Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The design and analysis of transposon insertion sequencing experiments

Abstract

Transposon insertion sequencing (TIS) is a powerful approach that can be extensively applied to the genome-wide definition of loci that are required for bacterial growth under diverse conditions. However, experimental design choices and stochastic biological processes can heavily influence the results of TIS experiments and affect downstream statistical analysis. In this Opinion article, we discuss TIS experimental parameters and how these factors relate to the benefits and limitations of the various statistical frameworks that can be applied to the computational analysis of TIS data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transposon insertion sequencing (TIS) workflow.
Figure 2: Experimental considerations for TIS experiments.

Similar content being viewed by others

References

  1. Barquist, L., Boinett, C. J. & Cain, A. K. Approaches to querying bacterial genomes with transposon-insertion sequencing. RNA Biol. 10, 1161–1169 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van Opijnen, T. & Camilli, A. Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat. Rev. Microbiol. 11, 435–442 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. van Opijnen, T., Bodi, K. L. & Camilli, A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat. Methods 6, 767–772 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goodman, A. L. et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6, 279–289 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gawronski, J. D., Wong, S. M., Giannoukos, G., Ward, D. V. & Akerley, B. J. Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc. Natl Acad. Sci. USA 106, 16422–16427 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Langridge, G. C. et al. Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res. 19, 2308–2316 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chiang, S. L. & Rubin, E. J. Construction of a mariner-based transposon for epitope-tagging and genomic targeting. Gene 296, 179–185 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Rubin, E. J. et al. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc. Natl Acad. Sci. USA 96, 1645–1650 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goryshin, I. Y., Miller, J. A., Kil, Y. V., Lanzov, V. A. & Reznikoff, W. S. Tn5/IS50 target recognition. Proc. Natl Acad. Sci. USA 95, 10716–10721 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, Y. J. et al. Global assessment of genomic regions required for growth in Mycobacterium tuberculosis. PLoS Pathog. 8, e1002946 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chao, M. C. et al. High-resolution definition of the Vibrio cholerae essential gene set with hidden Markov model-based analyses of transposon-insertion sequencing data. Nucleic Acids Res. 41, 9033–9048 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lodge, J. K., Weston-Hafer, K. & Berg, D. E. Transposon Tn5 target specificity: preference for insertion at G/C pairs. Genetics 120, 645–650 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Green, B., Bouchier, C., Fairhead, C., Craig, N. L. & Cormack, B. P. Insertion site preference of Mu, Tn5, and Tn7 transposons. Mob. DNA 3, 3 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Christen, B. et al. The essential genome of a bacterium. Mol. Syst. Biol. 7, 528 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Barquist, L. et al. A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium. Nucleic Acids Res. 41, 4549–4564 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. DeJesus, M. A. et al. Bayesian analysis of gene essentiality based on sequencing of transposon insertion libraries. Bioinformatics 29, 695–703 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lamichhane, G. et al. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 100, 7213–7218 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Griffin, J. E. et al. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog. 7, e1002251 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zemansky, J. et al. Development of a mariner-based transposon and identification of Listeria monocytogenes determinants, including the peptidyl-prolyl isomerase PrsA2, that contribute to its hemolytic phenotype. J. Bacteriol. 191, 3950–3964 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johnson, C. M. & Grossman, A. D. Identification of host genes that affect acquisition of an integrative and conjugative element in Bacillus subtilis. Mol. Microbiol. 93, 1284–1301 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shevchenko, Y. et al. Systematic sequencing of cDNA clones using the transposon Tn5. Nucleic Acids Res. 30, 2469–2477 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Troy, E. B. et al. Understanding barriers to Borrelia burgdorferi dissemination during infection using massively parallel sequencing. Infect. Immun. 81, 2347–2357 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fu, Y., Waldor, M. K. & Mekalanos, J. J. Tn-Seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. Cell Host Microbe 14, 652–663 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pritchard, J. R. et al. ARTIST: high-resolution genome-wide assessment of fitness using transposon-insertion sequencing. PLoS Genet. 10, e1004782 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. van Opijnen, T. & Camilli, A. A fine scale phenotype-genotype virulence map of a bacterial pathogen. Genome Res. 22, 2541–2551 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carter, R. et al. Genomic analyses of pneumococci from children with sickle cell disease expose host-specific bacterial adaptations and deficits in current interventions. Cell Host Microbe 15, 587–599 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abel, S. et al. Sequence tag-based analysis of microbial population dynamics. Nat. Methods 12, 223–226 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaper, J. B., Morris, J. G. Jr & Levine, M. M. Cholera. Clin. Microbiol. Rev. 8, 48–86 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ritchie, J. M., Rui, H., Bronson, R. T. & Waldor, M. K. Back to the future: studying cholera pathogenesis using infant rabbits. mBio 1, e00047-10 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kamp, H. D., Patimalla-Dipali, B., Lazinski, D. W., Wallace-Gadsden, F. & Camilli, A. Gene fitness landscapes of Vibrio cholerae at important stages of its life cycle. PLoS Pathog. 9, e1003800 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zomer, A., Burghout, P., Bootsma, H. J., Hermans, P. W. & van Hijum, S. A. ESSENTIALS: software for rapid analysis of high throughput transposon insertion sequencing data. PLoS ONE 7, e43012 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lazinski, D. W. & Camilli, A. Homopolymer tail-mediated ligation PCR: a streamlined and highly efficient method for DNA cloning and library construction. Biotechniques 54, 25–34 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gallagher, L. A., Shendure, J. & Manoil, C. Genome-scale identification of resistance functions in Pseudomonas aeruginosa using Tn-seq. mBio 2, e00315-10 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yamaichi, Y. et al. High-resolution genetic analysis of the requirements for horizontal transmission of the ESBL plasmid from Escherichia coli O104:H4. Nucleic Acids Res. 43, 348–360 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fu, G. K. et al. Molecular indexing enables quantitative targeted RNA sequencing and reveals poor efficiencies in standard library preparations. Proc. Natl Acad. Sci. USA 111, 1891–1896 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shiroguchi, K., Jia, T. Z., Sims, P. A. & Xie, X. S. Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes. Proc. Natl Acad. Sci. USA 109, 1347–1352 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Baugh, L. et al. Combining functional and structural genomics to sample the essential Burkholderia structome. PLoS ONE 8, e53851 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Valentino, M. D. et al. Genes contributing to Staphylococcus aureus fitness in abscess- and infection-related ecologies. mBio 5, e01729-14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Klein, B. A. et al. Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis. BMC Genomics 13, 578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Deng, J., Su, S., Lin, X., Hassett, D. J. & Lu, L. J. A statistical framework for improving genomic annotations of prokaryotic essential genes. PLoS ONE 8, e58178 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Remmele, C. W. et al. Transcriptional landscape and essential genes of Neisseria gonorrhoeae. Nucleic Acids Res. 42, 10579–10595 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. DeJesus, M. A. & Ioerger, T. R. A. Hidden Markov Model for identifying essential and growth-defect regions in bacterial genomes from transposon insertion sequencing data. BMC Bioinformatics 14, 303 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Brutinel, E. D. & Gralnick, J. A. Anomalies of the anaerobic tricarboxylic acid cycle in Shewanella oneidensis revealed by Tn-seq. Mol. Microbiol. 86, 273–283 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, Y. J. et al. Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell 155, 1296–1308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mann, B. et al. Control of virulence by small RNAs in Streptococcus pneumoniae. PLoS Pathog. 8, e1002788 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McDonough, E., Lazinski, D. W. & Camilli, A. Identification of in vivo regulators of the Vibrio cholerae xds gene using a high-throughput genetic selection. Mol. Microbiol. 92, 302–315 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moll, A. et al. Cell separation in Vibrio cholerae is mediated by a single amidase whose action is modulated by two nonredundant activators. J. Bacteriol. 196, 3937–3948 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dorr, T. et al. A novel peptidoglycan binding protein crucial for PBP1A-mediated cell wall biogenesis in Vibrio cholerae. PLoS Genet. 10, e1004433 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Skurnik, D. et al. A comprehensive analysis of in vitro and in vivo genetic fitness of Pseudomonas aeruginosa using high-throughput sequencing of transposon libraries. PLoS Pathog. 9, e1003582 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Turner, K. H., Everett, J., Trivedi, U., Rumbaugh, K. P. & Whiteley, M. Requirements for Pseudomonas aeruginosa acute burn and chronic surgical wound infection. PLoS Genet. 10, e1004518 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46–53 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Khatiwara, A. et al. Genome scanning for conditionally essential genes in Salmonella enterica serotype Typhimurium. Appl. Environ. Microbiol. 78, 3098–3107 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Santa Maria, J. P. Jr et al. Compound-gene interaction mapping reveals distinct roles for Staphylococcus aureus teichoic acids. Proc. Natl Acad. Sci. USA 111, 12510–12515 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hsiao, A. et al. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515, 423–426 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moxon, E. R. & Murphy, P. A. Haemophilus influenzae bacteremia and meningitis resulting from survival of a single organism. Proc. Natl Acad. Sci. USA 75, 1534–1536 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Barnes, P. D., Bergman, M. A., Mecsas, J. & Isberg, R. R. Yersinia pseudotuberculosis disseminates directly from a replicating bacterial pool in the intestine. J. Exp. Med. 203, 1591–1601 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kaiser, P., Slack, E., Grant, A. J., Hardt, W. D. & Regoes, R. R. Lymph node colonization dynamics after oral Salmonella typhimurium infection in mice. PLoS Pathog. 9, e1003532 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Grant, A. J. et al. Modelling within-host spatiotemporal dynamics of invasive bacterial disease. PLoS Biol. 6, e74 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Howard Hughes Medical Institute, the US National Institutes of Health (AI R37-042347 to M.K.W.; 5F32 GM108355-02 to M.C.C.), and the Swiss Foundation for Grants in Biology and Medicine (PASMP3_142724/1 to S.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew K. Waldor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

DATABASES

Sequencing Read Archive (SRA)

FURTHER INFORMATION

Picard

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, M., Abel, S., Davis, B. et al. The design and analysis of transposon insertion sequencing experiments. Nat Rev Microbiol 14, 119–128 (2016). https://doi.org/10.1038/nrmicro.2015.7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2015.7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing