Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nuclear landscape of HIV-1 infection and integration

A Corrigendum to this article was published on 01 April 2017

This article has been updated

Key Points

  • The Import of viral DNA into the cell nucleus is the first step in the nuclear portion of the viral life cycle. The process is determined by the activity of different proteins, among which viral capsid protein and its cellular partners RANBP2, transportin 3 (TNPO3) and especially cleavage and polyadenylation specificity factor 6 (CPSF6) have important roles. This step precedes viral integration and affects the selection of the integration site.

  • HIV-1 integrase has a pivotal role in the integration of viral DNA into the cellular genome. It carries out two enzymatic reactions: 3′-end processing of the viral DNA and the strand transfer reaction to stably insert the viral genome into cellular chromatin.

  • Integrase tetramers associate with nascent viral DNA to form the functional integrase–viral DNA complex (or intasome). The intasome associates with different cellular factors, which enable the correct positioning of the pre-integration complex in the nuclear space and in relation to cellular chromatin.

  • The structure of chromatin, its underlying DNA sequence and cellular factors, especially lens-epithelium-derived growth factor (LEDGF) and CPSF6, have important roles in facilitating the integration of viral DNA into the cellular genome. In the 3D nuclear space, the viral genome is preferentially positioned in the outer shell of the nucleus in close proximity to the nuclear pore.

  • The functional importance of integration into the correct place in the cellular genome is reflected by the fact that the transcriptional fate of the provirus largely depends on the chromatin setting and on the surrounding nuclear environment. If integrated into permissive regions of chromatin, the viral genome proceeds immediately to transcription, whereas if integration occurs in less-accessible regions, viral transcription becomes silenced, which probably contributes to the formation of latent viral reservoirs.

  • Targeting HIV-1 integration is one of the most compelling therapeutic tasks: drugs that target the integrase of HIV-1, such as raltegravir or its variants, or those that interfere with the integrase–LEDGF interaction are already in clinical use or are being extensively tested. Gene-editing approaches aim to excise the viral genome, which can be achieved either by endonuclease activity or through the use of CRISPR–Cas technology.

Abstract

To complete its life cycle, HIV-1 enters the nucleus of the host cell as reverse-transcribed viral DNA. The nucleus is a complex environment, in which chromatin is organized to support different structural and functional aspects of cell physiology. As such, it represents a challenge for an incoming viral genome, which needs to be integrated into cellular DNA to ensure productive infection. Integration of the viral genome into host DNA depends on the enzymatic activity of HIV-1 integrase and involves different cellular factors that influence the selection of integration sites. The selection of integration site has functional consequences for viral transcription, which usually follows the integration event. However, in resting CD4+ T cells, the viral genome can be silenced for long periods of time, which leads to the generation of a latent reservoir of quiescent integrated HIV-1 DNA. Integration represents the only nuclear event in the viral life cycle that can be pharmacologically targeted with current therapies, and the aspects that connect HIV-1 nuclear entry to HIV-1 integration and viral transcription are only beginning to be elucidated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An overview of the life cycle of HIV-1.
Figure 2: Nuclear entry and the selection of integration site.
Figure 3: Integrase and the integration mechanism.
Figure 4: HIV-1 integration at the nuclear periphery.
Figure 5: Connecting integration and transcription.

Similar content being viewed by others

Change history

  • 27 February 2017

    In the first paragraph of the section 'Sequence specificity and chromatin determinants', at the end of the sixth sentence an incorrect reference is cited. In the following sentence accurate information is now provided in regard to what was done in the original study. These sentences should read as follows: “A recent study of approximately 1 million integration sites in infected HEK293 cells showed that 75% of integrations occurred in active, RNA pol II-dependent transcriptional units that had numerous introns; when corrected for their relative length, no selection of intronic over exonic sequences was observed79. Analysis of transcriptional units that were grouped based on their number of introns revealed that integration density correlates strongly with the levels of splicing, and that the cellular protein LEDGF is required for targeting highly spliced transcriptional units, through its direct interaction with numerous splicing factors79.” The authors apologize to the readers for any misunderstanding caused.

  • 01 April 2017

    Nature Reviews Microbiology 15, 69–82 (2017) In the first paragraph of the section 'Sequence specificity and chromatin determinants', at the end of the sixth sentence an incorrect reference is cited. In the following sentence accurate information is now provided in regard to what was done in the original study.

References

  1. Chun, T. W. et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387, 183–188 (1997).

    CAS  PubMed  Google Scholar 

  2. Finzi, D. et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 1295–1300 (1997).

    CAS  PubMed  Google Scholar 

  3. Wong, J. K. et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278, 1291–1295 (1997).

    CAS  PubMed  Google Scholar 

  4. Chun, T. W. et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc. Natl Acad. Sci. USA 94, 13193–13197 (1997).

    CAS  PubMed  Google Scholar 

  5. Finzi, D. et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat. Med. 5, 512–517 (1999).

    CAS  PubMed  Google Scholar 

  6. Ho, Y. C. et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155, 540–551 (2013). This study demonstrates that the majority of proviruses in resting CD4+ T cells from treated patients are non-inducible because they are highly defective. A portion of these non-induced proviruses have intact genomes and can be induced after several rounds of stimulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cohn, L. B. et al. HIV-1 integration landscape duringlatent and active infection. Cell 160, 420–432 (2015). Together with references 80 and 81, this work shows that HIV-1 integrates into genes that are associated with cellular proliferation and clonal expansion. It also suggests that most of the proviruses in dividing clonally expanded T cells are defective.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Coffin, J., Hughes, S. & Varmus, H. (eds) Retroviruses. (Cold Spring Harbor Laboratory Press, 1997).

    Google Scholar 

  9. Suzuki, Y. & Craigie, R. The road to chromatin — nuclear entry of retroviruses. Nat. Rev. Microbiol. 5, 187–196 (2007).

    CAS  PubMed  Google Scholar 

  10. Matreyek, K. A. & Engelman, A. Viral and cellular requirements for the nuclear entry of retroviral preintegration nucleoprotein complexes. Viruses 5, 2483–2511 (2013).

    PubMed  PubMed Central  Google Scholar 

  11. Yamashita, M. & Emerman, M. Capsid is a dominant determinant of retrovirus infectivity in nondividing cells. J. Virol. 78, 5670–5678 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamashita, M., Perez, O., Hope, T. J. & Emerman, M. Evidence for direct involvement of the capsid protein in HIV infection of nondividing cells. PLoS Pathog. 3, 1502–1510 (2007).

    CAS  PubMed  Google Scholar 

  13. Lee, K. et al. Flexible use of nuclear import pathways by HIV-1. Cell Host Microbe 7, 221–233 (2010). A study that identifies truncated CPSF6 as a dominant negative inhibitor of HIV-1 infection and in which CPSP6 is shown to have a role in targeting HIV-1 to use specific cofactors.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Schaller, T. et al. HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency. PLoS Pathog. 7, e1002439 (2011). This work connects, for the first time, the capsid of HIV-1 with the selection of integration site by showing that capsid mutants that do not recruit CPSF6 or CYPA integrate into different target regions of the genome.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Peng, K. et al. Quantitative microscopy of functional HIV post-entry complexes reveals association of replication with the viral capsid. eLife 3, e04114 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. Koh, Y. et al. Differential effects of human immunodeficiency virus type 1 capsid and cellular factors nucleoporin 153 and LEDGF/p75 on the efficiency and specificity of viral DNA integration. J. Virol. 87, 648–658 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bukrinsky, M. I. et al. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365, 666–669 (1993).

    CAS  PubMed  Google Scholar 

  18. Reil, H., Bukovsky, A. A., Gelderblom, H. R. & Gottlinger, H. G. Efficient HIV-1 replication can occur in the absence of the viral matrix protein. EMBO J. 17, 2699–2708 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Guenzel, C. A., Herate, C. & Benichou, S. HIV-1 Vpr — a still “enigmatic multitasker”. Front. Microbiol. 5, 127 (2014).

    PubMed  PubMed Central  Google Scholar 

  20. Popov, S. et al. Viral protein R regulates nuclear import of the HIV-1 pre-integration complex. EMBO J. 17, 909–917 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fouchier, R. A. et al. Interaction of the human immunodeficiency virus type 1 Vpr protein with the nuclear pore complex. J. Virol. 72, 6004–6013 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. McDonald, D. et al. Visualization of the intracellular behavior of HIV in living cells. J. Cell Biol. 159, 441–452 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Brass, A. L. et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science 319, 921–926 (2008).

    CAS  PubMed  Google Scholar 

  24. Konig, R. et al. Global analysis of host–pathogen interactions that regulate early-stage HIV-1 replication. Cell 135, 49–60 (2008). Together with reference 23, this work describes a high-throughput screening that identifies several cellular factors that are involved in HIV-1 infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bushman, F. D. et al. Host cell factors in HIV replication: meta-analysis of genome-wide studies. PLoS Pathog. 5, e1000437 (2009).

    PubMed  PubMed Central  Google Scholar 

  26. Di Nunzio, F. et al. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication. Virology 440, 8–18 (2013).

    CAS  PubMed  Google Scholar 

  27. Matreyek, K. A., Yucel, S. S., Li, X. & Engelman, A. Nucleoporin NUP153 phenylalanine-glycine motifs engage a common binding pocket within the HIV-1 capsid protein to mediate lentiviral infectivity. PLoS Pathog. 9, e1003693 (2013).

    PubMed  PubMed Central  Google Scholar 

  28. Gamble, T. R. et al. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87, 1285–1294 (1996).

    CAS  PubMed  Google Scholar 

  29. Ocwieja, K. E. et al. HIV integration targeting: a pathway involving Transportin-3 and the nuclear pore protein RanBP2. PLoS Pathog. 7, e1001313 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bosco, D. A., Eisenmesser, E. Z., Pochapsky, S., Sundquist, W. I. & Kern, D. Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A. Proc. Natl Acad. Sci. USA 99, 5247–5252 (2002).

    CAS  PubMed  Google Scholar 

  31. Christ, F. et al. Transportin-SR2 imports HIV into the nucleus. Curr. Biol. 18, 1192–1202 (2008).

    CAS  PubMed  Google Scholar 

  32. Kataoka, N., Bachorik, J. L. & Dreyfuss, G. Transportin-SR, a nuclear import receptor for SR proteins. J. Cell Biol. 145, 1145–1152 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, K. et al. HIV-1 capsid-targeting domain of cleavage and polyadenylation specificity factor 6. J. Virol. 86, 3851–3860 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bhattacharya, A. et al. Structural basis of HIV-1 capsid recognition by PF74 and CPSF6. Proc. Natl Acad. Sci. USA 111, 18625–18630 (2014).

    CAS  PubMed  Google Scholar 

  35. Rasheedi, S. et al. The cleavage and polyadenylation specificity factor 6 (CPSF6) subunit of the capsid-recruited pre-messenger RNA cleavage factor I (CFIm) complex mediates HIV-1 integration into genes. J. Biol. Chem. 291, 11809–11819 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chin, C. R. et al. Direct visualization of HIV-1 replication intermediates shows that capsid and CPSF6 modulate HIV-1 intra-nuclear invasion and integration. Cell Rep. 13, 1717–1731 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ruegsegger, U., Blank, D. & Keller, W. Human pre-mRNA cleavage factor Im is related to spliceosomal SR proteins and can be reconstituted in vitro from recombinant subunits. Mol. Cell 1, 243–253 (1998).

    CAS  PubMed  Google Scholar 

  38. De Iaco, A. et al. TNPO3 protects HIV-1 replication from CPSF6-mediated capsid stabilization in the host cell cytoplasm. Retrovirology 10, 20 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hilditch, L. & Towers, G. J. A model for cofactor use during HIV-1 reverse transcription and nuclear entry. Curr. Opin. Virol. 4, 32–36 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sowd, G. A. et al. A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin. Proc. Natl Acad. Sci. USA 113, E1054–E1063 (2016). This work shows, for the first time, that CPSF6, as a capsid-binding protein, has a role in directing HIV-1 integration to transcriptionally active chromatin regions, whereas LEDGF, as an integrase partner, directs integration into genes.

    CAS  PubMed  Google Scholar 

  41. Arhel, N. J. et al. HIV-1 DNA flap formation promotes uncoating of the pre-integration complex at the nuclear pore. EMBO J. 26, 3025–3037 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Craigie, R. & Bushman, F. D. HIV DNA integration. Cold Spring Harb. Perspect. Med. 2, a006890 (2012).

    PubMed  PubMed Central  Google Scholar 

  43. Craigie, R. & Bushman, F. D. Host factors in retroviral integration and the selection of integration target sites. Microbiol. Spectr. 2, MDNA3-0026-2014 (2014).

  44. Engelman, A., Bushman, F. D. & Craigie, R. Identification of discrete functional domains of HIV-1 integrase and their organization within an active multimeric complex. EMBO J. 12, 3269–3275 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. van Gent, D. C., Vink, C., Groeneger, A. A. & Plasterk, R. H. Complementation between HIV integrase proteins mutated in different domains. EMBO J. 12, 3261–3267 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dyda, F. et al. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266, 1981–1986 (1994).

    CAS  PubMed  Google Scholar 

  47. Craigie, R. HIV integrase, a brief overview from chemistry to therapeutics. J. Biol. Chem. 276, 23213–23216 (2001).

    CAS  PubMed  Google Scholar 

  48. Carayon, K. et al. A cooperative and specific DNA-binding mode of HIV-1 integrase depends on the nature of the metallic cofactor and involves the zinc-containing N-terminal domain. Nucleic Acids Res. 38, 3692–3708 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kulkosky, J., Jones, K. S., Katz, R. A., Mack, J. P. & Skalka, A. M. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol. Cell. Biol. 12, 2331–2338 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Leavitt, A. D., Shiue, L. & Varmus, H. E. Site-directed mutagenesis of HIV-1 integrase demonstrates differential effects on integrase functions in vitro. J. Biol. Chem. 268, 2113–2119 (1993).

    CAS  PubMed  Google Scholar 

  51. Manganaro, L. et al. Concerted action of cellular JNK and Pin1 restricts HIV-1 genome integration to activated CD4+ T lymphocytes. Nat. Med. 16, 329–333 (2010).

    CAS  PubMed  Google Scholar 

  52. Lutzke, R. A., Vink, C. & Plasterk, R. H. Characterization of the minimal DNA-binding domain of the HIV integrase protein. Nucleic Acids Res. 22, 4125–4131 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Eijkelenboom, A. P. et al. The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: a three-helix bundle stabilized by zinc. Curr. Biol. 7, 739–746 (1997).

    CAS  PubMed  Google Scholar 

  54. Cereseto, A. et al. Acetylation of HIV-1 integrase by p300 regulates viral integration. EMBO J. 24, 3070–3081 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Savarino, A. In silico docking of HIV-1 integrase inhibitors reveals a novel drug type acting on an enzyme/DNA reaction intermediate. Retrovirology 4, 21 (2007).

    PubMed  PubMed Central  Google Scholar 

  56. Hare, S., Gupta, S. S., Valkov, E., Engelman, A. & Cherepanov, P. Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464, 232–236 (2010). Together with reference 57, this study resolves the X-ray crystal structure of the PFV intasome, which has substantially contributed to our understanding of the mechanisms of retroviral-DNA integration.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Maertens, G. N., Hare, S. & Cherepanov, P. The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature 468, 326–329 (2010). Similar to reference 56, this study shows the X-ray crystal structure of the PFV intasome in complex with target DNA before, and following, strand transfer.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bushman, F. D., Fujiwara, T. & Craigie, R. Retroviral DNA integration directed by HIV integration protein in vitro. Science 249, 1555–1558 (1990).

    CAS  PubMed  Google Scholar 

  59. Craigie, R., Fujiwara, T. & Bushman, F. The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro. Cell 62, 829–837 (1990).

    CAS  PubMed  Google Scholar 

  60. Lewinski, M. K. et al. Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog. 2, e60 (2006).

    PubMed  PubMed Central  Google Scholar 

  61. Krishnan, L. et al. Structure-based modeling of the functional HIV-1 intasome and its inhibition. Proc. Natl Acad. Sci. USA 107, 15910–15915 (2010).

    CAS  PubMed  Google Scholar 

  62. Vink, C. et al. Analysis of the junctions between human immunodeficiency virus type 1 proviral DNA and human DNA. J. Virol. 64, 5626–5627 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Muller, H. P. & Varmus, H. E. DNA bending creates favored sites for retroviral integration: an explanation for preferred insertion sites in nucleosomes. EMBO J. 13, 4704–4714 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Pryciak, P. M. & Varmus, H. E. Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell 69, 769–780 (1992).

    CAS  PubMed  Google Scholar 

  65. Serrao, E. et al. Integrase residues that determine nucleotide preferences at sites of HIV-1 integration: implications for the mechanism of target DNA binding. Nucleic Acids Res. 42, 5164–5176 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Demeulemeester, J. et al. HIV-1 integrase variants retarget viral integration and are associated with disease progression in a chronic infection cohort. Cell Host Microbe 16, 651–662 (2014).

    CAS  PubMed  Google Scholar 

  67. Holman, A. G. & Coffin, J. M. Symmetrical base preferences surrounding HIV-1, avian sarcoma/leukosis virus, and murine leukemia virus integration sites. Proc. Natl Acad. Sci. USA 102, 6103–6107 (2005).

    CAS  PubMed  Google Scholar 

  68. Brady, T. et al. HIV integration site distributions in resting and activated CD4+ T cells infected in culture. AIDS 23, 1461–1471 (2009).

    PubMed  PubMed Central  Google Scholar 

  69. Maskell, D. P. et al. Structural basis for retroviral integration into nucleosomes. Nature 523, 366–369 (2015). This work shows, through the use of single-particle cryo-EM, how the PFV intasome as a viral DNA recombination machinery captures nucleosomes to enable integration.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Demeulemeester, J., De Rijck, J., Gijsbers, R. & Debyser, Z. Retroviral integration: site matters: mechanisms and consequences of retroviral integration site selection. Bioessays 37, 1202–1214 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. Bushman, F. et al. Genome-wide analysis of retroviral DNA integration. Nat. Rev. Microbiol. 3, 848–858 (2005).

    CAS  PubMed  Google Scholar 

  72. Schroder, A. R. et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110, 521–529 (2002). The first study to define HIV-1 integration sites genome-wide through the use of whole-genome sequencing. This study shows that HIV-1 favours integration into active transcriptional units.

    CAS  PubMed  Google Scholar 

  73. Mitchell, R. S. et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2, E234 (2004).

    PubMed  PubMed Central  Google Scholar 

  74. Han, Y. et al. Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J. Virol. 78, 6122–6133 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Barr, S. D. et al. HIV integration site selection: targeting in macrophages and the effects of different routes of viral entry. Mol. Ther. 14, 218–225 (2006).

    CAS  PubMed  Google Scholar 

  76. Sherrill-Mix, S. et al. HIV latency and integration site placement in five cell-based models. Retrovirology 10, 90 (2013).

    PubMed  PubMed Central  Google Scholar 

  77. Wang, G. P., Ciuffi, A., Leipzig, J., Berry, C. C. & Bushman, F. D. HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res. 17, 1186–1194 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ferris, A. L. et al. Lens epithelium-derived growth factor fusion proteins redirect HIV-1 DNA integration. Proc. Natl Acad. Sci. USA 107, 3135–3140 (2010).

    CAS  PubMed  Google Scholar 

  79. Singh, P. K. et al. LEDGF/p75 interacts with mRNA splicing factors and targets HIV-1 integration to highly spliced genes. Genes Dev. 29, 2287–2297 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wagner, T. A. et al. HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science 345, 570–573 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Maldarelli, F. et al. HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science 345, 179–183 (2014). References 80 and 81 connect HIV-1 integration with the clonal expansion of target cells and propose that this could contribute to the aberrant expansion of viral genomes and latent reservoirs.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Simonetti, F. R. et al. Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo. Proc. Natl Acad. Sci. USA 113, 1883–1888 (2016). This work provides evidence that clonally expanded HIV-1-infected cells contain replication-competent viruses.

    CAS  PubMed  Google Scholar 

  83. Ikeda, T., Shibata, J., Yoshimura, K., Koito, A. & Matsushita, S. Recurrent HIV-1 integration at the BACH2 locus in resting CD4+ T cell populations during effective highly active antiretroviral therapy. J. Infect. Dis. 195, 716–725 (2007).

    CAS  PubMed  Google Scholar 

  84. Kobayashi, S. et al. Identification of IGHCδ–BACH2 fusion transcripts resulting from cryptic chromosomal rearrangements of 14q32 with 6q15 in aggressive B-cell lymphoma/leukemia. Genes Chromosomes Cancer 50, 207–216 (2011).

    CAS  PubMed  Google Scholar 

  85. Flucke, U. et al. Presence of C11orf95–MKL2 fusion is a consistent finding in chondroid lipomas: a study of eight cases. Histopathology 62, 925–930 (2013).

    PubMed  Google Scholar 

  86. Liu, H. et al. Integration of human immunodeficiency virus type 1 in untreated infection occurs preferentially within genes. J. Virol. 80, 7765–7768 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Marini, B. et al. Nuclear architecture dictates HIV-1 integration site selection. Nature 521, 227–231 (2015). This work shows that HIV-1 positions its genome in regions in proximity to the NPC at the nuclear periphery.

    CAS  PubMed  Google Scholar 

  88. Albanese, A., Arosio, D., Terreni, M. & Cereseto, A. HIV-1 pre-integration complexes selectively target decondensed chromatin in the nuclear periphery. PloS ONE 3, e2413 (2008).

    PubMed  PubMed Central  Google Scholar 

  89. Wu, X., Li, Y., Crise, B. & Burgess, S. M. Transcription start regions in the human genome are favored targets for MLV integration. Science 300, 1749–1751 (2003).

    CAS  PubMed  Google Scholar 

  90. Ge, H., Si, Y. & Roeder, R. G. Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J. 17, 6723–6729 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Singh, D. P. et al. Lens epithelium-derived growth factor: effects on growth and survival of lens epithelial cells, keratinocytes, and fibroblasts. Biochem. Biophys. Res. Commun. 267, 373–381 (2000).

    CAS  PubMed  Google Scholar 

  92. Cherepanov, P. et al. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J. Biol. Chem. 278, 372–381 (2003).

    CAS  PubMed  Google Scholar 

  93. Ciuffi, A. et al. A role for LEDGF/p75 in targeting HIV DNA integration. Nat. Med. 11, 1287–1289 (2005).

    CAS  PubMed  Google Scholar 

  94. Llano, M. et al. An essential role for LEDGF/p75 in HIV integration. Science 314, 461–464 (2006).

    CAS  PubMed  Google Scholar 

  95. Maertens, G. et al. LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J. Biol. Chem. 278, 33528–33539 (2003).

    CAS  PubMed  Google Scholar 

  96. Schrijvers, R. et al. LEDGF/p75-independent HIV-1 replication demonstrates a role for HRP-2 and remains sensitive to inhibition by LEDGINs. PLoS Pathog. 8, e1002558 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Shun, M. C. et al. LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev. 21, 1767–1778 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Debyser, Z., Christ, F., De Rijck, J. & Gijsbers, R. Host factors for retroviral integration site selection. Trends Biochem. Sci. 40, 108–116 (2015).

    CAS  PubMed  Google Scholar 

  99. Pradeepa, M. M., Sutherland, H. G., Ule, J., Grimes, G. R. & Bickmore, W. A. Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLoS Genet. 8, e1002717 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Eidahl, J. O. et al. Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Res. 41, 3924–3936 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Van Steensel, B. & Henikoff, S. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat. Biotechnol. 18, 424–428 (2000).

    CAS  PubMed  Google Scholar 

  102. De Rijck, J., Bartholomeeusen, K., Ceulemans, H., Debyser, Z. & Gijsbers, R. High-resolution profiling of the LEDGF/p75 chromatin interaction in the ENCODE region. Nucleic Acids Res. 38, 6135–6147 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gijsbers, R. et al. Role of the PWWP domain of lens epithelium-derived growth factor (LEDGF)/p75 cofactor in lentiviral integration targeting. J. Biol. Chem. 286, 41812–41825 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Farnet, C. M. & Bushman, F. D. HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell 88, 483–492 (1997).

    CAS  PubMed  Google Scholar 

  105. Lesbats, P. et al. Functional coupling between HIV-1 integrase and the SWI/SNF chromatin remodeling complex for efficient in vitro integration into stable nucleosomes. PLoS Pathog. 7, e1001280 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Allouch, A. et al. The TRIM family protein KAP1 inhibits HIV-1 integration. Cell Host Microbe 9, 484–495 (2011).

    CAS  PubMed  Google Scholar 

  107. Quercioli, V. et al. Comparative analysis of HIV-1 and murine leukemia virus three-dimensional nuclear distributions. J. Virol. 90, 5205–5209 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Cremer, T. et al. Chromosome territories — a functional nuclear landscape. Curr. Opin. Cell Biol. 18, 307–316 (2006).

    CAS  PubMed  Google Scholar 

  109. Cavalli, G. & Misteli, T. Functional implications of genome topology. Nat. Struct. Mol. Biol. 20, 290–299 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Burdick, R. C., Hu, W. S. & Pathak, V. K. Nuclear import of APOBEC3F-labeled HIV-1 preintegration complexes. Proc. Natl Acad. Sci. USA 110, E4780–E4789 (2013).

    CAS  PubMed  Google Scholar 

  111. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    CAS  PubMed  Google Scholar 

  112. Ibarra, A. & Hetzer, M. W. Nuclear pore proteins and the control of genome functions. Genes Dev. 29, 337–349 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Raices, M. & D'Angelo, M. A. Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nat. Rev. Mol. Cell Biol. 13, 687–699 (2012).

    CAS  PubMed  Google Scholar 

  114. Lelek, M. et al. Chromatin organization at the nuclear pore favours HIV replication. Nat. Commun. 6, 6483 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Krull, S. et al. Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J. 29, 1659–1673 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Wong, R. W., Mamede, J. I. & Hope, T. J. Impact of nucleoporin-mediated chromatin localization and nuclear architecture on HIV integration site selection. J. Virol. 89, 9702–9705 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Van Lint, C., Bouchat, S. & Marcello, A. HIV-1 transcription and latency: an update. Retrovirology 10, 67 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Lusic, M. & Giacca, M. Regulation of HIV-1 latency by chromatin structure and nuclear architecture. J. Mol. Biol. 427, 688–694 (2014).

    PubMed  Google Scholar 

  119. Dahabieh, M. S., Battivelli, E. & Verdin, E. Understanding HIV latency: the road to an HIV cure. Annu. Rev. Med. 66, 407–421 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. du Chene, I. et al. Suv39H1 and HP1γ are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency. EMBO J. 26, 424–435 (2007).

    CAS  PubMed  Google Scholar 

  121. Imai, K., Togami, H. & Okamoto, T. Involvement of histone H3 lysine 9 (H3K9) methyltransferase G9a in the maintenance of HIV-1 latency and its reactivation by BIX01294. J. Biol. Chem. 285, 16538–16545 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Friedman, J. et al. Epigenetic silencing of HIV-1 by the histone H3 lysine 27 methyltransferase enhancer of Zeste 2. J. Virol. 85, 9078–9089 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kauder, S. E., Bosque, A., Lindqvist, A., Planelles, V. & Verdin, E. Epigenetic regulation of HIV-1 latency by cytosine methylation. PLoS Pathog. 5, e1000495 (2009).

    PubMed  PubMed Central  Google Scholar 

  124. Blazkova, J. et al. CpG methylation controls reactivation of HIV from latency. PLoS Pathog. 5, e1000554 (2009).

    PubMed  PubMed Central  Google Scholar 

  125. Marcello, A. et al. Recruitment of human cyclin T1 to nuclear bodies through direct interaction with the PML protein. EMBO J. 22, 2156–2166 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Sabo, A., Lusic, M., Cereseto, A. & Giacca, M. Acetylation of conserved lysines in the catalytic core of cyclin-dependent kinase 9 inhibits kinase activity and regulates transcription. Mol. Cell. Biol. 28, 2201–2212 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Williams, S. A., Kwon, H., Chen, L. F. & Greene, W. C. Sustained induction of NF-κB is required for efficient expression of latent human immunodeficiency virus type 1. J. Virol. 81, 6043–6056 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Lenasi, T., Contreras, X. & Peterlin, B. M. Transcriptional interference antagonizes proviral gene expression to promote HIV latency. Cell Host Microbe 4, 123–133 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Han, Y. et al. Orientation-dependent regulation of integrated HIV-1 expression by host gene transcriptional readthrough. Cell Host Microbe 4, 134–146 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Shan, L. et al. Influence of host gene transcription level and orientation on HIV-1 latency in a primary-cell model. J. Virol. 85, 5384–5393 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Siliciano, R. F. & Greene, W. C. HIV latency. Cold Spring Harb. Perspect. Med. 1, a007096 (2011).

    PubMed  PubMed Central  Google Scholar 

  132. Dieudonne, M. et al. Transcriptional competence of the integrated HIV-1 provirus at the nuclear periphery. EMBO J. 28, 2231–2243 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Lusic, M. et al. Proximity to PML nuclear bodies regulates HIV-1 latency in CD4+ T cells. Cell Host Microbe 13, 665–677 (2013).

    CAS  PubMed  Google Scholar 

  134. Jordan, A., Bisgrove, D. & Verdin, E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J. 22, 1868–1877 (2003). This work describes the generation of latently infected Jurkat cells (J-Lats), which, to date, remain one of the most widely used clonal models of latency. Integration sites were proposed to correlate with the silencing of the viral genome.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Bruner, K. M. et al. Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat. Med. 22, 1043–1049 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Kim, M. & Siliciano, R. F. Reservoir expansion by T-cell proliferation may be another barrier to curing HIV infection. Proc. Natl Acad. Sci. USA 113, 1692–1694 (2016).

    CAS  PubMed  Google Scholar 

  137. Boritz, E. A. et al. Multiple origins of virus persistence during natural control of HIV infection. Cell 166, 1004–1015 (2016). This study shows that, in individuals that have natural control of HIV-1 replication, three mechanisms contribute to HIV replication in anatomically and functionally distinct compartments.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Eriksson, S. et al. Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies. PLoS Pathog. 9, e1003174 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Calvanese, V., Chavez, L., Laurent, T., Ding, S. & Verdin, E. Dual-color HIV reporters trace a population of latently infected cells and enable their purification. Virology 446, 283–292 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Dahabieh, M. S., Ooms, M., Simon, V. & Sadowski, I. A doubly fluorescent HIV-1 reporter shows that the majority of integrated HIV-1 is latent shortly after infection. J. Virol. 87, 4716–4727 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Gulick, R. M. et al. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N. Engl. J. Med. 337, 734–739 (1997).

    CAS  PubMed  Google Scholar 

  142. Perelson, A. S. et al. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387, 188–191 (1997).

    CAS  PubMed  Google Scholar 

  143. Gunthard, H. F. et al. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2016 recommendations of the International Antiviral Society–USA Panel. JAMA 316, 191–210 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Hazuda, D. J. et al. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science 287, 646–650 (2000). One of the first screenings of chemical compounds that block the strand transfer activity of HIV-1integrase, which led to the identification of raltegravir.

    CAS  PubMed  Google Scholar 

  145. Christ, F. & Debyser, Z. HIV-1 integrase inhibition: looking at cofactor interactions. Future Med. Chem. 7, 2407–2410 (2015).

    CAS  PubMed  Google Scholar 

  146. Sedaghat, A. R., Dinoso, J. B., Shen, L., Wilke, C. O. & Siliciano, R. F. Decay dynamics of HIV-1 depend on the inhibited stages of the viral life cycle. Proc. Natl Acad. Sci. USA 105, 4832–4837 (2008).

    CAS  PubMed  Google Scholar 

  147. Shen, L. et al. Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs. Nat. Med. 14, 762–766 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Jilek, B. L. et al. A quantitative basis for antiretroviral therapy for HIV-1 infection. Nat. Med. 18, 446–451 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Zolopa, A. R. et al. Activity of elvitegravir, a once-daily integrase inhibitor, against resistant HIV type 1: results of a phase 2, randomized, controlled, dose-ranging clinical trial. J. Infect. Dis. 201, 814–822 (2010).

    CAS  PubMed  Google Scholar 

  150. Garrido, C. et al. Resistance associated mutations to dolutegravir (S/GSK1349572) in HIV-infected patients — impact of HIV subtypes and prior raltegravir experience. Antiviral Res. 90, 164–167 (2011).

    CAS  PubMed  Google Scholar 

  151. Brenner, B. G. & Wainberg, M. A. Clinical benefit of dolutegravir in HIV-1 management related to the high genetic barrier to drug resistance. Virus Res. http://dx.doi.org/10.1016/j.virusres.2016.07.006 (2016).

  152. Kessl, J. J. et al. An allosteric mechanism for inhibiting HIV-1 integrase with a small molecule. Mol. Pharmacol. 76, 824–832 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Cherepanov, P. et al. Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75. Nat. Struct. Mol. Biol. 12, 526–532 (2005).

    CAS  PubMed  Google Scholar 

  154. Christ, F. et al. Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat. Chem. Biol. 6, 442–448 (2010). This study details a structure-based rational design of LEDGINs, integrase and LEDGF interaction inhibitors with antiviral activity.

    CAS  PubMed  Google Scholar 

  155. Desimmie, B. A. et al. LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions. Retrovirology 10, 57 (2013).

    PubMed  PubMed Central  Google Scholar 

  156. Sarkar, I., Hauber, I., Hauber, J. & Buchholz, F. HIV-1 proviral DNA excision using an evolved recombinase. Science 316, 1912–1915 (2007).

    CAS  PubMed  Google Scholar 

  157. Hauber, I. et al. Highly significant antiviral activity of HIV-1 LTR-specific tre-recombinase in humanized mice. PLoS Pathog. 9, e1003587 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Qu, X. et al. Zinc-finger-nucleases mediate specific and efficient excision of HIV-1 proviral DNA from infected and latently infected human T cells. Nucleic Acids Res. 41, 7771–7782 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Strong, C. L. et al. Damaging the integrated HIV proviral DNA with TALENs. PloS ONE 10, e0125652 (2015).

    PubMed  PubMed Central  Google Scholar 

  160. Ebina, H., Misawa, N., Kanemura, Y. & Koyanagi, Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci. Rep. 3, 2510 (2013).

    PubMed  PubMed Central  Google Scholar 

  161. Hu, W. et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc. Natl Acad. Sci. USA 111, 11461–11466 (2014).

    CAS  PubMed  Google Scholar 

  162. Liao, H. K. et al. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat. Commun. 6, 6413 (2015).

    CAS  PubMed  Google Scholar 

  163. Wang, G., Zhao, N., Berkhout, B. & Das, A. T. CRISPR–Cas9 can inhibit HIV-1 replication but NHEJ repair facilitates virus escape. Mol. Ther. 24, 522–526 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Dekker, J. & Misteli, T. Long-range chromatin interactions. Cold Spring Harb. Perspect. Biol. 7, a019356 (2015).

    PubMed  PubMed Central  Google Scholar 

  165. Dixon, J. R., Gorkin, D. U. & Ren, B. Chromatin domains: the unit of chromosome organization. Mol. Cell 62, 668–680 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Bonev, J. & Cavaalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661–678 (2016). References 164–166 are comprehensive recent reviews of the genomic regulatory landscapes and nuclear architecture.

    CAS  PubMed  Google Scholar 

  167. Dundr, M. Nuclear bodies: multifunctional companions of the genome. Curr. Opin. Cell Biol. 24, 415–422 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Kind, J. et al. Single-cell dynamics of genome-nuclear lamina interactions. Cell 153, 178–192 (2013).

    CAS  PubMed  Google Scholar 

  169. Harr, J. C. et al. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J. Cell Biol. 208, 33–52 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Schermelleh, L. et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320, 1332–1336 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.L. is funded by grants from the German Centre for Infectious Research (Deutsche Zentrum fur Infektion Forschung, DZIF) and by the Hector Foundation for AIDS and Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Lusic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Viral envelope glycoproteins

Surface proteoglycan proteins that are products of the env gene. The env gene encodes glycoprotein 160 (gp160), which forms a homotrimer and is cleaved into gp120 and gp41 by host cell proteases. The outer glycoprotein gp120 and the transmembrane protein gp41 are embedded in the viral envelope, which forms the outermost layer of the virion.

Viral core

A viral component that contains the viral capsule protein p24, which surrounds two single strands of HIV-1 RNA, bound to the nucleocapsid protein p7 and late assembly protein p6. It also contains enzymes that are needed for the replication of HIV-1, such as reverse transcriptase, protease, ribonuclease and integrase, and numerous cellular proteins.

Central polypurine tract

A specific structural element that is involved in viral DNA structure and nuclear entry. It is formed during the second-strand DNA synthesis of reverse transcription as a central 99-nucleotide-long plus-strand overlap in the linear DNA molecule; it is located centrally in the genome, in the integrase open reading frame, and acts as a cis determinant of lentiviral DNA nuclear import.

Two-long terminal repeat circles

(2-LTR circles). Unintegrated, circular molecules of viral DNA that contain two adjacent LTR promoter regions. They are considered byproducts of integration, and their quantification by PCR-based methods is used as an indicator of the efficiency of nuclear import.

Nuclear-localization signal

(NLS). A motif that is present in proteins that are imported into the nucleus by importins and adaptor proteins, which interact with the nuclear pore complex.

Phe-Gly repeats

(FG repeats). Phenylalanine-rich and glycine-rich domains found in nucleoporins that facilitate the transport of cargo through the channel of the nuclear pore complex (NPC).

Zinc-finger domains

Protein structural domains that can coordinate one or more zinc atoms to act as binding partners for a wide variety of substrates, including DNA.

Nucleosomes

The building blocks of chromatin, which are composed of an octameric histone core around which 147 bp of DNA are wrapped (in 1.65 turns of a left-handed superhelix).

Euchromatin

A loosely packed form of chromatin (DNA, RNA and histones) that is usually enriched in genes that are often being actively transcribed. Most of the genome is euchromatic (predicted at approximately 90%), whereas the rest is heterochromatic, that is, tightly packed and not actively transcribing. Euchromatin is often referred to as open chromatin.

SWI/SNF chromatin remodelling complex

A complex that remodels nucleosomes using the hydrolysis of ATP to regulate the accessibility of DNA to the transcription machinery.

Promyelocytic leukaemia bodies

(PML bodies). Nuclear structures the main component of which is the promyelocytic leukaemia protein (or TRIM19). Several different protein components as well as various functions, such as transcription, apoptosis, senescence DNA damage response and antiviral defence, are associated with these bodies.

CpG islands

Regions that have a high frequency of CpG sites, usually connected with the promoter regions of genes.

Cre recombinase

A tyrosine recombinase enzyme that catalyses a site-specific recombination event between two DNA recognition sites; these sites consist of 13 bp palindromic sequences that flank an 8 bp spacer region. The unique and specific recombination system of the enzyme is used to manipulate genes and chromosomes in several applications.

Zinc-finger nucleases

(ZFNs). Artificial restriction enzymes that are created through the fusion of a zinc-finger DNA-binding domain and a DNA-cleavage domain. These enzymes facilitate targeted editing of the genome by creating double-strand breaks in the DNA at a specific (desired) location.

Transcription activator-like effector nucleases

(TALENs). Restriction nucleases that are engineered to cut specific DNA sequences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lusic, M., Siliciano, R. Nuclear landscape of HIV-1 infection and integration. Nat Rev Microbiol 15, 69–82 (2017). https://doi.org/10.1038/nrmicro.2016.162

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2016.162

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing