Key Points
-
Disease that is associated with infection by Clostridium difficile represents an urgent public health threat. The severity of C. difficile infection is determined by strain virulence, interactions with intestinal commensal microbial communities, and the host immune response to damage of the intestinal epithelium that is induced by C. difficile.
-
The ability to sporulate and germinate is essential to C. difficile virulence. Hundreds of genes that are involved in sporulation and germination have been identified as well as a bile acid receptor that induces germination.
-
C. difficile secretes toxin proteins that are internalized by host cells through receptor-mediated endocytosis and cause disruption to cytoskeletal architecture, which leads to cell death. Toxin-mediated cell death results in the loss of intestinal barrier integrity and the translocation of bacteria into underlying tissues.
-
The intestinal microbiota provides colonization resistance against C. difficile infection. Commensal bacteria that are capable of converting primary bile acids to secondary bile acids inhibit the growth of C. difficile by depriving C. difficile spores of an important germinant and by increasing the concentration of secondary bile acids in the intestinal lumen, which are toxic to the vegetative form of C. difficile.
-
Toxin-mediated damage to the epithelium activates the host inflammatory immune response. The role of the immune system is to limit epithelial damage and the dissemination of intestinal bacteria into the circulation. However, an overly robust inflammatory response can be damaging to the host and contribute to disease pathology.
Abstract
Clostridium difficile is a major cause of intestinal infection and diarrhoea in individuals following antibiotic treatment. Recent studies have begun to elucidate the mechanisms that induce spore formation and germination and have determined the roles of C. difficile toxins in disease pathogenesis. Exciting progress has also been made in defining the role of the microbiome, specific commensal bacterial species and host immunity in defence against infection with C. difficile. This Review will summarize the recent discoveries and developments in our understanding of C. difficile infection and pathogenesis.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Lessa, F. C. et al. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 372, 825–834 (2015). This study provides a comprehensive assessment of the effect of C. difficile -associated disease on the current healthcare system in the United States.
George, R. H. et al. Identification of Clostridium difficile as a cause of pseudomembranous colitis. Br. Med. J. 1, 695 (1978).
Lawley, T. D. et al. Use of purified Clostridium difficile spores to facilitate evaluation of health care disinfection regimens. Appl. Environ. Microbiol. 76, 6895–6900 (2010).
Dawson, L. F., Valiente, E., Donahue, E. H., Birchenough, G. & Wren, B. W. Hypervirulent Clostridium difficile PCR-ribotypes exhibit resistance to widely used disinfectants. PLoS ONE 6, e25754 (2011).
Rodriguez-Palacios, A. & Lejeune, J. T. Moist-heat resistance, spore aging, and superdormancy in Clostridium difficile. Appl. Environ. Microbiol. 77, 3085–3091 (2011).
de Hoon, M. J., Eichenberger, P. & Vitkup, D. Hierarchical evolution of the bacterial sporulation network. Curr. Biol. 20, R735–R745 (2010).
Heap, J. T., Pennington, O. J., Cartman, S. T., Carter, G. P. & Minton, N. P. The ClosTron: a universal gene knock-out system for the genus Clostridium. J. Microbiol. Methods 70, 452–464 (2007). This paper introduces the ClosTron technology — a substantial step forward in Clostridium genetics.
Cartman, S. T., Kelly, M. L., Heeg, D., Heap, J. T. & Minton, N. P. Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production. Appl. Environ. Microbiol. 78, 4683–4690 (2012).
Dembek, M. et al. High-throughput analysis of gene essentiality and sporulation in Clostridium difficile. mBio 6, e02383 (2015).
Fimlaid, K. A. et al. Global analysis of the sporulation pathway of Clostridium difficile. PLoS Genet. 9, e1003660 (2013).
Edwards, A. N. & McBride, S. M. Initiation of sporulation in Clostridium difficile: a twist on the classic model. FEMS Microbiol. Lett. 358, 110–118 (2014).
Sebaihia, M. et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat. Genet. 38, 779–786 (2006).
Underwood, S. et al. Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production. J. Bacteriol. 191, 7296–7305 (2009).
Pettit, L. J. et al. Functional genomics reveals that Clostridium difficile Spo0A coordinates sporulation, virulence and metabolism. BMC Genomics 15, 160 (2014).
Rosenbusch, K. E., Bakker, D., Kuijper, E. J. & Smits, W. K. C. difficile 630Δerm Spo0A regulates sporulation, but does not contribute to toxin production, by direct high-affinity binding to target DNA. PLoS ONE 7, e48608 (2012).
Deakin, L. J. et al. The Clostridium difficile spo0A gene is a persistence and transmission factor. Infect. Immun. 80, 2704–2711 (2012).
Saujet, L., Monot, M., Dupuy, B., Soutourina, O. & Martin-Verstraete, I. The key sigma factor of transition phase, SigH, controls sporulation, metabolism, and virulence factor expression in Clostridium difficile. J. Bacteriol. 193, 3186–3196 (2011).
Dineen, S. S., McBride, S. M. & Sonenshein, A. L. Integration of metabolism and virulence by Clostridium difficile CodY. J. Bacteriol. 192, 5350–5362 (2010).
Dineen, S. S., Villapakkam, A. C., Nordman, J. T. & Sonenshein, A. L. Repression of Clostridium difficile toxin gene expression by CodY. Mol. Microbiol. 66, 206–219 (2007).
Nawrocki, K. L., Edwards, A. N., Daou, N., Bouillaut, L. & McBride, S. M. CodY-dependent regulation of sporulation in Clostridium difficile. J. Bacteriol. 198, 2113–2130 (2016).
Antunes, A. et al. Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile. Nucleic Acids Res. 40, 10701–10718 (2012).
Antunes, A., Martin-Verstraete, I. & Dupuy, B. CcpA-mediated repression of Clostridium difficile toxin gene expression. Mol. Microbiol. 79, 882–899 (2011).
Edwards, A. N., Nawrocki, K. L. & McBride, S. M. Conserved oligopeptide permeases modulate sporulation initiation in Clostridium difficile. Infect. Immun. 82, 4276–4291 (2014).
Losick, R. & Stragier, P. Crisscross regulation of cell-type-specific gene expression during development in B. subtilis. Nature 355, 601–604 (1992).
Pereira, F. C. et al. The spore differentiation pathway in the enteric pathogen Clostridium difficile. PLoS Genet. 9, e1003782 (2013).
Saujet, L. et al. Genome-wide analysis of cell type-specific gene transcription during spore formation in Clostridium difficile. PLoS Genet. 9, e1003756 (2013). Together with references 10, 17 and 25, this study provides a comprehensive catalogue of sporulation genes and regulatory dynamics.
Fimlaid, K. A. et al. Identification of a novel lipoprotein regulator of Clostridium difficile spore germination. PLoS Pathog. 11, e1005239 (2015).
Serrano, M. et al. The SpoIIQ–SpoIIIAH complex of Clostridium difficile controls forespore engulfment and late stages of gene expression and spore morphogenesis. Mol. Microbiol. 100, 204–228 (2016).
Paredes-Sabja, D., Shen, A. & Sorg, J. A. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends Microbiol. 22, 406–416 (2014).
Henriques, A. O. & Moran, C. P. Structure, assembly, and function of the spore surface layers. Annu. Rev. Microbiol. 61, 555–588 (2007).
Putnam, E. E., Nock, A. M., Lawley, T. D. & Shen, A. SpoIVA and SipL are Clostridium difficile spore morphogenetic proteins. J. Bacteriol. 195, 1214–1225 (2013).
Permpoonpattana, P. et al. Functional characterization of Clostridium difficile spore coat proteins. J. Bacteriol. 195, 1492–1503 (2013).
Barra-Carrasco, J. et al. The Clostridium difficile exosporium cysteine (CdeC)-rich protein is required for exosporium morphogenesis and coat assembly. J. Bacteriol. 195, 3863–3875 (2013).
Phetcharaburanin, J. et al. The spore-associated protein BclA1 affects the susceptibility of animals to colonization and infection by Clostridium difficile. Mol. Microbiol. 92, 1025–1038 (2014).
Pizarro-Guajardo, M. et al. Characterization of the collagen-like exosporium protein, BclA1, of Clostridium difficile spores. Anaerobe 25, 18–30 (2014).
Koenigsknecht, M. J. et al. Dynamics and establishment of Clostridium difficile infection in the murine gastrointestinal tract. Infect. Immun. 83, 934–941 (2015).
Raibaud, P., Ducluzeau, R., Muller, M.-C. & Sacquet, E. Le taurocholate de sodium, facteur de germination in vitro et in vivo dans le tube digestif d'animaux “gnotoxeniques”, pour les spores de certaines bacteries anaerobies strictes isolee de feces humaines et animales. Ann. Microbiol. (Inst. Pasteur) 125B, 381–391 (in French) (1974).
Wilson, K. H., Kennedy, M. J. & Fekety, F. R. Use of sodium taurocholate to enhance spore recovery on a medium selective for Clostridium difficile. J. Clin. Microbiol. 15, 443–446 (1982).
Wilson, K. H. Efficiency of various bile salt preparations for stimulation of Clostridium difficile spore germination. J. Clin. Microbiol. 18, 1017–1019 (1983).
Sorg, J. A. & Sonenshein, A. L. Bile salts and glycine as cogerminants for Clostridium difficile spores. J. Bacteriol. 190, 2505–2512 (2008).
Sorg, J. A. & Sonenshein, A. L. Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination. J. Bacteriol. 191, 1115–1117 (2009).
Sorg, J. A. & Sonenshein, A. L. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J. Bacteriol. 192, 4983–4990 (2010). Together with references 40 and 41, this is the first investigation of the effects of individual bile acids on the growth of C. difficile.
Giel, J. L., Sorg, J. A., Sonenshein, A. L. & Zhu, J. Metabolism of bile salts in mice influences spore germination in Clostridium difficile. PLoS ONE 5, e8740 (2010).
Theriot, C. M., Bowman, A. A. & Young, V. B. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. mSphere 1, e00045–15 (2016).
Francis, M. B., Allen, C. A. & Sorg, J. A. Spore cortex hydrolysis precedes dipicolinic acid release during Clostridium difficile spore germination. J. Bacteriol. 197, 2276–2283 (2015).
Wang, S., Shen, A., Setlow, P. & Li, Y. Q. Characterization of the dynamic germination of individual Clostridium difficile spores using raman spectroscopy and differential interference contrast microscopy. J. Bacteriol. 197, 2361–2373 (2015).
Francis, M. B., Allen, C. A., Shrestha, R. & Sorg, J. A. Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLoS Pathog. 9, e1003356 (2013). This paper identifies CspC as the receptor that recognizes bile acids and induces C. difficile spore germination.
Kevorkian, Y., Shirley, D. J. & Shen, A. Regulation of Clostridium difficile spore germination by the CspA pseudoprotease domain. Biochimie 122, 243–254 (2016).
Adams, C. M., Eckenroth, B. E., Putnam, E. E., Doublie, S. & Shen, A. Structural and functional analysis of the CspB protease required for Clostridium spore germination. PLoS Pathog. 9, e1003165 (2013).
Burns, D. A., Heap, J. T. & Minton, N. P. SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate. J. Bacteriol. 192, 657–664 (2010).
Dembek, M., Stabler, R. A., Witney, A. A., Wren, B. W. & Fairweather, N. F. Transcriptional analysis of temporal gene expression in germinating Clostridium difficile 630 endospores. PLoS ONE 8, e64011 (2013).
Moore, P., Kyne, L., Martin, A. & Solomon, K. Germination efficiency of clinical Clostridium difficile spores and correlation with ribotype, disease severity and therapy failure. J. Med. Microbiol. 62, 1405–1413 (2013).
Carlson, P. E. Jr et al. Variation in germination of Clostridium difficile clinical isolates correlates to disease severity. Anaerobe 33, 64–70 (2015).
Carter, G. P. et al. Defining the roles of TcdA and TcdB in localized gastrointestinal disease, systemic organ damage, and the host response during Clostridium difficile infections. mBio 6, e00551 (2015). This multicentre study uses two different animal models to compare the relative roles of TcdA and TcdB in C. difficile pathogenesis.
Hunt, J. J. & Ballard, J. D. Variations in virulence and molecular biology among emerging strains of Clostridium difficile. Microbiol. Mol. Biol. Rev. 77, 567–581 (2013).
Monot, M. et al. Clostridium difficile: new insights into the evolution of the pathogenicity locus. Sci. Rep. 5, 15023 (2015).
Pruitt, R. N., Chambers, M. G., Ng, K. K., Ohi, M. D. & Lacy, D. B. Structural organization of the functional domains of Clostridium difficile toxins A and B. Proc. Natl Acad. Sci. USA 107, 13467–13472 (2010).
Reineke, J. et al. Autocatalytic cleavage of Clostridium difficile toxin B. Nature 446, 415–419 (2007).
Egerer, M., Giesemann, T., Jank, T., Satchell, K. J. & Aktories, K. Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity. J. Biol. Chem. 282, 25314–25321 (2007).
Lanis, J. M., Hightower, L. D., Shen, A. & Ballard, J. D. TcdB from hypervirulent Clostridium difficile exhibits increased efficiency of autoprocessing. Mol. Microbiol. 84, 66–76 (2012).
Bender, K. O. et al. A small-molecule antivirulence agent for treating Clostridium difficile infection. Sci. Transl Med. 7, 306ra148 (2015).
Dingle, T. et al. Functional properties of the carboxy-terminal host cell-binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile. Glycobiology 18, 698–706 (2008).
Greco, A. et al. Carbohydrate recognition by Clostridium difficile toxin A. Nat. Struct. Mol. Biol. 13, 460–461 (2006).
Na, X., Kim, H., Moyer, M. P., Pothoulakis, C. & LaMont, J. T. gp96 is a human colonocyte plasma membrane binding protein for Clostridium difficile toxin A. Infect. Immun. 76, 2862–2871 (2008).
Yuan, P. et al. Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium difficile toxin B. Cell Res. 25, 157–168 (2015).
LaFrance, M. E. et al. Identification of an epithelial cell receptor responsible for Clostridium difficile TcdB-induced cytotoxicity. Proc. Natl Acad. Sci. USA 112, 7073–7078 (2015). This study identifies PVRL3 expressed on colonic epithelial cells as a receptor for TcdB; this interaction is necessary for toxin-mediated cytotoxicity.
Lyras, D. et al. Toxin B is essential for virulence of Clostridium difficile. Nature 458, 1176–1179 (2009).
Kuehne, S. A. et al. The role of toxin A and toxin B in Clostridium difficile infection. Nature 467, 711–713 (2010).
Kuehne, S. A. et al. Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain. J. Infect. Dis. 209, 83–86 (2014).
Stabler, R. A. et al. Comparative phylogenomics of Clostridium difficile reveals clade specificity and microevolution of hypervirulent strains. J. Bacteriol. 188, 7297–7305 (2006).
Lanis, J. M., Heinlen, L. D., James, J. A. & Ballard, J. D. Clostridium difficile 027/BI/NAP1 encodes a hypertoxic and antigenically variable form of TcdB. PLoS Pathog. 9, e1003523 (2013).
Mani, N. & Dupuy, B. Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc. Natl Acad. Sci. USA 98, 5844–5849 (2001).
Matamouros, S., England, P. & Dupuy, B. Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol. Microbiol. 64, 1274–1288 (2007).
van Leeuwen, H. C., Bakker, D., Steindel, P., Kuijper, E. J. & Corver, J. Clostridium difficile TcdC protein binds four-stranded G-quadruplex structures. Nucleic Acids Res. 41, 2382–2393 (2013).
Spigaglia, P. & Mastrantonio, P. Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J. Clin. Microbiol. 40, 3470–3475 (2002).
Bakker, D., Smits, W. K., Kuijper, E. J. & Corver, J. TcdC does not significantly repress toxin expression in Clostridium difficile 630Δerm. PLoS ONE 7, e43247 (2012).
Govind, R. & Dupuy, B. Secretion of Clostridium difficile toxins A and B requires the holin-like protein TcdE. PLoS Pathog. 8, e1002727 (2012).
Olling, A. et al. Release of TcdA and TcdB from Clostridium difficile cdi 630 is not affected by functional inactivation of the tcdE gene. Microb. Pathog. 52, 92–100 (2012).
Govind, R., Fitzwater, L. & Nichols, R. Observations on the role of TcdE isoforms in Clostridium difficile toxin secretion. J. Bacteriol. 197, 2600–2609 (2015).
Gerding, D. N., Johnson, S., Rupnik, M. & Aktories, K. Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes 5, 15–27 (2014).
Papatheodorou, P. et al. Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT). Proc. Natl Acad. Sci. USA 108, 16422–16427 (2011).
Schwan, C. et al. Clostridium difficile toxin CDT hijacks microtubule organization and reroutes vesicle traffic to increase pathogen adherence. Proc. Natl Acad. Sci. USA 111, 2313–2318 (2014).
Awad, M. M., Johanesen, P. A., Carter, G. P., Rose, E. & Lyras, D. Clostridium difficile virulence factors: insights into an anaerobic spore-forming pathogen. Gut Microbes 5, 579–593 (2014).
Vedantam, G. et al. Clostridium difficile infection: toxins and non-toxin virulence factors, and their contributions to disease establishment and host response. Gut Microbes 3, 121–134 (2012).
Pituch, H. et al. Variable flagella expression among clonal toxin A−/B+Clostridium difficile strains with highly homogeneous flagellin genes. Clin. Microbiol. Infect. 8, 187–188 (2002).
Tasteyre, A., Barc, M. C., Collignon, A., Boureau, H. & Karjalainen, T. Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization. Infect. Immun. 69, 7937–7940 (2001).
Baban, S. T. et al. The role of flagella in Clostridium difficile pathogenesis: comparison between a non-epidemic and an epidemic strain. PLoS ONE 8, e73026 (2013).
Aubry, A. et al. Modulation of toxin production by the flagellar regulon in Clostridium difficile. Infect. Immun. 80, 3521–3532 (2012).
Bordeleau, E. & Burrus, V. Cyclic-di-GMP signaling in the Gram-positive pathogen Clostridium difficile. Curr. Genet. 61, 497–502 (2015).
Sudarsan, N. et al. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321, 411–413 (2008).
Purcell, E. B., McKee, R. W., McBride, S. M., Waters, C. M. & Tamayo, R. Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile. J. Bacteriol. 194, 3307–3316 (2012).
McKee, R. W., Mangalea, M. R., Purcell, E. B., Borchardt, E. K. & Tamayo, R. The second messenger cyclic di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD. J. Bacteriol. 195, 5174–5185 (2013).
Bordeleau, E. et al. Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile. J. Bacteriol. 197, 819–832 (2015).
Purcell, E. B., McKee, R. W., Bordeleau, E., Burrus, V. & Tamayo, R. Regulation of type IV pili contributes to surface behaviors of historical and epidemic strains of Clostridium difficile. J. Bacteriol. 198, 565–577 (2015).
Ethapa, T. et al. Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J. Bacteriol. 195, 545–555 (2013).
Dawson, L. F., Valiente, E., Faulds-Pain, A., Donahue, E. H. & Wren, B. W. Characterisation of Clostridium difficile biofilm formation, a role for Spo0A. PLoS ONE 7, e50527 (2012).
Barketi-Klai, A., Hoys, S., Lambert-Bordes, S., Collignon, A. & Kansau, I. Role of fibronectin-binding protein A in Clostridium difficile intestinal colonization. J. Med. Microbiol. 60, 1155–1161 (2011).
Dapa, T. & Unnikrishnan, M. Biofilm formation by Clostridium difficile. Gut Microbes 4, 397–402 (2013).
Theriot, C. M. et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5, 3114 (2014). This paper reports a link between antibiotic treatment, subsequent susceptibility to C. difficile and a distinct metabolomic profile in the intestine.
Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955–1959 (2005).
Wong, J. M., de Souza, R., Kendall, C. W., Emam, A. & Jenkins, D. J. Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol. 40, 235–243 (2006).
Ng, K. M. et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502, 96–99 (2013). This paper shows that sialic acids that are cleaved from glycoproteins of epithelial cells by commensal bacteria are consumed as an energy source by C. difficile.
Ferreyra, J. A. et al. Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance. Cell Host Microbe 16, 770–777 (2014).
Rea, M. C. et al. Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4639–4644 (2011).
Trzasko, A., Leeds, J. A., Praestgaard, J., Lamarche, M. J. & McKenney, D. Efficacy of LFF571 in a hamster model of Clostridium difficile infection. Antimicrob. Agents Chemother. 56, 4459–4462 (2012).
Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015). This paper demonstrates that reconstitution of primary bile acid-converting bacteria restores colonization resistance against C. difficile.
Kinnebrew, M. A. et al. Early Clostridium difficile infection during allogeneic hematopoietic stem cell transplantation. PLoS ONE 9, e90158 (2014).
Ridlon, J. M. & Hylemon, P. B. Identification and characterization of two bile acid coenzyme A transferases from Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium. J. Lipid Res. 53, 66–76 (2012).
Eiseman, B., Silen, W., Bascom, G. S. & Kauvar, A. J. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 44, 854–859 (1958).
Gough, E., Shaikh, H. & Manges, A. R. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin. Infect. Dis. 53, 994–1002 (2011).
van Nood, E., Dijkgraaf, M. G. & Keller, J. J. Duodenal infusion of feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 2145 (2013). This is the first placebo-controlled double-blind study to demonstrate the efficacy of faecal microbiota transplant therapy to cure recurrent C. difficile disease.
Tvede, M. & Rask-Madsen, J. Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients. Lancet 1, 1156–1160 (1989).
Lawley, T. D. et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog. 8, e1002995 (2012).
Reeves, A. E., Koenigsknecht, M. J., Bergin, I. L. & Young, V. B. Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. Infect. Immun. 80, 3786–3794 (2012). Together with reference 11, this paper identifies specific commensal bacterial species that protect the host from C. difficile infection.
Weingarden, A. R. et al. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G310–G319 (2014).
Gerding, D. N. et al. Administration of spores of nontoxigenic Clostridium difficile strain M3 for prevention of recurrent C. difficile infection: a randomized clinical trial. JAMA 313, 1719–1727 (2015). This phase II clinical trial reports that administration of non-toxigenic C. difficile spores to patients who are recovering from C. difficile infection can prevent recurrence of disease.
Khanna, S. et al. A novel microbiome therapeutic increases gut microbial diversity and prevents recurrent Clostridium difficile infection. J. Infect. Dis. 214, 173–181 (2016).
Naaber, P., Mikelsaar, R. H., Salminen, S. & Mikelsaar, M. Bacterial translocation, intestinal microflora and morphological changes of intestinal mucosa in experimental models of Clostridium difficile infection. J. Med. Microbiol. 47, 591–598 (1998).
Madan, R. & Petri, W. A. Immune responses to Clostridium difficile infection. Trends Mol. Med. 18, 658–666 (2012).
Solomon, K. The host immune response to Clostridium difficile infection. Ther. Adv. Infect. Dis. 1, 19–35 (2013).
McBride, S. M. & Sonenshein, A. L. The dlt operon confers resistance to cationic antimicrobial peptides in Clostridium difficile. Microbiology 157, 1457–1465 (2011).
Girinathan, B. P., Braun, S. E. & Govind, R. Clostridium difficile glutamate dehydrogenase is a secreted enzyme that confers resistance to H2O2 . Microbiology 160, 47–55 (2014).
Ho, T. D. & Ellermeier, C. D. PrsW is required for colonization, resistance to antimicrobial peptides, and expression of extracytoplasmic function sigma factors in Clostridium difficile. Infect. Immun. 79, 3229–3238 (2011).
Savidge, T. C. et al. Host S-nitrosylation inhibits clostridial small molecule-activated glucosylating toxins. Nat. Med. 17, 1136–1141 (2011).
Fradrich, C., Beer, L. A. & Gerhard, R. Reactive oxygen species as additional determinants for cytotoxicity of Clostridium difficile toxins A and B. Toxins (Basel) 8, E25 (2016).
Buonomo, E. L. et al. Role of interleukin 23 signaling in Clostridium difficile colitis. J. Infect. Dis. 208, 917–920 (2013). This paper finds that mice that are deficient in the pro-inflammatory cytokine IL-23 exhibit improved survival following infection with C. difficile , which suggests a detrimental role of overactive inflammatory responses.
El Feghaly, R. E. et al. Markers of intestinal inflammation, not bacterial burden, correlate with clinical outcomes in Clostridium difficile infection. Clin. Infect. Dis. 56, 1713–1721 (2013).
Jefferson, K. K., Smith, M. F. & Bobak, D. A. Roles of intracellular calcium and NF-κB in the Clostridium difficile toxin A-induced up-regulation and secretion of IL-8 from human monocytes. J. Immunol. 163, 5183–5191 (1999).
Lee, J. Y. et al. Effects of transcription factor activator protein-1 on interleukin-8 expression and enteritis in response to Clostridium difficile toxin A. J. Mol. Med. (Berl.) 85, 1393–1404 (2007).
Warny, M. et al. p38 MAP kinase activation by Clostridium difficile toxin A mediates monocyte necrosis, IL-8 production, and enteritis. J. Clin. Invest. 105, 1147–1156 (2000).
Castagliuolo, I. et al. Clostridium difficile toxin A stimulates macrophage-inflammatory protein-2 production in rat intestinal epithelial cells. J. Immunol. 160, 6039–6045 (1998).
Kim, J. M. et al. NF-κB activation pathway is essential for the chemokine expression in intestinal epithelial cells stimulated with Clostridium difficile toxin A. Scand. J. Immunol. 63, 453–460 (2006).
Xu, H. et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513, 237–241 (2014).
Hasegawa, M. et al. Nucleotide-binding oligomerization domain 1 mediates recognition of Clostridium difficile and induces neutrophil recruitment and protection against the pathogen. J. Immunol. 186, 4872–4880 (2011).
Ryan, A. et al. A role for TLR4 in Clostridium difficile infection and the recognition of surface layer proteins. PLoS Pathog. 7, e1002076 (2011).
Jarchum, I., Liu, M., Shi, C., Equinda, M. & Pamer, E. G. Critical role for MyD88-mediated neutrophil recruitment during Clostridium difficile colitis. Infect. Immun. 80, 2989–2996 (2012).
Hasegawa, M. et al. Protective role of commensals against Clostridium difficile infection via an IL-1β-mediated positive-feedback loop. J. Immunol. 189, 3085–3091 (2012).
Ng, J. et al. Clostridium difficile toxin-induced inflammation and intestinal injury are mediated by the inflammasome. Gastroenterology 139, 542–552 (2010).
Chen, X. et al. A mouse model of Clostridium difficile-associated disease. Gastroenterology 135, 1984–1992 (2008).
Buffie, C. G. et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect. Immun. 80, 62–73 (2012).
Abt, M. C. et al. Innate immune defenses mediated by two ILC subsets are critical for protection against acute Clostridium difficile infection. Cell Host Microbe 18, 27–37 (2015). This paper identifies that IFNγ-producing type 1 innate lymphoid cells are crucial for host protection during acute C. difficile infection.
Hasegawa, M. et al. Interleukin-22 regulates the complement system to promote resistance against pathobionts after pathogen-induced intestinal damage. Immunity 41, 620–632 (2014). This paper observes that IL-22 systemically activates the complement pathway as a defence against disseminating bacteria that translocate across the epithelial barrier.
Cowardin, C. A. et al. Inflammasome activation contributes to interleukin-23 production in response to Clostridium difficile. mBio 6, e02386–14 (2015).
Sadighi Akha, A. A. et al. Acute infection of mice with Clostridium difficile leads to eIF2α phosphorylation and pro-survival signalling as part of the mucosal inflammatory response. Immunology 140, 111–122 (2013).
Sonnenberg, G. F. & Artis, D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat. Med. 21, 698–708 (2015).
Sadighi Akha, A. A. et al. Interleukin-22 and CD160 play additive roles in the host mucosal response to Clostridium difficile infection in mice. Immunology 144, 587–597 (2015).
McDermott, A. J. et al. Role of GM-CSF in the inflammatory cytokine network that regulates neutrophil influx into the colonic mucosa during Clostridium difficile infection in mice. Gut Microbes 5, 476–484 (2014).
McDermott, A. J. et al. Interleukin-23 (IL-23), independent of IL-17 and IL-22, drives neutrophil recruitment and innate inflammation during Clostridium difficile colitis in mice. Immunology 147, 114–124 (2016).
Goy, S. D., Olling, A., Neumann, D., Pich, A. & Gerhard, R. Human neutrophils are activated by a peptide fragment of Clostridium difficile toxin B presumably via formyl peptide receptor. Cell. Microbiol. 17, 893–909 (2015).
El-Zaatari, M. et al. Tryptophan catabolism restricts IFNγ-expressing neutrophils and Clostridium difficile immunopathology. J. Immunol. 193, 807–816 (2014).
Johnson, S., Gerding, D. N. & Janoff, E. N. Systemic and mucosal antibody responses to toxin A in patients infected with Clostridium difficile. J. Infect. Dis. 166, 1287–1294 (1992).
Kyne, L., Warny, M., Qamar, A. & Kelly, C. P. Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N. Engl. J. Med. 342, 390–397 (2000).
Lowy, I. et al. Treatment with monoclonal antibodies against Clostridium difficile toxins. N. Engl. J. Med. 362, 197–205 (2010).
Johnston, P. F., Gerding, D. N. & Knight, K. L. Protection from Clostridium difficile infection in CD4 T Cell- and polymeric immunoglobulin receptor-deficient mice. Infect. Immun. 82, 522–531 (2014).
Lawley, T. D. et al. Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect. Immun. 77, 3661–3669 (2009).
Hall, I. C. & O'Toole, E. Intestinal flora in new-born infants, with a description of a new pathogenic anaerobe, Bacillus dificillis. Am. J. Dis. Child. 49, 390–402 (1935).
Yutin, N. & Galperin, M. Y. A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ. Microbiol. 15, 2631–2641 (2013).
Chitnis, A. S. et al. Epidemiology of community-associated Clostridium difficile infection, 2009 through 2011. JAMA Intern. Med. 173, 1359–1367 (2013).
Eyre, D. W. et al. Diverse sources of C. difficile infection identified on whole-genome sequencing. N. Engl. J. Med. 369, 1195–1205 (2013). This study details whole-genome sequencing on strains that were isolated from patients infected with C. difficile during a three year period and found a high degree of diversity among strains, which suggests community sources may be as prevalent as direct hospital transmission for pathogen acquisition.
Janezic, S. et al. International Clostridium difficile animal strain collection and large diversity of animal associated strains. BMC Microbiol. 14, 173 (2014).
Lewis, B. B. et al. Loss of microbiota-mediated colonization resistance to Clostridium difficile infection with oral vancomycin compared with metronidazole. J. Infect. Dis. 212, 1656–1665 (2015).
Venugopal, A. A. & Johnson, S. Fidaxomicin: a novel macrocyclic antibiotic approved for treatment of Clostridium difficile infection. Clin. Infect. Dis. 54, 568–574 (2012).
Ridlon, J. M., Kang, D. J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).
Joyce, S. A., Shanahan, F., Hill, C. & Gahan, C. G. Bacterial bile salt hydrolase in host metabolism: potential for influencing gastrointestinal microbe–host crosstalk. Gut Microbes 5, 669–674 (2014).
Morris, G. N., Winter, J., Cato, E. P., Ritchie, A. E. & Bokkenheuser, V. D. Clostridium scindens sp. nov., a human intestinal bacterium with desmolytic activity on corticoids. Int. J. Syst. Bacteriol. 35, 478–481 (1985).
Kang, D. J., Ridlon, J. M., Moore, D. R., Barnes, S. & Hylemon, P. B. Clostridium scindens baiCD and baiH genes encode stereo-specific 7α/7β-hydroxy-3-oxo-Δ4-cholenoic acid oxidoreductases. Biochim. Biophys. Acta 1781, 16–25 (2008).
Devlin, A. S. & Fischbach, M. A. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat. Chem. Biol. 11, 685–690 (2015).
Heeg, D., Burns, D. A., Cartman, S. T. & Minton, N. P. Spores of Clostridium difficile clinical isolates display a diverse germination response to bile salts. PLoS ONE 7, e32381 (2012).
Francis, M. B., Allen, C. A. & Sorg, J. A. Muricholic acids inhibit Clostridium difficile spore germination and growth. PLoS ONE 8, e73653 (2013).
Weingarden, A. R. et al. Ursodeoxycholic acid inhibits Clostridium difficile spore germination and vegetative growth, and prevents the recurrence of ileal pouchitis associated with the infection. J. Clin. Gastroenterol. 50, 624–630 (2016).
Acknowledgements
The Pamer Laboratory is supported by the US National Cancer Institute (NCI; core grant P30 CA008748) and the US National Institutes of Health (NIH; grants RO1 AI042135 and AI095706). M.C.A. is supported by the NIH (grant K99 AI125786). P.T.M. was supported by the NIH immunology training grant (T32CA009149).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Glossary
- Germination
-
The transformation of a dormant spore to an actively replicating bacterial cell.
- Reverse genetics
-
Targeted alterations of the genome. In Clostridium difficile, tools include ClosTron and allelic replacement.
- Forward genetics
-
Untargeted alterations of the genome that are achieved by chemical mutagens or transposable elements.
- Sensor histidine kinases
-
Signal-sensing proteins that pass phosphate to response regulator transcription factors that alter gene expression in response to extracellular stimuli.
- Sigma factor
-
The DNA-binding subunit of RNA polymerase, each sigma factor binds to a distinct consensus sequence.
- Catabolite repression
-
The regulation of gene expression such that preferred carbon sources are metabolized first.
- Sporangia
-
A cell of a spore-forming bacterium that has completed asymmetric division.
- Vegetative growth
-
Normal exponential growth of bacteria in rich media. Clostridium difficile switches between vegetative growth and sporulation.
- Prodomain
-
A peptide sequence at the amino terminus of a protein that is cleaved for the protein to be active and fully functional.
- Riboswitch
-
A secondary structure of mRNA, typically in the 5′-untranslated region, that binds to small molecules and regulates transcription and/or translation in cis.
- Type IV pili
-
Polymer filaments on the surface of Gram-positive and Gram-negative bacteria that facilitate motility or adhesion.
- Bacteriocins
-
Ribosomally synthesized antimicrobial peptides that are produced by bacteria that can selectively act against specific bacterial species or exhibit broad-spectrum activity.
- Inflammasome
-
A cytosolic multiprotein complex that detects pathogen-associated molecular patterns. The detection of these 'danger signals' activates transcription of pro-inflammatory cytokine genes.
- Innate lymphoid cells
-
(ILCs). Haematopoietic-derived innate immune cells that are capable of producing effector cytokines tailored to coordinate the early host response against distinct classes of pathogen.
- Complement pathway
-
A series of interactions between plasma-derived proteins that lead to the opsonization of a pathogen and activation of the inflammatory immune response.
Rights and permissions
About this article
Cite this article
Abt, M., McKenney, P. & Pamer, E. Clostridium difficile colitis: pathogenesis and host defence. Nat Rev Microbiol 14, 609–620 (2016). https://doi.org/10.1038/nrmicro.2016.108
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrmicro.2016.108
This article is cited by
-
Exploring new avenues of health protection: plant-derived nanovesicles reshape microbial communities
Journal of Nanobiotechnology (2024)
-
Potent and specific antibiotic combination therapy against Clostridioides difficile
Nature Chemical Biology (2024)
-
An epidemiological surveillance study (2021–2022): detection of a high diversity of Clostridioides difficile isolates in one tertiary hospital in Chongqing, Southwest China
BMC Infectious Diseases (2023)
-
Comparison of DNA extraction methods for 16S rRNA gene sequencing in the analysis of the human gut microbiome
Scientific Reports (2023)
-
Design of 8-mer peptides that block Clostridioides difficile toxin A in intestinal cells
Communications Biology (2023)