Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Local and global regulation of transcription initiation in bacteria

Key Points

  • Transcription initiation involves the interaction of DNA-dependent RNA polymerase with promoters. In bacteria, this is a highly regulated process.

  • Many regulators interact directly with the bacterial DNA-dependent RNA polymerase, whereas other regulators interact directly with promoters.

  • Regulation of transcription initiation occurs in the context of folding and compaction of bacterial chromosomes.

  • A very wide range of different strategies are used to regulate transcription initiation in bacteria and these differ between species.

Abstract

Gene expression in bacteria relies on promoter recognition by the DNA-dependent RNA polymerase and subsequent transcription initiation. Bacterial cells are able to tune their transcriptional programmes to changing environments, through numerous mechanisms that regulate the activity of RNA polymerase, or change the set of promoters to which the RNA polymerase can bind. In this Review, we outline our current understanding of the different factors that direct the regulation of transcription initiation in bacteria, whether by interacting with promoters, with RNA polymerase or with both, and we discuss the diverse molecular mechanisms that are used by these factors to regulate gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transcription of bacterial genes.
Figure 2: Modulation of RNA polymerase activity.
Figure 3: Appropriation of RNA polymerase for specific transcriptional programmes.
Figure 4: Repression or activation at promoters by transcription factors.
Figure 5: Regulation by promoter DNA modification.

Similar content being viewed by others

References

  1. Browning, D. F. & Busby, S. J. The regulation of bacterial transcription initiation. Nat. Rev. Microbiol. 2, 57–65 (2004).

    CAS  PubMed  Google Scholar 

  2. Feklistov, A., Sharon, B. D., Darst, S. A. & Gross, C. A. Bacterial sigma factors: a historical, structural, and genomic perspective. Annu. Rev. Microbiol. 68, 357–376 (2014).

    CAS  PubMed  Google Scholar 

  3. Murakami, K. S. & Darst, S. A. Bacterial RNA polymerases: the wholo story. Curr. Opin. Struct. Biol. 13, 31–39 (2003).

    CAS  PubMed  Google Scholar 

  4. Feklistov, A. & Darst, S. A. Structural basis for promoter −10 element recognition by the bacterial RNA polymerase sigma subunit. Cell 147, 1257–1269 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, Y. et al. Structural basis of transcription initiation. Science 338, 1076–1080 (2012). This work complements previous structural work detailed in reference 3 by revealing the interactions of bacterial holoenzyme containing σ70 with the downstream end of the initiation 'bubble'. The results introduce us to unstacking of certain bases and their insertion into pockets in the sigma factor, and to specific interactions between side chains in the core enzyme and certain bases near the transcript start (the core recognition element (CRE)).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zuo, Y. & Steitz, T. A. Crystal structures of the E. coli transcription initiation complexes with a complete bubble. Mol. Cell 58, 534–540 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bae, B., Feklistov, A., Lass-Napiorkowska, A., Landick, R. & Darst, S. A. Structure of a bacterial RNA polymerase holoenzyme open promoter complex. eLife 4, e08504 (2015).

    PubMed Central  Google Scholar 

  8. Ruff, E. F., Record, M. T. & Artsimovitch, I. Initial events in bacterial transcription initiation. Biomolecules 5, 1035–1062 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Washburn, R. S. & Gottesman, M. E. Regulation of transcription elongation and termination. Biomolecules 5, 1063–1078 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Roberts, J. W., Shankar, S. & Filter, J. J. RNA polymerase elongation factors. Annu. Rev. Microbiol. 62, 211–233 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, J. & Landick, R. A two-way street: regulatory interplay between RNA polymerase and nascent RNA structure. Trends Biochem. Sci. 41, 293–310 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Campbell, E. A. et al. Structure of the bacterial RNA polymerase promoter specificity sigma subunit. Mol. Cell 9, 527–539 (2002).

    CAS  PubMed  Google Scholar 

  13. Mekler, V. et al. Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase–promoter open complex. Cell 108, 599–614 (2002).

    CAS  PubMed  Google Scholar 

  14. Bae, B. et al. Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of σ70 domain 1.1. Proc. Natl Acad. Sci. USA 110, 19772–19777 (2013).

    CAS  PubMed  Google Scholar 

  15. Murakami, K. S. X-ray crystal structure of Escherichia coli RNA polymerase σ70 holoenzyme. J. Biol. Chem. 288, 9126–9134 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gruber, T. M. & Gross, C. A. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 57, 441–466 (2003).

    CAS  PubMed  Google Scholar 

  17. Murakami, K. S., Masuda, S., Campbell, E. A., Muzzin, O. & Darst, S. A. Structural basis of transcription initiation: an RNA polymerase holoenzyme–DNA complex. Science 296, 1285–1290 (2002).

    CAS  PubMed  Google Scholar 

  18. Vassylyev, D. G. et al. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution. Nature 417, 712–719 (2002).

    CAS  PubMed  Google Scholar 

  19. Yang, Y. et al. Structures of the RNA polymerase–σ54 reveal new and conserved regulatory strategies. Science 349, 882–885 (2015). This paper presents the long awaited structure of σ54 and its interactions with RNA polymerase. The structure shows how σ54 really is different from σ70, why it is incompetent for transcription initiation, and suggests how its activators might work.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jishage, M. & Ishihama, A. Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of σ70 and σ38. J. Bacteriol. 177, 6832–6835 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jishage, M., Iwata, A., Ueda, S. & Ishihama, A. Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of four species of sigma subunit under various growth conditions. J. Bacteriol. 178, 5447–5451 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Maeda, H., Fujita, N. & Ishihama, A. Competition among seven Escherichia coli sigma subunits: relative binding affinities to the core RNA polymerase. Nucleic Acids Res. 28, 3497–3503 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Campbell, E. A., Westblade, L. F. & Darst, S. A. Regulation of bacterial RNA polymerase sigma factor activity: a structural perspective. Curr. Opin. Microbiol. 11, 121–127 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rhodius, V. A. et al. Design of orthogonal genetic switches based on a crosstalk map of sigmas, anti-sigmas, and promoters. Mol. Syst. Biol. 9, 702 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Campagne, S., Marsh, M. E., Capitani, G., Vorholt, J. A. & Allain, F. H. Structural basis for −10 promoter element melting by environmentally induced sigma factors. Nat. Struct. Mol. Biol. 21, 269–276 (2014).

    CAS  PubMed  Google Scholar 

  26. Koo, B. M., Rhodius, V. A., Nonaka, G., deHaseth, P. L. & Gross, C. A. Reduced capacity of alternative sigmas to melt promoters ensures stringent promoter recognition. Genes Dev. 23, 2426–2436 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hollands, K., Lee, D. J., Lloyd, G. S. & Busby, S. J. Activation of σ28-dependent transcription in Escherichia coli by the cyclic AMP receptor protein requires an unusual promoter organization. Mol. Microbiol. 75, 1098–1111 (2010).

    CAS  PubMed  Google Scholar 

  28. Paget, M. S. Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules 5, 1245–1265 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Osterberg, S., del Peso-Santos, T. & Shingler, V. Regulation of alternative sigma factor use. Annu. Rev. Microbiol. 65, 37–55 (2011).

    PubMed  Google Scholar 

  30. Francez-Charlot, A. et al. Sigma factor mimicry involved in regulation of general stress response. Proc. Natl Acad. Sci. USA 106, 3467–3472 (2009). Following the resolution of structures of sigma–anti-sigma complexes detailed in reference 23, this paper reports that an anti-anti-sigma factor can function by mimicking a sigma factor. Although predictable that this would be the case, its formal demonstration was a landmark for the field.

    CAS  PubMed  Google Scholar 

  31. Herrou, J., Rotskoff, G., Luo, Y., Roux, B. & Crosson, S. Structural basis of a protein partner switch that regulates the general stress response of α-proteobacteria. Proc. Natl Acad. Sci. USA 109, E1415–E1423 (2012).

    CAS  PubMed  Google Scholar 

  32. Typas, A., Barembruch, C., Possling, A. & Hengge, R. Stationary phase reorganisation of the Escherichia coli transcription machinery by Crl protein, a fine-tuner of sigmas activity and levels. EMBO J. 26, 1569–1578 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Banta, A. B. et al. Key features of σS required for specific recognition by Crl, a transcription factor promoting assembly of RNA polymerase holoenzyme. Proc. Natl Acad. Sci. USA 110, 15955–15960 (2013).

    CAS  PubMed  Google Scholar 

  34. Banta, A. B. et al. Structure of the RNA polymerase assembly factor Crl and identification of its interaction surface with σS. J. Bacteriol. 196, 3279–3288 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Yuan, A. H. et al. Rsd family proteins make simultaneous interactions with regions 2 and 4 of the primary sigma factor. Mol. Microbiol. 70, 1136–1151 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Piper, S. E., Mitchell, J. E., Lee, D. J. & Busby, S. J. A global view of Escherichia coli Rsd protein and its interactions. Mol. Biosyst. 5, 1943–1947 (2009).

    CAS  PubMed  Google Scholar 

  37. Sharma, U. K. & Chatterji, D. Transcriptional switching in Escherichia coli during stress and starvation by modulation of σ70 activity. FEMS Microbiol. Rev. 34, 646–657 (2010).

    CAS  PubMed  Google Scholar 

  38. Jishage, M., Kvint, K., Shingler, V. & Nystrom, T. Regulation of sigma factor competition by the alarmone ppGpp. Genes Dev. 16, 1260–1270 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Costanzo, A. et al. ppGpp and DksA likely regulate the activity of the extracytoplasmic stress factor σE in Escherichia coli by both direct and indirect mechanisms. Mol. Microbiol. 67, 619–632 (2008).

    CAS  PubMed  Google Scholar 

  40. Merrick, M. J. In a class of its own — the RNA polymerase sigma factor σ54 (σN). Mol. Microbiol. 10, 903–909 (1993).

    CAS  PubMed  Google Scholar 

  41. Studholme, D. J. & Buck, M. The biology of enhancer-dependent transcriptional regulation in bacteria: insights from genome sequences. FEMS Microbiol. Lett. 186, 1–9 (2000).

    CAS  PubMed  Google Scholar 

  42. Wigneshweraraj, S. et al. Modus operandi of the bacterial RNA polymerase containing the σ54 promoter-specificity factor. Mol. Microbiol. 68, 538–546 (2008).

    CAS  PubMed  Google Scholar 

  43. Flentie, K., Garner, A. L. & Stallings, C. L. The Mycobacterium tuberculosis transcription machinery: ready to respond to host attacks. J. Bacteriol. 198, 1360–1373 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hubin, E. A. et al. Structural, functional, and genetic analyses of the actinobacterial transcription factor RbpA. Proc. Natl Acad. Sci. USA 112, 7171–7176 (2015).

    CAS  PubMed  Google Scholar 

  45. Srivastava, D. B. et al. Structure and function of CarD, an essential mycobacterial transcription factor. Proc. Natl Acad. Sci. USA 110, 12619–12624 (2013).

    CAS  PubMed  Google Scholar 

  46. Bae, B. et al. CarD uses a minor groove wedge mechanism to stabilize the RNA polymerase open promoter complex. eLife 4, e08505 (2015).

    PubMed Central  Google Scholar 

  47. Perederina, A. et al. Regulation through the secondary channel — structural framework for ppGpp–DksA synergism during transcription. Cell 118, 297–309 (2004).

    CAS  PubMed  Google Scholar 

  48. Paul, B. J. et al. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118, 311–322 (2004).

    CAS  PubMed  Google Scholar 

  49. Paul, B. J., Berkmen, M. B. & Gourse, R. L. DksA potentiates direct activation of amino acid promoters by ppGpp. Proc. Natl Acad. Sci. USA 102, 7823–7828 (2005). In this study, an in vitro assay is used to provide the proof that ppGpp, together with DksA, really can directly stimulate transcription initiation at a promoter. This paper provides a wonderful lesson in how the limitations of genetics can be atoned for by amazing biochemistry.

    CAS  PubMed  Google Scholar 

  50. Lennon, C. W. et al. Direct interactions between the coiled-coil tip of DksA and the trigger loop of RNA polymerase mediate transcriptional regulation. Genes Dev. 26, 2634–2646 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ross, W., Vrentas, C. E., Sanchez-Vazquez, P., Gaal, T. & Gourse, R. L. The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation. Mol. Cell 50, 420–429 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hauryliuk, V., Atkinson, G. C., Murakami, K. S., Tenson, T. & Gerdes, K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat. Rev. Microbiol. 13, 298–309 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zenkin, N. & Yuzenkova, Y. New insights into the functions of transcription factors that bind the RNA polymerase secondary channel. Biomolecules 5, 1195–1209 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yuzenkova, Y., Roghanian, M. & Zenkin, N. Multiple active centers of multi-subunit RNA polymerases. Transcription 3, 115–118 (2012).

    PubMed  PubMed Central  Google Scholar 

  55. Friedman, L. J. & Gelles, J. Multi-wavelength single-molecule fluorescence analysis of transcription mechanisms. Methods 86, 27–36 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, Y. et al. DksA guards elongating RNA polymerase against ribosome-stalling-induced arrest. Mol. Cell 53, 766–778 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Cavanagh, A. T. & Wassarman, K. M. 6S RNA, a global regulator of transcription in Escherichia coli. Bacillus subtilis, and beyond. Annu. Rev. Microbiol. 68, 45–60 (2014).

    CAS  PubMed  Google Scholar 

  58. Liu, B. et al. A bacteriophage transcription regulator inhibits bacterial transcription initiation by sigma-factor displacement. Nucleic Acids Res. 42, 4294–4305 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lambert, L. J., Wei, Y., Schirf, V., Demeler, B. & Werner, M. H. T4 AsiA blocks DNA recognition by remodeling σ70 region 4. EMBO J. 23, 2952–2962 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gregory, B. D. et al. A regulator that inhibits transcription by targeting an intersubunit interaction of the RNA polymerase holoenzyme. Proc. Natl Acad. Sci. USA 101, 4554–4559 (2004).

    CAS  PubMed  Google Scholar 

  61. Hinton, D. M. Transcriptional control in the prereplicative phase of T4 development. Virol. J. 7, 289 (2010).

    PubMed  PubMed Central  Google Scholar 

  62. Griffith, K. L., Shah, I. M., Myers, T. E., O'Neill, M. C. & Wolf, R. E. Evidence for “pre-recruitment” as a new mechanism of transcription activation in Escherichia coli: the large excess of SoxS binding sites per cell relative to the number of SoxS molecules per cell. Biochem. Biophys. Res. Commun. 291, 979–986 (2002).

    CAS  PubMed  Google Scholar 

  63. Shah, I. M. & Wolf, R. E. Novel protein–protein interaction between Escherichia coli SoxS and the DNA binding determinant of the RNA polymerase α-subunit: SoxS functions as a co-sigma factor and redeploys RNA polymerase from UP-element-containing promoters to SoxS-dependent promoters during oxidative stress. J. Mol. Biol. 343, 513–532 (2004).

    CAS  PubMed  Google Scholar 

  64. Zuber, P. Management of oxidative stress in Bacillus. Annu. Rev. Microbiol. 63, 575–597 (2009).

    CAS  PubMed  Google Scholar 

  65. Newberry, K. J., Nakano, S., Zuber, P. & Brennan, R. G. Crystal structure of the Bacillus subtilis anti-alpha, global transcriptional regulator, Spx, in complex with the α C-terminal domain of RNA polymerase. Proc. Natl Acad. Sci. USA 102, 15839–15844 (2005).

    CAS  PubMed  Google Scholar 

  66. Lamour, V., Westblade, L. F., Campbell, E. A. & Darst, S. A. Crystal structure of the in vivo-assembled Bacillus subtilis Spx/RNA polymerase α subunit C-terminal domain complex. J. Struct. Biol. 168, 352–356 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Mangel, W. F. & Chamberlin, M. J. Studies of ribonucleic acid chain initiation by Escherichia coli ribonucleic acid polymerase bound to T7 deoxyribonucleic acid. I. An assay for the rate and extent of ribonucleic acid chain initiation. J. Biol. Chem. 249, 2995–3001 (1974).

    CAS  PubMed  Google Scholar 

  68. Murray, H. D., Schneider, D. A. & Gourse, R. L. Control of rRNA expression by small molecules is dynamic and nonredundant. Mol. Cell 12, 125–134 (2003).

    CAS  PubMed  Google Scholar 

  69. Schneider, D. A., Gaal, T. & Gourse, R. L. NTP-sensing by rRNA promoters in Escherichia coli is direct. Proc. Natl Acad. Sci. USA 99, 8602–8607 (2002).

    CAS  PubMed  Google Scholar 

  70. Krasny, L. & Gourse, R. L. An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J. 23, 4473–4483 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, K., Bittner, A. N. & Wang, J. D. Diversity in (p)ppGpp metabolism and effectors. Curr. Opin. Microbiol. 24, 72–79 (2015). This study provides a very clear account of how ppGpp (and pppGpp) has different roles in different bacteria. A warning that what is true for E. coli may not be true for other bacteria, let alone elephants.

    PubMed  PubMed Central  Google Scholar 

  72. Turnbough, C. L. & Switzer, R. L. Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors. Microbiol. Mol. Biol. Rev. 72, 266–300 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Martinez-Antonio, A. & Collado-Vides, J. Identifying global regulators in transcriptional regulatory networks in bacteria. Curr. Opin. Microbiol. 6, 482–489 (2003).

    CAS  PubMed  Google Scholar 

  74. Ishihama, A. Prokaryotic genome regulation: a revolutionary paradigm. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 88, 485–508 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Cho, B. K., Palsson, B. & Zengler, K. Deciphering the regulatory codes in bacterial genomes. Biotechnol. J. 6, 1052–1063 (2011).

    CAS  PubMed  Google Scholar 

  76. Salgado, H. et al. Extracting regulatory networks of Escherichia coli from RegulonDB. Methods Mol. Biol. 804, 179–195 (2012).

    CAS  PubMed  Google Scholar 

  77. Dillon, S. C. & Dorman, C. J. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat. Rev. Microbiol. 8, 185–195 (2010).

    CAS  PubMed  Google Scholar 

  78. Ali Azam, T., Iwata, A., Nishimura, A., Ueda, S. & Ishihama, A. Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J. Bacteriol. 181, 6361–6370 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Azam, T. A. & Ishihama, A. Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J. Biol. Chem. 274, 33105–33113 (1999).

    CAS  PubMed  Google Scholar 

  80. Luijsterburg, M. S., Noom, M. C., Wuite, G. J. & Dame, R. T. The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective. J. Struct. Biol. 156, 262–272 (2006).

    CAS  PubMed  Google Scholar 

  81. Browning, D. F., Grainger, D. C. & Busby, S. J. Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Curr. Opin. Microbiol. 13, 773–780 (2010).

    CAS  PubMed  Google Scholar 

  82. Grainger, D. C., Goldberg, M. D., Lee, D. J. & Busby, S. J. Selective repression by Fis and H-NS at the Escherichia coli dps promoter. Mol. Microbiol. 68, 1366–1377 (2008).

    CAS  PubMed  Google Scholar 

  83. Sobetzko, P., Glinkowska, M., Travers, A. & Muskhelishvili, G. DNA thermodynamic stability and supercoil dynamics determine the gene expression program during the bacterial growth cycle. Mol. Biosyst. 9, 1643–1651 (2013).

    CAS  PubMed  Google Scholar 

  84. Sobetzko, P., Travers, A. & Muskhelishvili, G. Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle. Proc. Natl Acad. Sci. USA 109, E42–E50 (2012).

    CAS  PubMed  Google Scholar 

  85. Dorman, C. J. Co-operative roles for DNA supercoiling and nucleoid-associated proteins in the regulation of bacterial transcription. Biochem. Soc. Trans. 41, 542–547 (2013).

    CAS  PubMed  Google Scholar 

  86. Zhang, W. & Baseman, J. B. Transcriptional regulation of MG_149, an osmoinducible lipoprotein gene from Mycoplasma genitalium. Mol. Microbiol. 81, 327–339 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Neumann, S. & Quinones, A. Discoordinate gene expression of gyrA and gyrB in response to DNA gyrase inhibition in Escherichia coli. J. Basic Microbiol. 37, 53–69 (1997).

    CAS  PubMed  Google Scholar 

  88. Lal, A. et al. Genome scale patterns of supercoiling in a bacterial chromosome. Nat. Commun. 7, 11055 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bryant, J. A., Sellars, L. E., Busby, S. J. & Lee, D. J. Chromosome position effects on gene expression in Escherichia coli K-12. Nucleic Acids Res. 42, 11383–11392 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Swint-Kruse, L. & Matthews, K. S. Allostery in the LacI/GalR family: variations on a theme. Curr. Opin. Microbiol. 12, 129–137 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Semsey, S., Tolstorukov, M. Y., Virnik, K., Zhurkin, V. B. & Adhya, S. DNA trajectory in the Gal repressosome. Genes Dev. 18, 1898–1907 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Butala, M. et al. Double locking of an Escherichia coli promoter by two repressors prevents premature colicin expression and cell lysis. Mol. Microbiol. 86, 129–139 (2012).

    CAS  PubMed  Google Scholar 

  93. Kamensek, S. et al. Silencing of DNase colicin E8 gene expression by a complex nucleoprotein assembly ensures timely colicin induction. PLoS Genet. 11, e1005354 (2015).

    PubMed  PubMed Central  Google Scholar 

  94. Valentin-Hansen, P., Sogaard-Andersen, L. & Pedersen, H. A flexible partnership: the CytR anti-activator and the cAMP–CRP activator protein, comrades in transcription control. Mol. Microbiol. 20, 461–466 (1996).

    CAS  PubMed  Google Scholar 

  95. Monsalve, M., Mencia, M., Salas, M. & Rojo, F. Protein p4 represses phage Φ29 A2c promoter by interacting with the α subunit of Bacillus subtilis RNA polymerase. Proc. Natl Acad. Sci. USA 93, 8913–8918 (1996).

    CAS  PubMed  Google Scholar 

  96. Lee, D. J., Minchin, S. D. & Busby, S. J. Activating transcription in bacteria. Annu. Rev. Microbiol. 66, 125–152 (2012).

    CAS  PubMed  Google Scholar 

  97. Benoff, B. et al. Structural basis of transcription activation: the CAP–αCTD–DNA complex. Science 297, 1562–1566 (2002).

    CAS  PubMed  Google Scholar 

  98. Gaston, K., Bell, A., Kolb, A., Buc, H. & Busby, S. Stringent spacing requirements for transcription activation by CRP. Cell 62, 733–743 (1990).

    CAS  PubMed  Google Scholar 

  99. Zhou, Y., Kolb, A., Busby, S. J. & Wang, Y. P. Spacing requirements for class I transcription activation in bacteria are set by promoter elements. Nucleic Acids Res. 42, 9209–9216 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Dove, S. L., Huang, F. W. & Hochschild, A. Mechanism for a transcriptional activator that works at the isomerization step. Proc. Natl Acad. Sci. USA 97, 13215–13220 (2000).

    CAS  PubMed  Google Scholar 

  101. Jain, D., Nickels, B. E., Sun, L., Hochschild, A. & Darst, S. A. Structure of a ternary transcription activation complex. Mol. Cell 13, 45–53 (2004).

    CAS  PubMed  Google Scholar 

  102. Niu, W., Kim, Y., Tau, G., Heyduk, T. & Ebright, R. H. Transcription activation at class II CAP-dependent promoters: two interactions between CAP and RNA polymerase. Cell 87, 1123–1134 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Feng, Y., Zhang, Y. & Ebright, R. H. Structural basis of transcription activation. Science 352, 1330–1333 (2016). This paper describes the first full molecular picture of class II transcription activation at a target promoter, and contrasts with previous reports that have described components of the process.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Brown, N. L., Stoyanov, J. V., Kidd, S. P. & Hobman, J. L. The MerR family of transcriptional regulators. FEMS Microbiol. Rev. 27, 145–163 (2003).

    CAS  PubMed  Google Scholar 

  105. Philips, S. J. et al. Allosteric transcriptional regulation via changes in the overall topology of the core promoter. Science 349, 877–881 (2015). Working with CueR, which senses copper and silver ions, this paper presents high-resolution structures of its complexes at a target sequence when in either activator or repressor mode. The results complement previous work detailed in reference 106 showing that DNA distortion by such factors is uneven.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Heldwein, E. E. & Brennan, R. G. Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature 409, 378–382 (2001).

    CAS  PubMed  Google Scholar 

  107. Bustamante, V. H., Santana, F. J., Calva, E. & Puente, J. L. Transcriptional regulation of type III secretion genes in enteropathogenic Escherichia coli: Ler antagonizes H-NS-dependent repression. Mol. Microbiol. 39, 664–678 (2001).

    CAS  PubMed  Google Scholar 

  108. Sperandio, V. et al. Activation of enteropathogenic Escherichia coli (EPEC) LEE2 and LEE3 operons by Ler. Mol. Microbiol. 38, 781–793 (2000).

    CAS  PubMed  Google Scholar 

  109. Browning, D. F., Cole, J. A. & Busby, S. J. Transcription activation by remodelling of a nucleoprotein assembly: the role of NarL at the FNR-dependent Escherichia coli nir promoter. Mol. Microbiol. 53, 203–215 (2004).

    CAS  PubMed  Google Scholar 

  110. Browning, D. F., Cole, J. A. & Busby, S. J. Regulation by nucleoid-associated proteins at the Escherichia coli nir operon promoter. J. Bacteriol. 190, 7258–7267 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Tyson, K. L., Cole, J. A. & Busby, S. J. Nitrite and nitrate regulation at the promoters of two Escherichia coli operons encoding nitrite reductase: identification of common target heptamers for both NarP- and NarL-dependent regulation. Mol. Microbiol. 13, 1045–1055 (1994).

    CAS  PubMed  Google Scholar 

  112. Bush, M. & Dixon, R. The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription. Microbiol. Mol. Biol. Rev. 76, 497–529 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Buck, M. et al. A second paradigm for gene activation in bacteria. Biochem. Soc. Trans. 34, 1067–1071 (2006).

    CAS  PubMed  Google Scholar 

  114. Casadesus, J. & Low, D. Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. 70, 830–856 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. van der Woude, M. W. & Henderson, I. R. Regulation and function of Ag43 (flu). Annu. Rev. Microbiol. 62, 153–169 (2008).

    CAS  PubMed  Google Scholar 

  116. Sanchez-Romero, M. A., Cota, I. & Casadesus, J. DNA methylation in bacteria: from the methyl group to the methylome. Curr. Opin. Microbiol. 25, 9–16 (2015).

    CAS  PubMed  Google Scholar 

  117. van der Woude, M. W. & Baumler, A. J. Phase and antigenic variation in bacteria. Clin. Microbiol. Rev. 17, 581–611 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. van der Woude, M. W. Phase variation: how to create and coordinate population diversity. Curr. Opin. Microbiol. 14, 205–211 (2011).

    CAS  PubMed  Google Scholar 

  119. Cerdeno-Tarraga, A. M. et al. Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science 307, 1463–1465 (2005).

    CAS  PubMed  Google Scholar 

  120. Moxon, R., Bayliss, C. & Hood, D. Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu. Rev. Genet. 40, 307–333 (2006).

    CAS  PubMed  Google Scholar 

  121. Jacob, F. Evolution and tinkering. Science 196, 1161–1166 (1977).

    CAS  PubMed  Google Scholar 

  122. Wade, J. T. & Grainger, D. C. Pervasive transcription: illuminating the dark matter of bacterial transcriptomes. Nat. Rev. Microbiol. 12, 647–653 (2014).

    CAS  PubMed  Google Scholar 

  123. Grohmann, D. & Werner, F. Recent advances in the understanding of archaeal transcription. Curr. Opin. Microbiol. 14, 328–334 (2011).

    CAS  PubMed  Google Scholar 

  124. Visweswariah, S. S. & Busby, S. J. Evolution of bacterial transcription factors: how proteins take on new tasks, but do not always stop doing the old ones. Trends Microbiol. 23, 463–467 (2015).

    CAS  PubMed  Google Scholar 

  125. Grainger, D. C., Hurd, D., Harrison, M., Holdstock, J. & Busby, S. J. Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. Proc. Natl Acad. Sci. USA 102, 17693–17698 (2005).

    CAS  PubMed  Google Scholar 

  126. Shimada, T., Ishihama, A., Busby, S. J. & Grainger, D. C. The Escherichia coli RutR transcription factor binds at targets within genes as well as intergenic regions. Nucleic Acids Res. 36, 3950–3955 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Aiyar, S. E. et al. Architecture of Fis-activated transcription complexes at the Escherichia coli rrnB P1 and rrnE P1 promoters. J. Mol. Biol. 316, 501–516 (2002).

    CAS  PubMed  Google Scholar 

  128. Rossiter, A. E. et al. Expression of different bacterial cytotoxins is controlled by two global transcription factors, CRP and Fis, that co-operate in a shared-recruitment mechanism. Biochem. J. 466, 323–335 (2015).

    CAS  PubMed  Google Scholar 

  129. Lisser, S. & Margalit, H. Compilation of E. coli mRNA promoter sequences. Nucleic Acids Res. 21, 1507–1516 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Hook-Barnard, I. G. & Hinton, D. M. Transcription initiation by mix and match elements: flexibility for polymerase binding to bacterial promoters. Gene Regul. Syst. Bio 1, 275–293 (2007).

    PubMed  PubMed Central  Google Scholar 

  131. Ross, W., Ernst, A. & Gourse, R. L. Fine structure of E. coli RNA polymerase–promoter interactions: α subunit binding to the UP element minor groove. Genes Dev. 15, 491–506 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Sclavi, B. et al. Real-time characterization of intermediates in the pathway to open complex formation by Escherichia coli RNA polymerase at the T7A1 promoter. Proc. Natl Acad. Sci. USA 102, 4706–4711 (2005).

    CAS  PubMed  Google Scholar 

  133. Davis, C. A., Bingman, C. A., Landick, R., Record, M. T. & Saecker, R. M. Real-time footprinting of DNA in the first kinetically significant intermediate in open complex formation by Escherichia coli RNA polymerase. Proc. Natl Acad. Sci. USA 104, 7833–7838 (2007).

    CAS  PubMed  Google Scholar 

  134. Buckle, M., Pemberton, I. K., Jacquet, M. A. & Buc, H. The kinetics of sigma subunit directed promoter recognition by E. coli RNA polymerase. J. Mol. Biol. 285, 955–964 (1999).

    CAS  PubMed  Google Scholar 

  135. Stracy, M. et al. Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc. Natl Acad. Sci. USA 112, E4390–E4399 (2015). This study shows that live microscopy can be used to observe individual molecules of RNA polymerase in E. coli . This is a prerequisite for future direct observation of responses to regulatory triggers.

    CAS  PubMed  Google Scholar 

  136. Patrick, M., Dennis, P. P., Ehrenberg, M. & Bremer, H. Free RNA polymerase in E. coli. Biochimie 119, 80–91 (2015).

    CAS  PubMed  Google Scholar 

  137. Hsu, L. M. Promoter escape by Escherichia coli RNA polymerase. EcoSal Plus http://dx.doi.org/10.1128/ecosalplus.4.5.2.2 (2008).

  138. Skancke, J., Bar, N., Kuiper, M. & Hsu, L. M. Sequence-dependent promoter escape efficiency is strongly influenced by bias for the pretranslocated state during initial transcription. Biochemistry 54, 4267–4275 (2015).

    CAS  PubMed  Google Scholar 

  139. Bauer, D. L. V., Duchi, D. & Kapanidis, A. N. E. coli RNA polymerase pauses during initial transcription. Biophys. J. 110 (Suppl. 1), 21a (2016).

    Google Scholar 

  140. Reppas, N. B., Wade, J. T., Church, G. M. & Struhl, K. The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting. Mol. Cell 24, 747–757 (2006).

    CAS  PubMed  Google Scholar 

  141. Sendy, B., Lee, D. J., Busby, S. J. & Bryant, J. A. RNA polymerase supply and flux through the lac operon in Escherichia coli. Philos. Trans. R. Soc. Lond. B. Biol. Sci. (in the press).

  142. Jacob, F. La Statue Intérieure (in French) (Éditions Odile Jacob, 1987).

    Google Scholar 

  143. Müller-Hill, B. The lac Operon. A Short History of a Genetic Paradigm (Walter de Gruyter, 1996).

    Google Scholar 

  144. Schwartz, M. in Origins of Molecular Biology. A Tribute to Jacques Monod (eds Lwoff, A. & Ullmann, A.) 207–216 (Academic Press, 1979).

    Google Scholar 

  145. Cases, I. & de Lorenzo, V. The black cat/white cat principle of signal integration in bacterial promoters. EMBO J. 20, 1–11 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Pul, Ü. & Wagner, R. in Bacterial Chromatin (eds Dame, R. T. & Dorman, C. J.) 149–173 (Springer, 2010).

    Google Scholar 

  147. Dorman, C. J. H-NS: a universal regulator for a dynamic genome. Nat. Rev. Microbiol. 2, 391–400 (2004).

    CAS  PubMed  Google Scholar 

  148. Stoebel, D. M., Free, A. & Dorman, C. J. Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria. Microbiology 154, 2533–2545 (2008).

    CAS  PubMed  Google Scholar 

  149. Ohniwa, R. L. et al. Dynamic state of DNA topology is essential for genome condensation in bacteria. EMBO J. 25, 5591–5602 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Micka, B. & Marahiel, M. A. The DNA-binding protein HBsu is essential for normal growth and development in Bacillus subtilis. Biochimie 74, 641–650 (1992).

    CAS  PubMed  Google Scholar 

  151. Grove, A. Functional evolution of bacterial histone-like HU proteins. Curr. Issues Mol. Biol. 13, 1–12 (2011).

    CAS  PubMed  Google Scholar 

  152. Ball, C. A., Osuna, R., Ferguson, K. C. & Johnson, R. C. Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli. J. Bacteriol. 174, 8043–8056 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Dame, R. T., Noom, M. C. & Wuite, G. J. Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature 444, 387–390 (2006).

    CAS  PubMed  Google Scholar 

  154. Dame, R. T., Wyman, C. & Goosen, N. H-NS mediated compaction of DNA visualised by atomic force microscopy. Nucleic Acids Res. 28, 3504–3510 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Maurer, S., Fritz, J. & Muskhelishvili, G. A systematic in vitro study of nucleoprotein complexes formed by bacterial nucleoid-associated proteins revealing novel types of DNA organization. J. Mol. Biol. 387, 1261–1276 (2009).

    CAS  PubMed  Google Scholar 

  156. Grainger, D. C., Hurd, D., Goldberg, M. D. & Busby, S. J. Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome. Nucleic Acids Res. 34, 4642–4652 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Kahramanoglou, C. et al. Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli. Nucleic Acids Res. 39, 2073–2091 (2011).

    CAS  PubMed  Google Scholar 

  158. Cho, B. K., Knight, E. M., Barrett, C. L. & Palsson, B. O. Genome-wide analysis of Fis binding in Escherichia coli indicates a causative role for A-/AT-tracts. Genome Res. 18, 900–910 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Singh, S. S. et al. Widespread suppression of intragenic transcription initiation by H-NS. Genes Dev. 28, 214–219 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Vora, T., Hottes, A. K. & Tavazoie, S. Protein occupancy landscape of a bacterial genome. Mol. Cell 35, 247–253 (2009). A novel application of genomics to monitor the protein landscape in different parts of a bacterial chromosome, with direct observation of tracts of the genome where transcription is silenced.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Haugen, S. P., Ross, W. & Gourse, R. L. Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nat. Rev. Microbiol. 6, 507–519 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors were supported by the UK Biotechnology and Biological Sciences Research Council (BBSRC; grant BB/J006076/1) and by the Industrial Biotechnology Catalyst programme (funded by Innovate UK, the BBSRC and the UK Engineering and Physical Sciences Research Council (EPSRC)) to support the translation, development and commercialisation of innovative industrial biotechnology processes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Douglas F. Browning or Stephen J. W. Busby.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

RNA polymerase core enzyme

The form of bacterial DNA-dependent RNA polymerase that lacks a sigma factor.

Template strand

The strand of the DNA duplex that acts as a template for RNA synthesis.

Open complex

The complex between RNA polymerase and a promoter after DNA duplex unwinding has occurred and the RNA polymerase is ready to start transcription.

Housekeeping sigma factor

The sigma factor in a bacterium that is responsible for the recognition of promoters that control the transcription of most genes.

Chromatin immunoprecipitation

(ChIP). A method whereby antibodies are used to isolate DNA fragments that have been cross-linked to a specific protein.

Stationary phase

The period when bacteria have stopped growing.

Guanosine tetraphosphate

(ppGpp). A small molecule that is synthesized in response to certain stresses. ppGpp is often referred to as 'magic spot', which is a term that also refers to guanosine pentaphosphate (pppGpp).

Actinomycetes

A class of soil bacteria with a particular morphology.

Coiled-coil

An extended motif found in proteins.

Closed complex

The complex between RNA polymerase and a promoter before DNA duplex unwinding has occurred.

Michaelis constant

The concentration of a substrate at which the reaction catalysed by an enzyme proceeds at half of its maximum speed.

Initiating nucleotide

The 5′ nucleotide of a transcript.

Nucleoid

The structure that forms after a bacterial chromosome is compacted inside a bacterium.

Superhelical density

The measure of the degree to which the winding of one DNA strand around the other differs from the periodicity of the Watson–Crick structure.

Enterohaemorrhagic E. coli

A virulent strain of Escherichia coli that causes bloody diarrhoea.

Pervasive transcription

The synthesis of transcripts that seem not to correspond to any functional genetic unit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Browning, D., Busby, S. Local and global regulation of transcription initiation in bacteria. Nat Rev Microbiol 14, 638–650 (2016). https://doi.org/10.1038/nrmicro.2016.103

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2016.103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing