B. L. & Sullivan, M. B. The pacific ocean virome (pov): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS ONE 8, e57355 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Williamson, S. J. et al. The Sorcerer II Global Ocean Sampling Expedition: metagenomic characterization of viruses within aquatic microbial samples. PLoS ONE 3, e1456 (2008).

    PubMed  PubMed Central  Google Scholar 

  146. Wommack, K. E., Nasko, D. J., Chopyk, J. & Sakowski, E. G. Counts and sequences, observations that continue to change our understanding of viruses in nature. J. Microbiol. 53, 181–192 (2015).

    CAS  PubMed  Google Scholar 

  147. Filée, J., Tétart, F., Suttle, C. A. & Krisch, H. M. Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere. Proc. Natl Acad. Sci. USA 102, 12471–12476 (2005).

    PubMed  Google Scholar 

  148. Edwards, R. A. & Rohwer, F. Viral metagenomics. Nat. Rev. Microbiol. 3, 504–510 (2005).

    CAS  PubMed  Google Scholar 

  149. Labonté, J. M. & Suttle, C. A. Previously unknown and highly divergent ssDNA viruses populate the oceans. ISME J. 7, 2169–2177 (2013).

    PubMed  PubMed Central  Google Scholar 

  150. Adriaenssens, E. M. & Cowan, D. A. Using signature genes as tools to assess environmental viral ecology and diversity. Appl. Environ. Microbiol. 80, 4470–4480 (2014).

    PubMed  PubMed Central  Google Scholar 

  151. Short, S. M., Chen, F. & Wilhelm, S. W. in Manual of Aquatic Viral Ecology (eds Wilhelm, S. W., Weinbauer, M. G. & Suttle, C. A.) 82–91 (ASLO, 2010).

    Google Scholar 

  152. Labonté, J. M., Hallam, S. J. & Suttle, C. A. Previously unknown evolutionary groups dominate the ssDNA gokushoviruses in oxic and anoxic waters of a coastal marine environment. Front. Microbiol. 6, 315 (2015).

    PubMed  PubMed Central  Google Scholar 

  153. Wegley, L. et al. Coral-associated archaea. Mar. Ecol. Prog. Ser. 273, 89–96 (2004).

    CAS  Google Scholar 

  154. Nguyen-Kim, H. et al. High occurrence of viruses in the mucus layer of scleractinian corals. Environ. Microbiol. Rep. 6, 675–682 (2014).

    PubMed  Google Scholar 

  155. Barr, J. J. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl Acad. Sci. USA 110, 10771–10776 (2013).

    CAS  PubMed  Google Scholar 

  156. Cohen, Y., Joseph Pollock, F., Rosenberg, E. & Bourne, D. G. Phage therapy treatment of the coral pathogen Vibrio coralliilyticus. Microbiologyopen 2, 64–74 (2013).

    CAS  PubMed  Google Scholar 

  157. Efrony, R., Atad, I. & Rosenberg, E. Phage therapy of coral white plague disease: properties of phage BA3. Curr. Microbiol. 58, 139–145 (2009).

    CAS  PubMed  Google Scholar 

  158. Efrony, R., Loya, Y., Bacharach, E. & Rosenberg, E. Phage therapy of coral disease. Coral Reefs 26, 7–13 (2006).

    Google Scholar 

  159. Weiss, S. et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 10, 1669–1681 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).

    CAS  PubMed  Google Scholar 

  161. Drew, E. A. The biology and physiology of alga-invertebrates symbioses. II. The density of symbiotic algal cells in a number of hermatypic hard corals and alcyonarians from various depths. J. Exp. Mar. Biol. Ecol. 9, 71–75 (1972).

    Google Scholar 

  162. Littman, R. A., Willis, B. L. & Bourne, D. G. Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef. Environ. Microbiol. Rep. 3, 651–660 (2011).

    CAS  PubMed  Google Scholar 

  163. Marhaver, K. L., Edwards, R. A. & Rohwer, F. Viral communities associated with health and bleached corals. Environ. Microbiol. 10, 2277–2286 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratories was supported by the US National Science Foundation (OCE-0960937 and OCE-1341195 to R.V.T. and OCE-1635913 to R.V.T., A.R.T. and A.M.S.C.) and the Institute for Pacific Coral Reefs (to J.P.P.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rebecca Vega Thurber or Adrienne M. S. Correa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Top-down effects

The ecological concept that organismal growth and abundance are primarily regulated by predation (for example, grazing and viral infection) as opposed to resource limitation.

Benthic

Related to the seafloor habitat, including the objects and organisms that are associated within or on it.

Eukaryotic viruses

Viruses that infect eukaryotic organisms.

Microbial communities

Assemblages of populations of interacting microscopic species, potentially including representatives from all three domains (bacteria, archaea and microscopic eukaryotes) that occupy the same space at a particular time.

Symbiodinium

A genus of photosynthetic dinoflagellate algae that lives inside the tissues of corals and other marine hosts and provides them with fixed carbon. When lost en masse from a host, that host individual experiences diminished health and appears white or 'bleached'.

Coral holobiont

A host organism and all of the symbiotic microbial communities and viral consortia that live in and on it.

Coral surface microlayer

(CSM). A thin layer (several millimetres thick) at the interface between a coral colony and the external environment, which is rich in mucus and heavily colonized by bacteria and bacteriophages.

Viral shunt

A process in which viruses release dissolved organic matter and inorganic nutrients through the infection and lysis of microorganisms, making them available to other nearby microorganisms. This reduces energy transfer to higher trophic levels and increases microbial activity and growth through the recycling of key elements.

Cnidarian

Related to a basal animal phylum that contains the stony corals and other closely related taxa that are united by the possession of stinging cells. Examples include soft corals, anemones, hydra and jellies.

Viromes

The ensembles of viruses in specific samples.

Nucleocytoplasmic large DNA viruses

(NCLDVs). A monophyletic group of ten virus families that have a common virion and genomic structure and replicate in the nucleus of their hosts, but their particles form in the host cytoplasm.

Phycodnavirus

One of a family of nucleocytoplasmic large DNA viruses that commonly infects marine phytoplankton and coral holobionts. Phycodnaviruses are also known as phycoviruses.

Megaviruses

A proposed order of monophyletic viruses that is relatively large in terms of physical size and genome length.

Bacterial standing stock

The number of bacterial cells in a region at any one time.

Bacterial turnover

The time it takes for bacterial standing stock to be replaced through production and predation.

Temperate viruses

Viruses that integrate their genome into the chromosome of their host as a prophage and replicate silently along with their host.

Microbialization

The hypothesis that a habitat that experiences various stressors is altered through shifts in carbon to lower (microbial) trophic levels.

Horizontal gene transfer

The movement of genes between or among organisms in the absence of reproduction that occurs through several mechanisms, including phage infection.

Transduction

The transfer of genetic material between bacteria through phage infection.

Viral production

The release of new virus particles following host cell lysis due to viral infection.

Eutrophication

An increase of inorganic or organic nutrients (for example, nitrate, phosphate or sewage) in a habitat that results in negative ecosystem effects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thurber, R., Payet, J., Thurber, A. et al. Virus–host interactions and their roles in coral reef health and disease. Nat Rev Microbiol 15, 205–216 (2017). https://doi.org/10.1038/nrmicro.2016.176

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2016.176

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology