Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunoglobulin transport across polarized epithelial cells

Key Points

  • Transcytosis is a transport mechanism through which proteins are internalized from one surface of an epithelial cell and then delivered to the other. Transcytosis is an important mechanism used by epithelial cells to maintain surface polarity. Receptor-mediated transcytosis was first described for the immunoglobulins.

  • Transport of IgA and IgM is mediated through the polymeric immunoglobulin receptor pIgR, and involve very similar mechanisms. pIgR binds to its ligand on the basolateral surface of epithelial cells. En route or at the apical surface, pIgR is proteolytically cleaved and the extracellular binding domain of the receptor, bound to IgA, is released into the mucosal secretions. This cleaved extracellular domain of the receptor is known as the secretory component (SC).

  • Secreted IgA, together with the SC, is known as secretory IgA (sIgA), which is important for neutralizing extracellular pathogens. pIgR–dIgA complexes are important in intracellular virus neutralization and the clearing of antigens from the lamina propria.

  • Transport of IgG is mediated through FcRn, and binding takes place either at the cell surface or in endosomes. Transport is pH dependent and can occur in both the apical-to-basolateral and basolateral-to-apical direction.

  • IgG is also important in neutralizing pathogens. In addition, FcRn is important in regulating IgG catabolism and FcRn–IgG complexes might have an important function in immune activation and tolerance.

  • Receptor-mediated transcytosis involves transport through multiple endocytic compartments, although the exact number and identity of these compartments is still being defined.

  • Transcytosis of pIgR and FcRn is highly regulated. pIgR-mediated transport involves the cytoskeleton, multiple Rab GTPases and a number of signalling cascades, some of which depend on ligand binding. The regulation of FcRn-dependent transport might involve the cytoskeleton and signal transduction pathways.

Abstract

IgA, IgG and IgM are transported across epithelial cells in a receptor-mediated process known as transcytosis. In addition to neutralizing pathogens in the lumen of the gastrointestinal, respiratory and urogenital tracts, these antibody–receptor complexes are now known to mediate intracellular neutralization of pathogens and might also be important in immune activation and tolerance. Recent studies on the intracellular transport pathways of antibody–receptor complexes and antibody-stimulated receptor-mediated transcytosis are providing new insight into the nature and regulation of endocytic pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain structure of pIgR and FcRn.
Figure 2: Functions of dIgA/sIgA and pIgR.
Figure 3: Functions of IgG and FcRn.
Figure 4: Transcytotic pathway of pIgR–dIgA.
Figure 5: Transcytotic pathways of FcRn–IgG.
Figure 6: Model for ligand-stimulated transcytosis of pIgR–dIgA.

Similar content being viewed by others

References

  1. Corthesy, B. & Kraehenbuhl, J.-P. Antibody-mediated protection of mucosal surfaces. Curr. Top. Microbiol. Immunol. 236, 93–111 (1999).

    CAS  PubMed  Google Scholar 

  2. Lamm, M. Interaction of antigens and antibodies at mucosal surfaces. Annu. Rev. Microbiol. 51, 311–340 (1997).

    CAS  PubMed  Google Scholar 

  3. Didierlaurent, A., Sirard, J.-C., Kraehenbuhl, J.-P. & Neutra, M. R. How the gut senses its content. Cell Microbiol. 4, 61–72 (2002).

    CAS  PubMed  Google Scholar 

  4. Neutra, M. R., Mantis, N. J. & Kraehenbuhl, J.-P. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nature Immunol. 2, 1004–1009 (2001).

    CAS  Google Scholar 

  5. Hunziker, W. & Kraehenbuhl, J.-P. Epithelial transcytosis of immunoglobulins. J. Mammary Gland Biol. Neoplasia 3, 287–302 (1998).

    CAS  PubMed  Google Scholar 

  6. Mostov, K. E., Verges, M. & Altschuler, Y. Membrane traffic in polarized epithelial cells. Curr. Opin. Cell Biol. 12, 483–490 (2000).

    CAS  PubMed  Google Scholar 

  7. Bartles, J. R., Ferraci, H. M., Stieger, B. & Hubbard, A. L. Biogenesis of the rat hepatocyte plasma membrane in vivo: Comparison of the pathways taken by apical and basolateral proteins using subcellular fractionation. J. Cell Biol. 105, 1241–1251 (1987).

    CAS  PubMed  Google Scholar 

  8. Mostov, K. E. Transepithelial transport of immunoglobulins. Annu. Rev. Immunol. 12, 63–84 (1994).

    CAS  PubMed  Google Scholar 

  9. Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).Describes a T-cell-independent mechanism for the production of IgA directed against commensal bacteria.

    CAS  PubMed  Google Scholar 

  10. Fagarasan, S., Kinoshita, K., Muramatsu, M., Ikuta, K. & Honjo, T. In situ class switching and differentiation of IgA-producing cells in the gut lamina propria. Nature 413, 639–643 (2001).

    CAS  PubMed  Google Scholar 

  11. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol. 2, 361–367 (2001).Shows that dendritic cells can directly sample the gut microflora.

    CAS  Google Scholar 

  12. Mostov, K. E., Friedlander, M. & Blobel, G. The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains. Nature 308, 37–43 (1984).

    CAS  PubMed  Google Scholar 

  13. Shimada, S.-I. et al. Generation of polymeric immunoglobulin receptor-deficient mouse with marked reduction of secretory IgA. J. Immunol. 163, 5367–5373 (1999).

    CAS  PubMed  Google Scholar 

  14. Zhang, J.-R. et al. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102, 827–837 (2000).This paper identifies the pIgR as a receptor for Pneumococci.

    CAS  PubMed  Google Scholar 

  15. Fubara, E. S. & Freter, R. Protection against enteric bacterial infection by secretory IgA antibodies. J. Immunol. 111, 395–403 (1973).

    CAS  PubMed  Google Scholar 

  16. Outlaw, M. C. & Dimmock, N. J. Mechanism of neutralization of influenza virus on mouse tracheal epithelial cells by mouse monoclonal polymeric IgA and polyclonal IgM directed against the viral haemaglutinin. J. Gen. Virol. 71, 69–76 (1990).

    CAS  PubMed  Google Scholar 

  17. Enriquez, F. J. & Riggs, M. W. Role of immunoglobulin A monoclonal antibodies against P23 in controlling murine Cryptosporidium parvum infection. Infect. Immun. 66, 4469–4473 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Williams, R. C. & Gibbons, R. J. Inhibition of bacterial adherence by secretory immunoglobulin A: a mechanism of antigen disposal. Science 177, 697–699 (1972).

    CAS  PubMed  Google Scholar 

  19. Alfsen, A., Iniguez, P., Bouguyon, E. & Bomsel, M. Secretory IgA specific for a conserved epitope on gp41 envelope glycoprotein inhibits epithelial transcytosis of HIV-1. J. Immunol. 166, 6257–6265 (2001).

    CAS  PubMed  Google Scholar 

  20. Hocini, H. & Bomsel, M. Infectious human immunodeficiency virus can rapidly penetrate a tight human epithelial barrier by transcytosis in a process impaired by mucosal immunoglobulins. J. Infect. Dis. 179, S448–S453 (1999).

    CAS  PubMed  Google Scholar 

  21. Vaerman, J. P., Derick-Langendries, A., Rits, M. & Delacroix, D. Neutralization of cholera toxin by rat bile secretory IgA antibodies. Immunol. 54, 601–603 (1985).

    CAS  Google Scholar 

  22. Fujioka, H. et al. Immunocytochemical colocalization of specific immunoglobulin A with sendai virus protein in infected polarized epithelium. J. Exp. Med. 188, 1223–1229 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mazanec, M. B., Kaetzel, C. S., Lamm, M., Fletcher, D. & Nedrud, J. G. Intracellular neutralization of virus by immunoglobulin A antibodies. Proc. Natl Acad. Sci. USA 89, 6901–6905 (1992).The first demonstration of the intracellular virus neutralization by pIgR–dIgA.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaetzel, C. S., Robinson, J. K., Chintalachavuru, K. R., Vaerman, J.-P. & Lamm, M. The polymeric immunoglobulin receptor (secretory component) mediates transport of immune complexes across epithelial cells: a local defense function of IgA. Proc. Natl Acad. Sci. USA 88, 8796–8780 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Daeron, M. Fc receptor biology. Annu. Rev. Immunol. 15, 203–234 (1997).

    CAS  PubMed  Google Scholar 

  26. Simister, N. E. & Mostov, K. E. An Fc receptor structurally related to MHC class I antigens. Nature 337, 184–187 (1989).

    CAS  PubMed  Google Scholar 

  27. Burmeister, W. P., Gastinel, L. N., Simister, N. E., Blum, M. L. & Bjorkman, P. J. Crystal structure at 2.2 A resolution of the MHC-related neonatal Fc receptor. Nature 372, 336–343 (1994).Determination of the crystal structure of FcRn.

    CAS  PubMed  Google Scholar 

  28. Praetor, A. & Hunziker, W. β2-microglobulin is important for cell surface expression and pH-dependent IgG binding of human FcRn. J. Cell Sci. 115, 2389–2397 (2002).

    CAS  PubMed  Google Scholar 

  29. Rodewald, R. pH-dependent binding of immunoglobulins to intestinal cells of the neonatal rat. J. Cell Biol. 71, 666–670 (1976).

    CAS  PubMed  Google Scholar 

  30. Rodewald, R. Intestinal transport of antibodies in the newborn rat. J. Cell Biol. 58, 189–211 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rodewald, R. & Abrahamson, D. R. Ciba Foundation Symposium 92, 209–232 (Pitman Books Ltd, London, 1982).

  32. Roberts, D. M., Guenthert, M. & Rodewald, R. Isolation and characterization of the Fc receptor from fetal yolk sac of the rat. J. Cell Biol. 111, 1867–1876 (1990).Shows that IgG binding to FcRn could occur in endosomes and not only at the plasma membrane.

    CAS  PubMed  Google Scholar 

  33. Leach, J. L. et al. Isolation from human placenta of the IgG transporter, FcRn, and localization to the syncytiotrophoblast. J. Immunol. 157, 3317–3322 (1996).

    CAS  PubMed  Google Scholar 

  34. Brambell, F. W. R., Hemmings, W. A. & Morris, I. G. A theoretical model of gammaglobulin catabolism. Nature 203, 1352–1355 (1964).

    CAS  PubMed  Google Scholar 

  35. Borvak, J. et al. Functional expression of the MHC class I-related receptor, FcRn, in endothelial cells of mice. Int. Immunol. 10, 1289–1298 (1998).

    CAS  PubMed  Google Scholar 

  36. Ghetie, V. et al. Abnormally short serum half-lives of IgG in β2-microglobulin-deficient mice. Eur. J. Immunol. 26, 690–696 (1996).Confirms that FcRn is important in IgG catabolism.

    CAS  PubMed  Google Scholar 

  37. Ghetie, V. & Ward, E. S. Multiple roles for the major histocompatibility complex class I-related receptor FcRn. Annu. Rev. Immunol. 18, 739–766 (2000).

    CAS  PubMed  Google Scholar 

  38. Israel, E. J. et al. Expression of the neonatal Fc receptor, FcRn, on human intestinal epithelial cells. Immunol. 92, 69–74 (1997).

    CAS  Google Scholar 

  39. Dickinson, B. L. et al. Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J. Clin. Invest. 104, 903–911 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Spiekermann, G. M. et al. Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung. J. Exp. Med. 196, 303–310 (2002).Demonstrates that FcRn can transport antigens from the luminal to serosal surface of the epithelium.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Merill, W. W., Naegel, G. P., Olchowski, J. J. & Reynolds, H. Y. Immunoglobulin G subclass proteins in serum and lavage fluid of normal subjects. Quantitation and comparison with immunoglobulins A and E. Am. Rev. Respir. Dis. 131, 584–587 (1985).

    Google Scholar 

  42. Kitz, R., Ahrens, P. & Zielen, S. Immunoglobulin levels in bronchoalveolar lavage fluid of children with chronic chest disease. Pediatr. Pulmonol. 29, 443–451 (2000).

    CAS  PubMed  Google Scholar 

  43. Okamoto, C. T., Shia, S.-P., Bird, C., Mostov, K. E. & Roth, M. G. The cytoplasmic domain of the polymeric immunoglobulin receptor contains two internalization signals that are distinct from its basolateral sorting signal. J. Biol. Chem. 267, 9925–9932 (1992).

    CAS  PubMed  Google Scholar 

  44. Okamoto, C. T., Song, W., Bomsel, M. & Mostov, K. E. Rapid internalization of the polymeric immunoglobulin receptor requires phosphorylated serine 726. J. Biol. Chem. 269, 15676–15682 (1994).

    CAS  PubMed  Google Scholar 

  45. Bucci, C. et al. Rab5a is a common component of the apical and basolateral endocytic machinery in polarized epithelial cells. Proc. Natl Acad. Sci. USA 91, 5061–5065 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Leung, S.-M., Ruiz, W. G. & Apodaca, G. Sorting of membrane and fluid at the apical pole of polarized MDCK cells. Mol. Biol. Cell 11 (2000).

  47. Apodaca, G., Katz, L. A. & Mostov, K. E. Receptor-mediated transcytosis of IgA in MDCK cells is via apical recycling endosomes. J. Cell Biol. 125, 67–86 (1994).

    CAS  PubMed  Google Scholar 

  48. Wang, E. et al. Apical and basolateral pathways of MDCK cells meet in acidic common endosomes distinct from a nearly-neutral apical recycling endosome. Traffic 1, 480–493 (2000).

    CAS  PubMed  Google Scholar 

  49. Sheff, D. R., Daro, E. A., Hull, M. & Mellman, I. The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J. Cell Biol. 145, 123–139 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Odorizzi, G., Pearse, A., Domingo, D., Trowbridge, I. S. & Hopkins, C. R. Apical and basolateral endosomes of MDCK cells are interconnected and contain a polarized sorting mechanism. J. Cell Biol. 135, 139–152 (1996).

    CAS  PubMed  Google Scholar 

  51. Brown, P. S. et al. Definition of distinct compartments in polarized Madin-Darby Canine Kidney (MDCK) cells for membrane-volume sorting, polarized sorting and apical recycling. Traffic 1, 124–140 (2000).

    CAS  PubMed  Google Scholar 

  52. Hemery, L., Durand-Schneider, A.-M., Feldmann, G., Vaerman, J.-P. & Maurice, M. The transcytotic pathway of an apical plasma membrane protein (B10) in hepatocytes is similar to that of IgA and occurs via a tubular pericentriolar compartment. J. Cell Sci. 109, 1215–1227 (1996).

    CAS  PubMed  Google Scholar 

  53. Ihrke, G. et al. WIF-B cells: an in vitro model for studies of hepatocyte polarity. J. Cell Biol. 123, 1761–75 (1993).

    CAS  PubMed  Google Scholar 

  54. Zacchi, P. et al. Rab17 regulates membrane trafficking through apical recycling endosomes in polarized epithelial cells. J. Cell Biol. 140, 1039–1053 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hunziker, W. & Peters, P. J. Rab17 localizes to recycling endosomes and regulates receptor-mediated transcytosis in epithelial cells. J. Biol. Chem. 273, 15734–15741 (1998).

    CAS  PubMed  Google Scholar 

  56. Barroso, M. & Sztul, E. Basolateral to apical transcytosis in polarized cells is indirect and involves BFA and trimeric G protein sensitive passage through the apical endosome. J. Cell Biol. 124, 83–100 (1994).

    CAS  PubMed  Google Scholar 

  57. Casanova, J. E. et al. Association of Rab25 and Rab11a with the apical recycling system of polarized Madin-Darby canine kidney cells. Mol. Biol. Cell 10, 47–61 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, X., Kumar, R., Navarre, J., Casanova, J. E. & Goldenring, J. R. Regulation of vesicle trafficking in Madin-Darby canine kidney cells by Rab11a and Rab25. J. Biol. Chem. 275, 29138–29146 (2000).

    CAS  PubMed  Google Scholar 

  59. Breitfeld, P. P., Harris, J. M. & Mostov, K. M. Postendocytotic sorting of the ligand for the polymeric immunoglobulin receptor in Madin-Darby canine kidney cells. J. Cell Biol. 109, 475–486 (1989).

    CAS  PubMed  Google Scholar 

  60. Ellinger, I., Schwab, M., Stefanescu, A., Hunziker, W. & Fuchs, R. IgG transport across trophoblast-derived BeWo cells: a model system to study IgG transport in the placenta. Eur. J. Immunol. 29, 733–744 (1999).

    CAS  PubMed  Google Scholar 

  61. Praetor, A., Ellinger, I. & Hunziker, W. Intracellular traffic of the MHC class I-like IgG Fc receptor, FcRn, expressed in epithelial MDCK cells. J. Cell Sci. 112, 2291–2299 (1999).

    CAS  PubMed  Google Scholar 

  62. McCarthy, K. M., Yoong, Y. & Simister, N. E. Bidirectional transcytosis of IgG by the rat neonatal Fc receptor expressed in a rat kidney cell line: a system to study protein transport across epithelia. J. Cell Sci. 113, 1277–1285 (2000).

    CAS  PubMed  Google Scholar 

  63. Antohe, F., Radulescu, L., Gafencu, A., Ghetie, V. & Simionescu, M. Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells. Human Immunol. 62, 93–105 (2001).

    CAS  Google Scholar 

  64. Abrahamson, D. R. & Rodewald, R. Evidence for the sorting of endocytic vesicle contents during the receptor-mediated transport of IgG across the newborn rat intestine. J. Cell Biol. 91, 270–280 (1981).

    CAS  PubMed  Google Scholar 

  65. Rodewald, R. & Kraehenbuhl, J.-P. Receptor-mediated transport of IgG. J. Cell Biol. 99, 159s–164s (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Leach, L., Eaton, B. M., Firth, J. A. & Contractor, S. F. Uptake and intracellular routing of peroxidase-conjugated immunoglobulin-G by the perfused human placenta. Cell Tissue Res. 261, 383–388 (1990).

    CAS  PubMed  Google Scholar 

  67. Wu, Z. & Simister, N. E. Tryptophan- and dileucine-based endocytosis signals in the neonatal Fc receptor. J. Biol. Chem 276, 5240–5247 (2001).

    CAS  PubMed  Google Scholar 

  68. Futter, C. E. et al. In polarized MDCK cells basolateral vesicles arise from clathrin-gamma-adaptin-coated domains on endosomal tubules. J. Cell Biol. 141, 611–623 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hunziker, W., Mâle, P. & Mellman, I. Differential microtubule requirements for transcytosis in MDCK cells. EMBO J. 9, 3515–3525 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Maples, C. J., Ruiz, W. G. & Apodaca, G. Both microtubules and actin filaments are required for efficient postendocytic traffic of the polymeric immunoglobulin receptor in polarized Madin-Darby canine kidney cells. J. Biol. Chem. 272, 6741–6751 (1997).

    CAS  PubMed  Google Scholar 

  71. Leung, S.-M. et al. Modulation of endocytic traffic in polarized MDCK cells by the small GTPase RhoA. Mol. Biol. Cell 10, 4369–4384 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Jou, T.-S. et al. Selective alterations in biosynthetic and endocytic protein traffic in Madin-Darby canine kidney epithelial cells expressing mutants of the small GTPase Rac1. Mol. Biol. Cell 11, 287–304 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rojas, R., Ruiz, W. G., Leung, S. M., Jou, T. S. & Apodaca, G. Cdc42-dependent modulation of tight junctions and membrane protein traffic in polarized MDCK cells. Mol. Biol. Cell 12, 2257–2274 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. van IJzendoorn, S. C. D., Tuvim, M. J., Weimbs, T., Dickey, B. F. & Mostov, K. E. Direct interactions between Rab3b and the polymeric immunoglobulin receptor controls ligand-stimulated transcytosis in epithelial cells. Dev. Cell 2, 219–228 (2002).Demonstrates that dIgA binding stimulates pIgR transcytosis through the action of the Rab3b GTPase.

    CAS  PubMed  Google Scholar 

  75. Bomsel, M. & Mostov, K. E. Possible role of both the α and βγ subunits of the heterotrimeric G protein, Gs, in transcytosis of the polymeric immunoglobulin receptor. J. Biol. Chem. 268, 25824–25835 (1993).

    CAS  PubMed  Google Scholar 

  76. Hansen, S. H. & Casanova, J. E. Gsα stimulates transcytosis and apical secretion in MDCK cells through cAMP and protein kinase A. J. Cell Biol. 126, 677–688 (1994).

    CAS  PubMed  Google Scholar 

  77. Barroso, M. R., Nelson, D. S. & Sztul, E. S. TAP/p115, a general fusion factor is homologous to yeast US01 and is required for stable binding of vesicles to target membrane. Proc. Natl Acad. Sci. USA 92, 527–531 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Apodaca, G., Enrich, C. & Mostov, K. E. The calmodulin antagonist, W-13, alters transcytosis, recycling, and the morphology of the endocytic pathway in MDCK cells. J. Biol. Chem. 269, 19005–19013 (1994).

    CAS  PubMed  Google Scholar 

  79. Chapin, S., Enrich, C., Aroeti, B., Havel, R. & Mostov, K. Calmodulin binds to the basolateral targeting signal of the polymeric immunoglobulin receptor. J. Biol. Chem. 271, 1336–1342 (1996).

    CAS  PubMed  Google Scholar 

  80. Hansen, S. H., Olsson, A. & Casanova, J. E. Wortmannin, an inhibitor of phosphoinositide 3-kinase, inhibits transcytosis in polarized epithelial cells. J. Biol. Chem. 270, 28425–28432 (1995).

    CAS  PubMed  Google Scholar 

  81. Tuma, P. L., Nyasae, L. K., Backer, J. M. & Hubbard, A. L. Vps34p differentially regulates endocytosis from the apical and basolateral domains in polarized hepatic cells. J. Cell Biol. 154, 1197–1208 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Low, S. H. et al. The SNARE machinery is involved in apical plasma membrane trafficking in MDCK cells. J. Cell Biol. 141, 1503–1513 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Calvo, M. et al. Cellubrevin is present in the basolateral endocytic compartment of hepatocytes and follows the transcytotic pathway after IgA internalization. J. Biol. Chem. 275, 7910–7917 (2000).

    CAS  PubMed  Google Scholar 

  84. Apodaca, G., Cardone, M. H., Whiteheart, S. W., DasGupta, B. R. & Mostov, K. E. Reconstitution of transcytosis in SLO-permeabilized MDCK cells: existence of an NSF dependent fusion mechanism with the apical surface of MDCK cells. EMBO J. 15, 1471–1481 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Cardone, M. H. et al. Signal transduction by the polymeric immunoglobulin receptor suggests a role in regulation of receptor transcytosis. J. Cell Biol. 133, 1–9 (1996).

    Google Scholar 

  86. Cardone, M. H., Smith, B. L., Song, W., Mochley-Rosen, D. & Mostov, K. E. Phorbol myristate acetate-mediated stimulation of transcytosis and apical recycling in MDCK cells. J. Cell Biol. 124, 717–727 (1994).

    CAS  PubMed  Google Scholar 

  87. Luton, F., Vergés, M., Vaerman, J.-P., Sudol, M. & Mostov, K. E. The src family protein tyrosine kinase p62yes control polymeric IgA transcytosis in vivo. Mol. Cell 4, 627–632 (1999).

    CAS  PubMed  Google Scholar 

  88. Luton, F., Cardone, M. H., Zhang, M. & Mostov, K. E. Role of tyrosine phosphorylation in ligand-induced regulation of transcytosis of the polymeric Ig receptor. Mol. Biol. Cell 9, 1787–1802 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Henkel, J. R., Apodaca, G., Altschuler, Y., Hardy, S. & Weisz, O. A. Selective perfurbation of apical membrane traffic by expression of influenza M2, an acid-activated channel, in polarized Madin-Darby canine kidney cells. Mol. Biol. Cell 9, 2477–2490 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hansen, G. H. et al. Transcytosis of immunglobulin A in the mouse enterocyte occurs through glycoplipid raft- and Rab17-containing compartments. Gastroenterol. 116, 610–622 (1999).

    CAS  Google Scholar 

  91. Hunziker, W., Whitney, J. A. & Mellman, I. Selective inhibition of transcytosis by Brefeldin A in MDCK cells. Cell 57, 1–20 (1991).

    Google Scholar 

  92. Casanova, J. E., Breitfeld, P. P., Ross, S. A. & Mostov, K. E. Phosphorylation of the polymeric immunoglobulin receptor required for its efficient transcytosis. Science 248, 742–745 (1990).

    CAS  PubMed  Google Scholar 

  93. Singer, K. L. & Mostov, K. E. Dimerization of the polymeric immunoglobulin receptor controls its transcytotic trafficking. Mol. Biol. Cell 9, 901–915 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Song, W., Bomsel, M., Casanova, J., Vaerman, J.-P. & Mostov, K. E. Stimulation of transcytosis of the polymeric immunoglobulin receptor by dimeric IgA. Proc. Natl Acad. Sci. USA 91, 163–166 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Giffroy, D. et al. In vivo stimulation of polymeric Ig receptor transcytosis by circulating polymeric IgA in rat liver. Int. Immunol. 10, 347–354 (1998).Together with reference 94, shows that dIgA stimulates pIgR transcytosis both in vitro and in vivo.

    CAS  PubMed  Google Scholar 

  96. Giffroy, D., Courtoy, P. J. & Vaerman, J. P. Polymeric IgA binding to the human pIgR elicits intracellular signalling, but fails to stimulate pIgR-transcytosis. Scand. J. Immunol. 53, 56–64 (2001).

    CAS  PubMed  Google Scholar 

  97. Luton, F. & Mostov, K. E. Transduction of basolateral-to-apical signals across epithelial cells: ligand-stimulated transcytosis of the polymeric immunoglobulin receptor requires two signals. Mol. Biol. Cell 10, 1409–1427 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. McCarthy, K. M. et al. Effects of mutations in potential phosphorylation sites on transcytosis of FcRn. J. Cell Sci. 114, 1591–1598 (2001).

    CAS  PubMed  Google Scholar 

  99. Ellinger, I., Rothe, A., Grill, M. & Fuchs, R. Apical to basolateral transcytosis and apical recycling of immunoglobulin G in trophoblast-derived BeWo cells: effects of low temperature, nocodazole, and cychalasin D. Exp. Cell Res. 269, 322–331 (2001).

    CAS  PubMed  Google Scholar 

  100. Stefaner, I., Praetor, A. & Hunziker, W. Nonvectorial surface transport, endocytosis via a di-leucine-based motif, and bidirectional transcytosis of chimera encoding the cytosolic tail of rat FcRn expressed in Madin-Darby canine kidney cells. J. Biol. Chem 274, 8998–9005 (1999).

    CAS  PubMed  Google Scholar 

  101. Corthesy, B. & Spertini, F. Secretory immunoglobulin A: from mucosal protection to vaccine development. Biol. Chem. 380, 1251–1262 (1999).

    CAS  PubMed  Google Scholar 

  102. Corthésy, B. Recombinant immunoglobulin A: powerful tools for fundamental and applied research. Trends Biotech. 20, 65–71 (2002).

    Google Scholar 

  103. Ferkol, T. et al. Gene transfer into the airway epithelium of animals by targeting the polymeric immunoglobulin receptor. J. Clin. Invest. 95, 493–502 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Raghavan, M. & Bjorkman, P. J. Fc receptors and their interactions with immunoglobulins. Annu. Rev. Cell Dev. Biol. 12, 181–220 (1996).

    CAS  PubMed  Google Scholar 

  105. Ma, J. K. et al. Generation and assembly of secretory antibodies in plants. Science 268, 716–719 (1995).

    CAS  PubMed  Google Scholar 

  106. Ma, J. K. et al. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nature Med. 4, 601–606 (1998).Together with reference 105, shows that recombinant sIgA can be made in plants, and when orally administered, can decrease bacterial colonization.

    CAS  PubMed  Google Scholar 

  107. Sheff, D. R., Kroschewski, R. & Mellman, I. Actin dependence of polarized receptor recycling in Madin-Darby canine kidney cell endosomes. Mol. Biol. Cell 13, 262–275 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Gibson, A. et al. Sorting mechanisms regulating membrane protein traffic in the apical transcytotic pathway of polarized MDCK cells. J. Cell Biol. 143, 81–94 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues for omitting references in this review because of space limitations. We would like to thank R. Hughey, O. Weisz and S. Truschel for their helpful comments and discussion. This work was supported by a grant to G.A. from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Apodaca.

Related links

Related links

DATABASES

LocusLink

Cdc42

cellubrevin

EEA1

erythropoietin

FcRn

p115

phospholipase Cγ

pIgR

PKCɛ

protein kinase C

Rab11

Rab17

Rab25

Rab3b

Rac1

RhoA

SNAP-25

Tf

Glossary

MUCOSA

The outermost layer of tissue that lines the surfaces of the gut, respiratory tract and urogenital tract. It consists of a surface epithelium, the lamina propria and might also include smooth muscle.

TIGHT JUNCTION

A circumferential ring at the apex of epithelial cells that seals adjacent cells to one another. The tight junction prevents the mixing of proteins and lipids between the apical and basolateral plasma membrane domains, and regulates solute and ion flux between adjacent epithelial cells.

T LYMPHOCYTES

Cells that are involved in cell-mediated immunity. They are agents of the body's immune system and can differentiate into killer, helper and suppressor T cells. T-helper cells assist in the stimulation of B lymphocytes to produce antibodies.

TRANSCYTOSIS

Transport of macromolecules across polarized epithelial cells, involving uptake at one cell surface and delivery — through a series of intermediate endocytic compartments — to the opposite plasma-membrane domain.

B LYMPHOCYTES

Involved in the production of antibodies against invading agents. They differentiate into plasma cells that synthesize and secrete a specific antibody.

LAMINA PROPRIA

Layer of connective tissue underlying the basal lamina of the epithelium. It might contain smooth-muscle cells, lymphoid tissue, fibroblasts and extracellular matrix.

ANTIGEN

Any foreign substance that is capable of inducing an immune response.

COLOSTRUM

A yellowish fluid produced by the mammary gland that precedes the production of milk and is rich in antibodies and nutrients.

YOLK SAC

A membranous sac that is attached to the embryo and has a function in nutrient transport. In rats and mice, IgG is transported across this structure. In primates, IgG is transported across the chorioallantoic placenta.

ENTEROCYTES

Mature cells of the intestinal epithelium, the primary function of which is the absorption of substances from the lumen and delivery to the circulatory system. In the small intestine, enterocytes are found both in crypts and on the surface of the villi.

Rabs

The largest family of monomeric small GTP-binding proteins. Rab proteins are distributed in distinct intracellular compartments where they function in the tethering/docking of vesicles to their target compartment, leading to membrane fusion. In addition, Rab proteins have been implicated in cargo selection, vesicle budding and organelle motility.

TRANSFERRIN

An iron storage protein that is found in mammalian serum. Transferrin receptors on the cell surface bind transferrin as part of the transport route of iron into cells. In many epithelial cells, the trafficking of transferrin bound to its receptor has been used to define the basolateral-recycling pathway.

ACTIN COMET

Actin tail at one end of an endosome that propels the organelle inwards. First described for the intracellular movement of Listeria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojas, R., Apodaca, G. Immunoglobulin transport across polarized epithelial cells. Nat Rev Mol Cell Biol 3, 944–956 (2002). https://doi.org/10.1038/nrm972

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm972

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing