Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The biogeography of polymicrobial infection

Key Points

  • The human microbiome and invading pathogens colonize the host as spatially organized polymicrobial (multi-species or multi-strain) communities, exhibiting spatial patterning or 'biogeography' both at the macroscale (across the human body) and microscale levels (within individual infection sites).

  • Host landmarks that drive biogeography include receptors for microbial attachment, physicochemical cues of pH and oxygen, host-derived nutrients, and the immune response.

  • Specific spatial organizations that result from host–microorganism interactions include localized attachment to host surfaces, metabolically optimal positioning along physicochemical or nutritional gradients, and the enforced segregation of the microbiome from the host by the immune system.

  • Polymicrobial interactions also drive spatial organization in multispecies biofilms, generally resulting in either mixed or segregated spatial patterns, depending on the extent of cooperation or competition between community members.

  • Specific polymicrobial interactions that drive microbiogeography include intercellular attachment (within and between species), biofilm remodelling (by making or breaking down the supporting matrix), and the export of diffusible molecules that promote or suppress the growth of neighbouring cells.

  • Spatial organization and the determining community interactions can, in many cases, alter the progression of infection, in what is known as the 'biogeography of infection.'

Abstract

Microbial communities are spatially organized in both the environment and the human body. Although patterns exhibited by these communities are described by microbial biogeography, this discipline has previously only considered large-scale, global patterns. By contrast, the fine-scale positioning of a pathogen within an infection site can greatly alter its virulence potential. In this Review, we highlight the importance of considering spatial positioning in the study of polymicrobial infections and discuss targeting biogeography as a therapeutic strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Factors that influence microbiogeography.
Figure 2: Polymicrobial interactions contribute to microbiogeography.
Figure 3: Targeting biogeography as a therapeutic strategy.

Similar content being viewed by others

References

  1. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Kaufmann, S. H. & Schaible, U. E. 100th anniversary of Robert Koch's Nobel Prize for the discovery of the tubercle bacillus. Trends Microbiol. 13, 469–475 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Smith, H. The role of microbial interactions in infectious disease. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 297, 551–561 (1982).

    Article  CAS  Google Scholar 

  4. Hajishengallis, G. et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 10, 497–506 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Korgaonkar, A., Trivedi, U., Rumbaugh, K. P. & Whiteley, M. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc. Natl Acad. Sci. USA 110, 1059–1064 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Simon-Soro, A. & Mira, A. Solving the etiology of dental caries. Trends Microbiol. 23, 76–82 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Murray, J. L., Connell, J. L., Stacy, A., Turner, K. H. & Whiteley, M. Mechanisms of synergy in polymicrobial infections. J. Microbiol. 52, 188–199 (2014).

    Article  PubMed  Google Scholar 

  8. Sibley, C. D. et al. Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections. PLoS Pathog. 4, e1000184 (2008). This study defined the major categories of polymicrobial virulence, including additive and synergistic, by screening P. aeruginosa with 40 respiratory tract isolates in a Drosophila co-infection model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Onderdonk, A. B., Bartlett, J. G., Louie, T., Sullivan-Seigler, N. & Gorbach, S. L. Microbial synergy in experimental intra-abdominal abscess. Infect. Immun. 13, 22–26 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Trivedi, U. et al. Prevalence of multiple antibiotic resistant infections in diabetic versus nondiabetic wounds. J. Pathog. 2014, 173053 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hogan, D. A. & Kolter, R. PseudomonasCandida interactions: an ecological role for virulence factors. Science 296, 2229–2232 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Griffiths, E. C., Pedersen, A. B., Fenton, A. & Petchey, O. L. The nature and consequences of coinfection in humans. J. Infect. 63, 200–206 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Whitmore, T. C. (ed) Wallace's Line and Plate Tectonics (Oxford: Clarendon Press; Oxford University Press; 1981).

    Google Scholar 

  14. Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).

    Article  PubMed  Google Scholar 

  15. Nemergut, D. R. et al. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77, 342–356 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C. & Martiny, J. B. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10, 497–506 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stearns, J. C. et al. Bacterial biogeography of the human digestive tract. Sci. Rep. 1, 170 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oh, J. et al. Biogeography and individuality shape function in the human skin metagenome. Nature 514, 59–64 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vos, M., Wolf, A. B., Jennings, S. J. & Kowalchuk, G. A. Micro-scale determinants of bacterial diversity in soil. FEMS Microbiol. Rev. 37, 936–954 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Kerr, B., Riley, M. A., Feldman, M. W. & Bohannan, B. J. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418, 171–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Kim, H. J., Boedicker, J. Q., Choi, J. W. & Ismagilov, R. F. Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc. Natl Acad. Sci. USA 105, 18188–18193 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Drescher, K., Nadell, C. D., Stone, H. A., Wingreen, N. S. & Bassler, B. L. Solutions to the public goods dilemma in bacterial biofilms. Curr. Biol. 24, 50–55 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Zhou, L., Slamti, L., Nielsen-LeRoux, C., Lereclus, D. & Raymond, B. The social biology of quorum sensing in a naturalistic host pathogen system. Curr. Biol. 24, 2417–2422 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Harding, J. L. & Reynolds, M. M. Combating medical device fouling. Trends Biotechnol. 32, 140–146 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Palmer, R. J. Jr., Gordon, S. M., Cisar, J. O. & Kolenbrander, P. E. Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J. Bacteriol. 185, 3400–3409 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Gunning, A. P. et al. Mining the “glycocode” —exploring the spatial distribution of glycans in gastrointestinal mucin using force spectroscopy. FASEB J. 27, 2342–2354 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Melican, K. et al. Uropathogenic Escherichia coli P and type 1 fimbriae act in synergy in a living host to facilitate renal colonization leading to nephron obstruction. PLoS Pathog. 7, e1001298 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bjarnsholt, T. et al. The in vivo biofilm. Trends Microbiol. 21, 466–474 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Schaber, J. A. et al. Pseudomonas aeruginosa forms biofilms in acute infection independent of cell-to-cell signaling. Infect. Immun. 75, 3715–3721 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dalton, T. et al. An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLoS ONE 6, e27317 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stacy, A. et al. Bacterial fight-and-flight responses enhance virulence in a polymicrobial infection. Proc. Natl Acad. Sci. USA 111, 7819–7824 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Singh, P. K. et al. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407, 762–764 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Nguyen, C. T. et al. Noninvasive in vivo optical detection of biofilm in the human middle ear. Proc. Natl Acad. Sci. USA 109, 9529–9534 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Monds, R. D. & O'Toole, G. A. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol. 17, 73–87 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Tran, C. S. et al. Translocon is required for biofilm formation at the epithelial barrier. PLoS Pathog. 10, e1004479 (2014). This study identified a determinant for P. aeruginosa biofilm formation in vivo that is dispensable in vitro , illustrating that microorganisms should be studied in natural and infectious contexts to gain better insight into the mechanisms of spatial organization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Travier, L. et al. ActA promotes Listeria monocytogenes aggregation, intestinal colonization and carriage. PLoS Pathog. 9, e1003131 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Blanchette-Cain, K. et al. Streptococcus pneumoniae biofilm formation is strain dependent, multifactorial, and associated with reduced invasiveness and immunoreactivity during colonization. mBio 4, e00745-13 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Davies, D. G. et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295–298 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Millet, Y. A. et al. Insights into Vibrio cholerae intestinal colonization from monitoring fluorescently labeled bacteria. PLoS Pathog. 10, e1004405 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nadell, C. D., Foster, K. R. & Xavier, J. B. Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS Comput. Biol. 6, e1000716 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jemielita, M. et al. Spatial and temporal features of the growth of a bacterial species colonizing the zebrafish gut. mBio 5, e01751-14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Monier, J. M. & Lindow, S. E. Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc. Natl Acad. Sci. USA 100, 15977–15982 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Connell, J. L. et al. Probing prokaryotic social behaviors with bacterial “lobster traps”. mBio 1, e00202-10 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guggenberger, C., Wolz, C., Morrissey, J. A. & Heesemann, J. Two distinct coagulase-dependent barriers protect Staphylococcus aureus from neutrophils in a three dimensional in vitro infection model. PLoS Pathog. 8, e1002434 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kragh, K. N. et al.: Polymorphonuclear leukocytes restrict growth of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Infect. Immun. 82, 4477–4486 (2014). This study illustrated how microbiogeography (the local suppression of microbial growth by neutrophils) can determine macrobiogeography (in which aggregates of P. aeruginosa preferentially colonize the respiratory tract).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Davis, K. M., Mohammadi, S. & Isberg, R. R. Community behavior and spatial regulation within a bacterial microcolony in deep tissue sites serves to protect against host attack. Cell Host Microbe 17, 21–31 (2015). This study examined how microcolonies of Yersinia pseudotuberculosis in the spleen repel attacking neutrophils, illustrating how bacterial aggregates can adeptly resist the immune system.

    Article  CAS  PubMed  Google Scholar 

  48. Faruque, S. M. et al. Transmissibility of cholera: in vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proc. Natl Acad. Sci. USA 103, 6350–6355 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Singh, P. K., Parsek, M. R., Greenberg, E. P. & Welsh, M. J. A component of innate immunity prevents bacterial biofilm development. Nature 417, 552–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Caldara, M. et al. Mucin biopolymers prevent bacterial aggregation by retaining cells in the free-swimming state. Curr. Biol. 22, 2325–2330 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alhede, M. et al. Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology 155, 3500–3508 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Schreiber, S. et al. The spatial orientation of Helicobacter pylori in the gastric mucus. Proc. Natl Acad. Sci. USA 101, 5024–5029 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Falush, D. et al. Recombination and mutation during long-term gastric colonization by Helicobacter pylori: estimates of clock rates, recombination size, and minimal age. Proc. Natl Acad. Sci. USA 98, 15056–15061 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Yasuda, K. et al. Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe 17, 385–391 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Marteyn, B. et al. Modulation of Shigella virulence in response to available oxygen in vivo. Nature 465, 355–358 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wessel, A. K. et al. Oxygen limitation within a bacterial aggregate. mBio 5, e00992 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bradshaw, D. J., Marsh, P. D., Watson, G. K. & Allison, C. Role of Fusobacterium nucleatum and coaggregation in anaerobe survival in planktonic and biofilm oral microbial communities during aeration. Infect. Immun. 66, 4729–4732 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bowler, P. G., Duerden, B. I. & Armstrong, D. G. Wound microbiology and associated approaches to wound management. Clin. Microbiol. Rev. 14, 244–269 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Turner, K. H., Everett, J., Trivedi, U., Rumbaugh, K. P. & Whiteley, M. Requirements for Pseudomonas aeruginosa acute burn and chronic surgical wound infection. PLoS Genet. 10, e1004518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Berry, D. et al. Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing. Proc. Natl Acad. Sci. USA 110, 4720–4725 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Schluter, J. & Foster, K. R. The evolution of mutualism in gut microbiota via host epithelial selection. PLoS Biol. 10, e1001424 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nielsen, A. T. et al. A bistable switch and anatomical site control Vibrio cholerae virulence gene expression in the intestine. PLoS Pathog. 6, e1001102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kamada, N. et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325–1329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rivera-Chavez, F. et al. Salmonella uses energy taxis to benefit from intestinal inflammation. PLoS Pathog. 9, e1003267 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Thiennimitr, P. et al. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc. Natl Acad. Sci. USA 108, 17480–17485 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Winter, S. E. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467, 426–429 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Leveau, J. H. & Lindow, S. E. Appetite of an epiphyte: quantitative monitoring of bacterial sugar consumption in the phyllosphere. Proc. Natl Acad. Sci. USA 98, 3446–3453 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Lee, S. M. et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429 (2013). This study showed how microbiogeography (targeting of B. fragilis to the intestinal crypts) can contribute to stable colonization of the host.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vaishnava, S. et al. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334, 255–258 (2011).

    Article  CAS  Google Scholar 

  70. Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Johansson, M. E. & Hansson, G. C. Microbiology. keeping bacteria at a distance. Science 334, 182–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Lidell, M. E., Moncada, D. M., Chadee, K. & Hansson, G. C. Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel. Proc. Natl Acad. Sci. USA 103, 9298–9303 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Chau, T. A. et al. Toll-like receptor 2 ligands on the staphylococcal cell wall downregulate superantigen-induced T cell activation and prevent toxic shock syndrome. Nat. Med. 15, 641–648 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Round, J. L. et al. The Toll-Like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332, 974–977 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bergstrom, K. S. et al. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog. 6, e1000902 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Velcich, A. et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295, 1726–1729 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Dejea, C. M. et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl Acad. Sci. USA 111, 18321–18326 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Momeni, B., Brileya, K. A., Fields, M. W. & Shou, W. Strong inter-population cooperation leads to partner intermixing in microbial communities. eLIFE 2, e00230 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chalmers, N. I., Palmer, R. J. Jr., Cisar, J. O. & Kolenbrander, P. E. Characterization of a Streptococcus sp.-Veillonella sp. community micromanipulated from dental plaque. J. Bacteriol. 190, 8145–8154 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Estrela, S. & Brown, S. P. Metabolic and demographic feedbacks shape the emergent spatial structure and function of microbial communities. PLoS Comput. Biol. 9, e1003398 (2013). This study used individual-based modelling to show that the strength of metabolic dependency determines the level of mixing in microbial communities.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zijnge, V. et al. Oral biofilm architecture on natural teeth. PLoS ONE 5, e9321 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kolenbrander, P. E., Palmer, R. J. Jr., Periasamy, S. & Jakubovics, N. S. Oral multispecies biofilm development and the key role of cell-cell distance. Nat. Rev. Microbiol. 8, 471–480 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Valm, A. M. et al. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc. Natl Acad. Sci. USA 108, 4152–4157 (2011). This study presents a 'nearest neighbour' network, in which frequencies of intercellular associations are described, for 15 taxonomic groups in human dental plaque.

    Article  CAS  PubMed  Google Scholar 

  84. Egland, P. G., Palmer, R. J. Jr., Kolenbrander, P. E. Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc. Natl Acad. Sci. USA 101, 16917–16922 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Jakubovics, N. S., Gill, S. R., Iobst, S. E., Vickerman, M. M. & Kolenbrander, P. E. Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. J. Bacteriol. 190, 3646–3657 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. He, X. et al. Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle. Proc. Natl Acad. Sci. USA 112, 244–249 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Kim, W., Racimo, F., Schluter, J., Levy, S. B. & Foster, K. R. Importance of positioning for microbial evolution. Proc. Natl Acad. Sci. USA 111, E1639–E1647 (2014). This study showed how inter-strain competition can select for novel positioning strategies in biofilms, such as hyper-secretion to push above neighbours.

    Article  CAS  PubMed  Google Scholar 

  88. Markussen, T. et al. Environmental heterogeneity drives within-host diversification and evolution of Pseudomonas aeruginosa. mBio 5, e01592-14 (2014).

    Article  Google Scholar 

  89. Yang, L. et al. Pattern differentiation in co-culture biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa. FEMS Immunol. Med. Microbiol. 62, 339–347 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Chew, S. C. et al. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides. mBio 5, e01536-14 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Huse, H. K. et al. Pseudomonas aeruginosa enhances production of a non-alginate exopolysaccharide during long-term colonization of the cystic fibrosis lung. PLoS ONE 8, e82621 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Eberl, L. & Tummler, B. Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: genome evolution, interactions and adaptation. Int. J. Med. Microbiol. 294, 123–131 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Bragonzi, A. et al. Modelling co-infection of the cystic fibrosis lung by Pseudomonas aeruginosa and Burkholderia cenocepacia reveals influences on biofilm formation and host response. PLoS ONE 7, e52330 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ryan, R. P. et al. Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Mol. Microbiol. 68, 75–86 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Twomey, K. B. et al. Bacterial cis-2-unsaturated fatty acids found in the cystic fibrosis airway modulate virulence and persistence of Pseudomonas aeruginosa. ISME J. 6, 939–950 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Armbruster, C. E. et al. Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in polymicrobial otitis media occurs via interspecies quorum signaling. mBio 1, e00102–10 (2014).

    Google Scholar 

  97. Park, S. et al. Motion to form a quorum. Science 301, 188 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Davies, D. G. & Marques, C. N. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J. Bacteriol. 191, 1393–1403 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Vega, N. M., Allison, K. R., Samuels, A. N., Klempner, M. S. & Collins, J. J. Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance. Proc. Natl Acad. Sci. USA 110, 14420–14425 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Connell, J. L., Kim, J., Shear, J. B., Bard, A. J. & Whiteley, M. Real-time monitoring of quorum sensing in 3D-printed bacterial aggregates using scanning electrochemical microscopy. Proc. Natl Acad. Sci. USA 111, 18255–18260 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Liu, X. et al. Real-time mapping of a hydrogen peroxide concentration profile across a polymicrobial bacterial biofilm using scanning electrochemical microscopy. Proc. Natl Acad. Sci. USA 108, 2668–2673 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Xiao, J. et al. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog. 8, e1002623 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. von Ohle, C. et al. Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine. Appl. Environ. Microbiol. 76, 2326–2334 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fazli, M. et al. Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds. J. Clin. Microbiol. 47, 4084–4089 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hutchison, J. B. et al. Single-cell control of initial spatial structure in biofilm development using laser trapping. Langmuir 30, 4522–4530 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. DeLeon, S. et al. Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro wound model. Infect. Immun. 82, 4718–4728 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kirkup, B. C. & Riley, M. A. Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 428, 412–414 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Cowan, S. E., Gilbert, E., Liepmann, D. & Keasling, J. D. Commensal interactions in a dual-species biofilm exposed to mixed organic compounds. Appl. Environ. Microbiol. 66, 4481–4485 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nielsen, A. T., Tolker-Nielsen, T., Barken, K. B. & Molin, S. Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environ. Microbiol. 2, 59–68 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Leriche, V., Briandet, R. & Carpentier, B. Ecology of mixed biofilms subjected daily to a chlorinated alkaline solution: spatial distribution of bacterial species suggests a protective effect of one species to another. Environ. Microbiol. 5, 64–71 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Connell, J. L., Ritschdorff, E. T., Whiteley, M. & Shear, J. B. 3D printing of microscopic bacterial communities. Proc. Natl Acad. Sci. USA 110, 18380–18385 (2013). This study illustrated how the spatial organization of multispecies communities can determine important virulence properties, such as antibiotic resistance.

    Article  CAS  PubMed  Google Scholar 

  112. Schillinger, C. et al. Co-localized or randomly distributed? Pair cross correlation of in vivo grown subgingival biofilm bacteria quantified by digital image analysis. PLoS ONE 7, e37583 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Settem, R. P., El-Hassan, A. T., Honma, K., Stafford, G. P. & Sharma, A. Fusobacterium nucleatum and Tannerella forsythia induce synergistic alveolar bone loss in a mouse periodontitis model. Infect. Immun. 80, 2436–2443 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Iwase, T. et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465, 346–349 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–547 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Guo, L. et al. Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology. Proc. Natl Acad. Sci. USA 112, 7569–7574 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Langermann, S. et al. Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276, 607–611 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Wessel, A. K., Hmelo, L., Parsek, M. R. & Whiteley, M. Going local: technologies for exploring bacterial microenvironments. Nat. Rev. Microbiol. 11, 337–348 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Leung, M. H., Wilkins, D. & Lee, P. K. Insights into the pan-microbiome: skin microbial communities of Chinese individuals differ from other racial groups. Sci. Rep. 5, 11845 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gould, J. C. & Mc, K. E. The carriage of Staphylococcus pyogenes var. aureus in the human nose. J. Hyg. (Lond.) 52, 304–310 (1954).

    Article  CAS  Google Scholar 

  121. Krismer, B. et al. Nutrient limitation governs Staphylococcus aureus metabolism and niche adaptation in the human nose. PLoS Pathog. 10, e1003862 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jeraldo, P. et al. Quantification of the relative roles of niche and neutral processes in structuring gastrointestinal microbiomes. Proc. Natl Acad. Sci. USA 109, 9692–9698 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Rosindell, J., Hubbell, S. P. & Etienne, R. S. The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26, 340–348 (2011).

    Article  PubMed  Google Scholar 

  124. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  125. Grice, E. A. et al. Topographical and temporal diversity of the human skin microbiome. Science 324, 1190–1192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    Article  PubMed  Google Scholar 

  127. Koch, G. et al. Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition. Cell 158, 1060–1071 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Planet, P. J. et al. Emergence of the epidemic methicillin-resistant Staphylococcus aureus strain USA300 coincides with horizontal transfer of the arginine catabolic mobile element and speG-mediated adaptations for survival on skin. mBio 4, e00889-13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  129. de Wit, R. & Bouvier, T. 'Everything is everywhere, but, the environment selects'; what did Baas Becking and Beijerinck really say? Environ. Microbiol. 8, 755–758 (2006).

    Article  PubMed  Google Scholar 

  130. Finlay, B. J. Global dispersal of free-living microbial eukaryote species. Science 296, 1061–1063 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Whitaker, R. J., Grogan, D. W. & Taylor, J. W. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301, 976–978 (2003).

    Article  CAS  Google Scholar 

  132. Martiny, J. B. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Dowd, S. E. et al. Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol. 8, 43 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Diggle, S. P., Griffin, A. S., Campbell, G. S. & West, S. A. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450, 411–414 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Kummerli, R., Gardner, A., West, S. A. & Griffin, A. S. Limited dispersal, budding dispersal, and cooperation: an experimental study. Evolution 63, 939–949 (2009).

    Article  PubMed  Google Scholar 

  137. Dimitriu, T. et al. Genetic information transfer promotes cooperation in bacteria. Proc. Natl Acad. Sci. USA 111, 11103–11108 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Schluter, J., Nadell, C. D., Bassler, B. L. & Foster, K. R. Adhesion as a weapon in microbial competition. ISME J. 9, 139–149 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Wang, M., Schaefer, A. L., Dandekar, A. A. & Greenberg, E. P. Quorum sensing and policing of Pseudomonas aeruginosa social cheaters. Proc. Natl Acad. Sci. USA 112, 2187–2191 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Rumbaugh, K. P. et al. Quorum sensing and the social evolution of bacterial virulence. Curr. Biol. 19, 341–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Arrhenius, O. Species and area. J. Ecol. 9, 95–99 (1921).

    Article  Google Scholar 

  142. Gleason, H. On the relation between species and area. Ecology 3, 158–162 (1922).

    Article  Google Scholar 

  143. Cornell, H. L., J. H. Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. J. Anim. Ecol. 61, 1–12 (1992).

    Article  Google Scholar 

  144. Lawton, J. Are there general laws in ecology? Oikos 84, 177–192 (1999).

    Article  Google Scholar 

  145. Hillebrand, H. B., T. Regional and local impact on species diversity - from pattern to processes. Oecologia 132, 479–491 (2002).

    Article  PubMed  Google Scholar 

  146. Horner-Devine, M. C., Lage, M., Hughes, J. B. & Bohannan, B. J. A taxa-area relationship for bacteria. Nature 432, 750–753 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Bell, T. et al. Larger islands house more bacterial taxa. Science 308, 1884 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Ranjard, L. et al. Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat. Commun. 4, 1434 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Whiteley laboratory for critical discussion of this manuscript. This work was supported by a US National Institutes of Health (NIH) Grant 1R01DE020100 (to M.W.) and a Human Frontier Science Program (HFSP) grant HFSP RGP0011/2014 (to S.P.B. and M.W.). M.W. is a Burroughs Wellcome Investigator in the Pathogenesis of Infectious Disease program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin Whiteley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Biofilms

Surface-attached microbial communities that are encased in a matrix (for example, of polysaccharides, proteins, and/or DNA) and are often polymicrobial as well as highly resistant to antibiotic therapy and the host immune system.

Polymicrobial

Diverse in species and/or strain content.

Aggregate

A population of very few to several cells arranged in a cluster (otherwise known as a microcolony or in vivo biofilm) with many of the same properties that are observed in much larger, traditional biofilms studied in vitro.

Synergy

A positive interaction term meaning 'greater than the sum of parts'. Here we use synergy to refer to microbial interactions that shape host health (disease synergy: two or more species in combination cause more severe infection than either could when acting alone) or microbial growth (growth synergy: each species grows better in combination than when alone). Note that growth synergy often, but not always, implies disease synergy.

Metagenomics

Sequence-based analysis of the DNA recovered from microbial communities. These studies describe the genetic repertoire of a microbial community.

Metatranscriptomics

Sequence-based analysis of the mRNA recovered from microbial communities. These studies provide information regarding gene expression in a microbial community.

Microbiogeography

Although 'biogeography' refers to the distribution of species through space and time, 'microbiogeography', as defined in this Review, is the spatial organization of pathogen and commensal microbial populations at the scale of single infections.

Pellicle

The permanent layer of proteins that coat oral surfaces and provide binding sites for early colonizers of dental plaque.

Pioneer species

The first species to colonize previously disrupted ecosystems.

Fimbriae

Hair-like bacterial appendages (also known as pili) that mediate surface attachment.

Cystic fibrosis

A human genetic disorder in which a defect in a transmembrane ion channel causes the accumulation of mucus in the lungs, acting as a rich substrate for microbial growth.

Quorum sensing

Density-dependent cell–cell communication where a constitutively produced signal, once it accumulates to a threshold concentration, can trigger microbial group behaviours.

Type III secretion system

A needle-like bacterial apparatus that delivers effector proteins into host cells.

Lactoferrin

A bactericidal host protein that sequesters iron.

Mucin

A class of gel-forming proteins that give mucus its viscous property.

Neutrophils

Host immune cells that unleash a mixture of redox-active molecules, in a process known as respiratory burst, to kill microorganisms.

Aerotaxis

Chemotaxis in response to an oxygen gradient.

Cheat

In social evolution, community members that exploit, but do not contribute to, the production of 'public goods'.

Respiration

A metabolic growth process characterized by the reduction of an electron acceptor (such as oxygen or nitrate).

Intestinal crypts

The narrow spaces that lie between villi (multicellular host structures that assist in nutrient absorption) in the small and large intestine that, in a non-diseased state, are very low in microbial presence.

RegIIIγ

A host antimicrobial lectin (polysaccharide-binding protein) that targets Gram-positive bacteria.

Mucin 2

(MUC2). A primary mucin (gel-forming glycoprotein) in the mucus layers of the small and large intestine.

Co-aggregation

Intercellular binding between genetically distinct cells, often mediated by the recognition of a polysaccharide on the target cell by a cognate surface protein on the partner cell.

Mucoid

A phenotypic variant that overproduces exopolysaccharide (for example, alginate produced by Pseudomonas aeruginosa).

Autoinducer 2

A signalling molecule that is synthesized and sensed by many bacterial species.

Pyocyanin

A broad-spectrum toxin produced by Pseudomonas aeruginosa that is upregulated in response to cell-wall fragments shed by Staphylococcus aureus, underlying synergistic virulence of these species in wound infections.

Cross-feeding

The consumption of a waste product of one microorganism by another microorganism that can utilize the waste product as a nutrient source.

Cross-protection

The shielding of one microorganism by another microorganism from an external stress.

Probiotics

Microorganisms that promote host health.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stacy, A., McNally, L., Darch, S. et al. The biogeography of polymicrobial infection. Nat Rev Microbiol 14, 93–105 (2016). https://doi.org/10.1038/nrmicro.2015.8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2015.8

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology