Opinion | Published:

Division of labour in microorganisms: an evolutionary perspective

Nature Reviews Microbiology volume 14, pages 716723 (2016) | Download Citation

Abstract

The division of labour, whereby individuals within a group specialize in certain tasks, has long been appreciated as central to the evolution of complex biological societies. In recent years, several examples of division of labour in microorganisms have arisen, which suggests that this strategy may also be important in microbial species. In this Opinion article, we explore the set of conditions that define division of labour and propose that cooperation between different phenotypes is a defining feature of division of labour. Furthermore, we discuss how clarifying what constitutes division of labour highlights key evolutionary questions, including what form division of labour takes and why it is favoured by natural selection.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 5, 48–56 (2006).

  2. 2.

    , & Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 62, 193–210 (2008).

  3. 3.

    A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13, 497–508 (2015).

  4. 4.

    , , , & Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).

  5. 5.

    et al. Transient heterogeneity in extracellular protease production by Bacillus subtilis. Mol. Syst. Biol. 4, 1–15 (2008).

  6. 6.

    , , , & Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat. Rev. Microbiol. 12, 115–124 (2014).

  7. 7.

    , & in Microbial Biofilms 2nd edn (eds Ghannoum, M., Parsek, M., Whiteley, M. & Mukherjee, P.) 67–97 (ASM press, 2015).

  8. 8.

    , & Toward an evolutionary definition of cheating. Evolution 68, 318–331 (2014).

  9. 9.

    et al. 'Division of labour' in response to host oxidative burst drives a fatal Cryptococcus gattii outbreak. Nat. Commun. 5, 5194 (2014).

  10. 10.

    & The Major Transitions in Evolution (Oxford Univ. Press, 1998).

  11. 11.

    Principles of Social Evolution (Oxford Univ. Press, 2011).

  12. 12.

    , , & Major evolutionary transitions in individuality. Proc. Natl Acad. Sci. USA 112, 10112–10119 (2015).

  13. 13.

    & The definition of eusociality. Behav. Ecol. 6, 109–115 (1995).

  14. 14.

    , & Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. J. Evol. Biol. 20, 415–432 (2007).

  15. 15.

    On aims and methods of Ethology. Zeitschrift Tierpsychol. 20, 410–433 (1963).

  16. 16.

    & Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat. Rev. Microbiol. 8, 39–50 (2009).

  17. 17.

    & Individuality in bacteria. Annu. Rev. Genet. 42, 253–268 (2008).

  18. 18.

    , , & Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4, 597–607 (2006).

  19. 19.

    The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16 (1964).

  20. 20.

    Optimization of inclusive fitness. J. Theor. Biol. 238, 541–563 (2006).

  21. 21.

    & Adaptation and inclusive fitness review. Curr. Biol. 23, R577–R584 (2013).

  22. 22.

    et al. Self-destructive cooperation mediated by phenotypic noise. Nature 454, 987–990 (2008).

  23. 23.

    et al. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 494, 353–356 (2013).

  24. 24.

    , & Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature 408, 965–967 (2000).

  25. 25.

    , & Developmental cheating in the social bacterium Myxococcus xanthus. Nature 404, 598–601 (2000).

  26. 26.

    & Adaptive radiation in a heterogeneous environment. Nature 394, 69–72 (1998).

  27. 27.

    , & Rapid radiation in bacteria leads to a division of labor. Nat. Commun. 7, 10508 (2016).

  28. 28.

    , & Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004).

  29. 29.

    et al. Fitness correlates with the extent of cheating in a bacterium. J. Evol. Biol. 23, 738–747 (2010).

  30. 30.

    , , , & Long-term social dynamics drive loss of function in pathogenic bacteria. Proc. Natl Acad. Sci. USA 112, 10756–10761 (2015).

  31. 31.

    , , & Cooperation and conflict in quorum-sensing bacterial populations. Nature 450, 411–414 (2007).

  32. 32.

    , , & Quorum sensing and the confusion about diffusion. Trends Microbiol. 20, 586–594 (2012).

  33. 33.

    , , & An experimental test of whether cheating is context dependent. J. Evol. Biol. 27, 551–556 (2014).

  34. 34.

    , & From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate. PLoS Biol. 13, e1002141 (2015).

  35. 35.

    Evolution of individuality during the transition from unicellular to multicellular life. Proc. Natl Acad. Sci. USA 104, 8613–8618 (2007).

  36. 36.

    , , & Life-history evolution and the origin of multicellularity. J. Theor. Biol. 239, 257–272 (2006).

  37. 37.

    , & Division of labour and the evolution of multicellularity. Proc. Biol. Sci. 279, 1768–1776 (2012).

  38. 38.

    Rapid transition towards the division of labor via evolution of developmental plasticity. PLoS Comput. Biol. 6, e1000805 (2010).

  39. 39.

    & Caste and Ecology in the Social Insects (Princeton Univ. Press, 1978).

  40. 40.

    The Theory of Sex Allocation (Princeton Univ. Press, 1982).

  41. 41.

    & Soma and germ: an experimental approach using Volvox. Proc. R. Soc. B: Biol. Sci. 254, 107–113 (1993).

  42. 42.

    et al. The evolutionary path to terminal differentiation and division of labor in cyanobacteria. J. Theor. Biol. 262, 23–34 (2010).

  43. 43.

    Ergonomics of caste in social insects. Am. Nat. 102, 41–66 (1968).

  44. 44.

    The evolution of soma in the Volvocales. Am. Nat. 143, 907–931 (1994).

  45. 45.

    , , & Triassic origin and early radiation of multicellular volvocine algae. Proc. Natl Acad. Sci. USA 106, 3254–3258 (2009).

  46. 46.

    , & Hydrodynamics approach to the evolution of multicellularity: flagellar motility and germ–soma differentiation in volvocalean green algae. Am. Nat. 167, 537–554 (2006).

  47. 47.

    , , , & Multicellularity and the functional interdependence of motility and molecular transport. Proc. Natl Acad. Sci. USA 103, 1353–1358 (2006).

  48. 48.

    et al. Fitness trade-offs result in the illusion of social success. Curr. Biol. 25, 1086–1090 (2015).

  49. 49.

    , , , & High relatedness maintains multicellular cooperation in a social amoeba by controlling cheater mutants. Proc. Natl Acad. Sci. USA 104, 8913–8917 (2007).

  50. 50.

    et al. Kin preference in a social microbe. Nature 442, 881–882 (2006).

  51. 51.

    , , & High relatedness is necessary and sufficient to maintain multicellularity in Dictyostelium. Science 334, 1548–1551 (2011).

  52. 52.

    , & Experimental evolution reveals that high relatedness protects multicellular cooperation from cheaters. Nat. Commun. 7, 1–10 (2016).

  53. 53.

    , & Group formation, relatedness, and the evolution of multicellularity. Curr. Biol. 23, 1120–1125 (2013).

  54. 54.

    & The logic of animal conflict. Nature 246, 15–18 (1973).

  55. 55.

    The Selfish Gene (Oxford Univ. Press, 1976).

  56. 56.

    Cellular Slime Molds (Princeton Univ. Press, 1967).

  57. 57.

    , & Distributions of reproductive and somatic cell numbers in diverse Volvox (Chlorophyta) species. Evol. Ecol. Res. 14, 707–727 (2012).

  58. 58.

    & Size and complexity among multicellular organisms. Biol. J. Linnean Soc. 60, 345–363 (1997).

  59. 59.

    Host–symbiont conflict over the mixing of symbiotic lineages. Proc. Biol. Sci. 263, 339–344 (1996).

  60. 60.

    , & Snowdrift game dynamics and facultative cheating in yeast. Nature 459, 253–256 (2009).

  61. 61.

    , , & Frequency dependence and cooperation: theory and a test with bacteria. Am. Nat. 170, 331–342 (2007).

  62. 62.

    Weismann rules! OK? Epigenetics and the Lamarckian temptation. Biol. Philos. 22, 415–428 (2006).

  63. 63.

    Group selection. Q. Rev. Biol. 51, 277–283 (1976).

  64. 64.

    From division of labor to the collective behavior of social insects. Behav. Ecol. Sociobiol. 70, 1101–1108 (2015).

  65. 65.

    & Cheats as first propagules: a new hypothesis for the evolution of individuality during the transition from single cells to multicellularity. Bioessays 32, 872–880 (2010).

  66. 66.

    , , & Life cycles, fitness decoupling and the evolution of multicellularity. Nature 515, 75–79 (2015).

  67. 67.

    et al. Bet-hedging and epigenetic inheritance in bacterial cell development. Proc. Natl Acad. Sci. USA 105, 4393–4398 (2008).

  68. 68.

    Asymmetric division, cell size and germ–soma specification in Volvox. Semin. Dev. Biol. 6, 369–379 (1995).

  69. 69.

    Differentiation of germinal and somatic cells in Volvox carteri. Curr. Opin. Microbiol. 6, 608–613 (2003).

  70. 70.

    & The evolutionary origin of an altruistic gene. Mol. Biol. Evol. 23, 1460–1464 (2006).

  71. 71.

    , & Early evolution of the genetic basis for soma in the Volvocaceae. Evolution 68, 2014–2025 (2014).

  72. 72.

    The Genetical Theory of Natural Selection (Clarendon, 1930).

  73. 73.

    The formal Darwinism project: a mid-term report. J. Evol. Biol. 20, 1243–1254 (2007).

  74. 74.

    When does the good of the group override the advantage of the individual? Proc. Natl Acad. Sci. USA 80, 2985–2989 (1983).

  75. 75.

    & Capturing the superorganism: a formal theory of group adaptation. J. Evol. Biol. 22, 659–671 (2009).

  76. 76.

    & Philosophical foundations for the hierarchy of life. J. Evol. Biol. 25, 391 (2010).

  77. 77.

    et al. The cost of virulence: retarded growth of Salmonella Typhimurium cells expressing type III secretion system 1. PLoS Pathog. 7, e1002143 (2011).

Download references

Acknowledgements

The authors thank K. Boomsma, A. P. Escudero, K. Foster, A. Gardner, M. Ghoul, J. Gore, A. Griffin, R. May, J. Strassmann, D. Unterweger and J. van Gestel for very useful discussions. The authors also thank M. Ackermann, R. May, R. Michod and J.-W. Veening for kindly providing images. G.A.C was funded by the Engineering and Physical Sciences Research Council (EPSRC).

Author information

Affiliations

  1. Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.

    • Stuart A. West
    •  & Guy A. Cooper

Authors

  1. Search for Stuart A. West in:

  2. Search for Guy A. Cooper in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Stuart A. West.

Supplementary information

Word documents

  1. 1.

    Supplementary information S1 (box)

    Intentional Language and Adaptation

  2. 2.

    Supplementary information S2 (box)

    The Mutation Test

  3. 3.

    Supplementary information S3 (box)

    Different Types of Division

  4. 4.

    Supplementary information S4 (box)

    Graphing Efficiency Benefits

  5. 5.

    Supplementary information S5 (box)

    Can You Get Division of Labour Between Species?

  6. 6.

    Supplementary information S6 (box)

    Variation in Mechanism Within Species

  7. 7.

    Supplementary information S7 (box)

    Selection Versus Adaptation

  8. 8.

    Supplementary information S8 (box)

    Can Bet-Hedging be Cooperative?

  9. 9.

    Supplementary information S9 (box)

    Can You Get Division of Labour With Spiteful Traits?

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nrmicro.2016.111

Further reading