Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The mammalian Golgi — complex debates

Abstract

Since the first description of the Golgi in 1898, key issues regarding this organelle have remained contentious among cell biologists. Resolving these complex debates, which revolve around Golgi structure–function relationships, is prerequisite to understanding how the Golgi fulfils its role as the central organelle and sorting station of the mammalian secretory pathway.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Model of part of the Golgi ribbon in a mammalian cell generated from a dual-axis three-dimensional reconstruction.
Figure 2: Dissecting Golgi organization and transport.

References

  1. 1

    Golgi, C. Sur la structure des cellules nerveuses des ganglions spinaux. Arch. Ital. Biologie 30, 278–286 (1898).

    Google Scholar 

  2. 2

    Farquhar, M. G. & Palade, G. E. The Golgi apparatus: 100 years of progress and controversy. Trends Cell Biol. 8, 2–10 (1998).

    CAS  PubMed  Google Scholar 

  3. 3

    Rambourg, A., Clermont, Y. & Hermo, L. Three-dimensional architecture of the Golgi apparatus in Sertoli cells of the rat. Am. J. Anat. 154, 455–476 (1979).

    CAS  PubMed  Google Scholar 

  4. 4

    Ladinsky, M. S., Mastronarde, D. N., McIntosh, J. R., Howell, K. E. & Staehelin, L. A. Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J. Cell Biol. 144, 1135–1149 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Marsh, B. J., Mastronarde, D. N., Buttle, K. F., Howell, K. E. & McIntosh, J. R. Organellar relationships in the Golgi region of the pancreatic β cell line, HIT-T15, visualized by high resolution electron tomography. Proc. Natl Acad. Sci. USA 98, 2399–2406 (2001).

    CAS  PubMed  Google Scholar 

  6. 6

    Dalton, A. J. & Felix, M. D. Cytological and cytochemical characteristics of the Golgi substance of epithelial cells of the epididymis-in situ, in homogenates and after isoloation. Am. J. Anat. 94, 171–208 (1954).

    CAS  PubMed  Google Scholar 

  7. 7

    Rambourg, A. & Clermont, Y. in The Golgi apparatus. (eds Berger, E. G. & Roth, J.) 37–61 (Birkhauser Verlag, Basel, 1997).

    Google Scholar 

  8. 8

    de Duve, C. The role of lysosomes in the pathogeny of disease. Scand. J. Rheumatol. Suppl. 63–66 (1975).

  9. 9

    Lippincott-Schwartz, J., Roberts, T. H. & Hirschberg, K. Secretory protein trafficking and organelle dynamics in living cells. Annu. Rev. Cell Dev. Biol. 16, 557–589 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Gaietta, G. et al. Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503–507 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Taylor, R. S. et al. Proteomics of rat liver Golgi complex: minor proteins are identified through sequential fractionation. Electrophoresis 21, 3441–3459 (2000).

    CAS  PubMed  Google Scholar 

  12. 12

    Bell, A. W. et al. Proteomics characterization of abundant Golgi membrane proteins. J. Biol. Chem. 276, 5152–5165 (2001).

    CAS  PubMed  Google Scholar 

  13. 13

    Wu, C. C. et al. GMx33: a novel family of trans-Golgi proteins identified by proteomics. Traffic 1, 963–975 (2000).

    CAS  PubMed  Google Scholar 

  14. 14

    Berger, E. G. & Roth, J. The Golgi apparatus (Birkhauser Verlag, Basel, Switzerland, 1997).

    Google Scholar 

  15. 15

    Zaal, K. J. et al. Golgi membranes are absorbed into and reemerge from the ER during mitosis. Cell 99, 589–601 (1999).

    CAS  PubMed  Google Scholar 

  16. 16

    Ward, T. H., Polishchuk, R. S., Caplan, S., Hirschberg, K. & Lippincott-Schwartz, J. Maintenance of Golgi structure and function depends on the integrity of ER export. J. Cell Biol. 155, 557–570 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Seemann, J., Jokitalo, E., Pypaert, M. & Warren, G. Matrix proteins can generate the higher order architecture of the Golgi apparatus. Nature 407, 1022–1026 (2000).

    CAS  PubMed  Google Scholar 

  18. 18

    Cole, N. B., Sciaky, N., Marotta, A., Song, J. & Lippincott-Schwartz, J. Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol. Biol. Cell 7, 631–650 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Lucocq, J. M., Pryde, J. G., Berger, E. G. & Warren, G. A mitotic form of the Golgi apparatus in HeLa cells. J. Cell Biol. 104, 865–874 (1987).

    CAS  PubMed  Google Scholar 

  20. 20

    Ho, W. C., Allan, V. J., van Meer, G., Berger, E. G. & Kreis, T. E. Reclustering of scattered Golgi elements occurs along microtubules. Eur. J. Cell Biol. 48, 250–263 (1989).

    CAS  PubMed  Google Scholar 

  21. 21

    Miles, S., McManus, H., Forsten, K. E. & Storrie, B. Evidence that the entire Golgi apparatus cycles in interphase HeLa cells: sensitivity of Golgi matrix proteins to an ER exit block. J. Cell Biol. 155, 543–555 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Wells, W. A. Let's make Golgi. J. Cell Biol. 155, 498–499 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Misteli, T. The concept of self-organization in cellular architecture. J. Cell Biol. 155, 181–185 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Lowe, M. Golgi Complex: biogenesis de novo? Curr. Biol. 12, R166–R167 (2002).

    CAS  PubMed  Google Scholar 

  25. 25

    Pfeffer, S. R. Constructing a Golgi complex. J. Cell Biol. 155, 873–875 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Check, E. Cell biology: will the real Golgi please stand up. Nature 416, 780–781 (2002).

    CAS  PubMed  Google Scholar 

  27. 27

    Glick, B. S. Can the Golgi form de novo? Nature Rev. Mol. Cell Biol. 3, 615–619 (2002).

    CAS  Google Scholar 

  28. 28

    Barr, F. A. The Golgi apparatus: going round in circles? Trends Cell Biol. 12, 101–104 (2002).

    CAS  PubMed  Google Scholar 

  29. 29

    Glick, B. S. ER export: more than one way out. Curr. Biol. 11, R361–R363 (2001).

    CAS  PubMed  Google Scholar 

  30. 30

    Mironov, A. A., Weidman, P. & Luini, A. Variations on the intracellular transport theme: maturing cisternae and trafficking tubules. J. Cell Biol. 138, 481–484 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Marsh, B. J., Mastronarde, D. N., McIntosh, J. R. & Howell, K. E. Structural evidence for multiple transport mechanisms through the Golgi in the pancreatic β-cell line, HIT-T15. Biochem. Soc. Trans. 29, 461–467 (2001).

    CAS  PubMed  Google Scholar 

  32. 32

    Pelham, H. R. & Rothman, J. E. The debate about transport in the Golgi — two sides of the same coin? Cell 102, 713–739 (2000).

    CAS  PubMed  Google Scholar 

  33. 33

    Grassé, P. P. Ultrastructure polarite reproduction de l'appareil de Golgi. C. R. Acad. Sci. 245, 1278–1281 (1957).

    Google Scholar 

  34. 34

    Mollenhauer, H. H. & Whaley, W. G. An observation on the functioning of the Golgi apparatus. J. Cell Biol. 17, 222–225 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Mollenhauer, H. H. & Morre, D. J. The tubular network of the Golgi apparatus. Histochem. Cell Biol. 109, 533–543 (1998).

    CAS  PubMed  Google Scholar 

  36. 36

    Palade, G. Intracellular aspects of the process of protein secretion. Science 189, 347–358 (1975).

    CAS  PubMed  Google Scholar 

  37. 37

    Jamieson, J. D. & Palade, G. E. Role of the Golgi complex in the intracellular transport of secretory proteins. Proc. Natl Acad. Sci. USA 55, 424–431 (1966).

    CAS  PubMed  Google Scholar 

  38. 38

    Rothman, J. E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Duden, R., Griffiths, G., Frank, R., Argos, P. & Kreis, T. E. β-COP, a 110 Kd protein associated with non-clathrin-coated vesicles and the Golgi complex, shows homology to β-adaptin. Cell 64, 649–665 (1991).

    CAS  PubMed  Google Scholar 

  40. 40

    Serafini, T. et al. A coat subunit of Golgi-derived non-clathrin-coated vesicles with homology to the clathrin-coated vesicle coat protein beta-adaptin. Nature 349, 215–220 (1991).

    CAS  PubMed  Google Scholar 

  41. 41

    Cosson, P. & Letourneur, F. Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 263, 1629–1631 (1994).

    CAS  PubMed  Google Scholar 

  42. 42

    Letourneur, F. et al. Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 79, 1199–1207 (1994).

    CAS  PubMed  Google Scholar 

  43. 43

    Presley, J. F. et al. Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport. Nature 417, 187–193 (2002).

    CAS  PubMed  Google Scholar 

  44. 44

    Stephens, D. J. & Pepperkok, R. Imaging of procollagen transport reveals COPI-dependent cargo sorting during ER-to-Golgi transport in mammalian cells. J. Cell Sci. 115, 1149–1160 (2002).

    CAS  PubMed  Google Scholar 

  45. 45

    Robinson, M. S. & Bonifacino, J. S. Adaptor-related proteins. Curr. Opin. Cell Biol. 13, 444–453 (2001).

    CAS  PubMed  Google Scholar 

  46. 46

    Boehm, M. & Bonifacino, J. S. Genetic analyses of adaptin function from yeast to mammals. Gene 286, 175–186 (2002).

    CAS  PubMed  Google Scholar 

  47. 47

    Orci, L., Amherdt, M., Ravazzola, M., Perrelet, A. & Rothman, J. E. Exclusion of Golgi residents from transport vesicles budding from Golgi cisternae in intact cells. J. Cell Biol. 150, 1263–1270 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Orci, L. et al. Anterograde flow of cargo across the Golgi stack potentially mediated via bidirectional 'percolating' COPI vesicles. Proc. Natl Acad. Sci. USA 97, 10400–10405 (2000).

    CAS  PubMed  Google Scholar 

  49. 49

    Volchuk, A. et al. Megavesicles implicated in the rapid transport of intracisternal aggregates across the Golgi stack. Cell 102, 335–348 (2000).

    CAS  PubMed  Google Scholar 

  50. 50

    Orci, L. et al. Bidirectional transport by distinct populations of COPI-coated vesicles. Cell 90, 335–349 (1997).

    CAS  PubMed  Google Scholar 

  51. 51

    Martinez-Menarguez, J. A. et al. Peri-Golgi vesicles contain retrograde but not anterograde proteins consistent with the cisternal progression model of intra-Golgi transport. J. Cell Biol. 155, 1213–1224 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Mironov, A. A. et al. Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae. J. Cell Biol. 155, 1225–1238 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Lanoix, J. et al. Sorting of Golgi resident proteins into different subpopulations of COPI vesicles: a role for ArfGAP1. J. Cell Biol. 155, 1199–1212 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Klausner, R. D., Donaldson, J. G. & Lippincott-Schwartz, J. Brefeldin A: insights into the control of membrane traffic and organelle structure. J. Cell Biol. 116, 1071–1080 (1992).

    CAS  PubMed  Google Scholar 

  55. 55

    Cooper, M. S., Cornell-Bell, A. H., Chernjavsky, A., Dani, J. W. & Smith, S. J. Tubulovesicular processes emerge from trans-Golgi cisternae, extend along microtubules, and interlink adjacent trans-Golgi elements into a reticulum. Cell 61, 135–145 (1990).

    CAS  PubMed  Google Scholar 

  56. 56

    Polishchuk, R. S. et al. Correlative light-electron microscopy reveals the tubular-saccular ultrastructure of carriers operating between Golgi apparatus and plasma membrane. J. Cell Biol. 148, 45–58 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Hirschberg, K. et al. Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J. Cell Biol. 143, 1485–1503 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Toomre, D., Keller, P., White, J., Olivo, J. C. & Simons, K. Dual-color visualization of trans-Golgi network to plasma membrane traffic along microtubules in living cells. J. Cell Sci. 112, 21–33 (1999).

    CAS  PubMed  Google Scholar 

  59. 59

    Presley, J. F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997).

    CAS  Google Scholar 

  60. 60

    Griffiths, G. & Simons, K. The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234, 438–443 (1986).

    CAS  PubMed  Google Scholar 

  61. 61

    Geuze, H. J., Slot, J. W., Strous, G. J., Hasilik, A. & von Figura, K. Possible pathways for lysosomal enzyme delivery. J. Cell Biol. 101, 2253–2262 (1985).

    CAS  PubMed  Google Scholar 

  62. 62

    Matter, K., Yamamoto, E. M. & Mellman, I. Structural requirements and sequence motifs for polarized sorting and endocytosis of LDL and Fc receptors in MDCK cells. J. Cell Biol. 126, 991–1004 (1994).

    CAS  PubMed  Google Scholar 

  63. 63

    Keller, P. & Simons, K. Post-Golgi biosynthetic trafficking. J. Cell Sci. 110, 3001–3009 (1997).

    CAS  PubMed  Google Scholar 

  64. 64

    Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    CAS  Google Scholar 

  65. 65

    Ladinsky, M. S., Kremer, J. R., Furcinitti, P. S., McIntosh, J. R. & Howell, K. E. HVEM tomography of the trans-Golgi network: structural insights and identification of a lace-like vesicle coat. J. Cell Biol. 127, 29–38 (1994).

    CAS  PubMed  Google Scholar 

  66. 66

    Novikoff, A. B. GERL, its form and function in neurons of rat spinal ganglia. Biol. Bull. 127, 358 (1964).

    Google Scholar 

  67. 67

    Bennett, M. K. et al. Perforated cells for studying intracellular membrane transport. Methods Cell Biol. 31, 103–126 (1989).

    CAS  PubMed  Google Scholar 

  68. 68

    Bainton, D. F. & Farquhar, M. G. Origin of granules in polymorphonuclear leukocytes. Two types derived from opposite faces of the Golgi complex in developing granulocytes. J. Cell Biol. 28, 277–301 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Slot, J. W. et al. Glucose transporter (GLUT-4) is targeted to secretory granules in rat atrial cardiomyocytes. J. Cell Biol. 137, 1243–1254 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Orci, L. et al. Direct identification of prohormone conversion site in insulin-secreting cells. Cell 42, 671–681 (1985).

    CAS  PubMed  Google Scholar 

  71. 71

    Futter, C. E. et al. In polarized MDCK cells basolateral vesicles arise from clathrin-γ-adaptin-coated domains on endosomal tubules. J. Cell Biol. 141, 611–623 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Xiang, Y., Molloy, S. S., Thomas, L. & Thomas, G. The PC6B cytoplasmic domain contains two acidic clusters that direct sorting to distinct trans-Golgi network/endosomal compartments. Mol. Biol. Cell 11, 1257–1273 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Eugster, A., Frigerio, G., Dale, M. & Duden, R. COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP. EMBO J. 19, 3905–3917 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Lanoix, J. et al. GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COP I vesicles. EMBO J. 18, 4935–4948 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Donaldson, J. G. & Lippincott-Schwartz, J. Sorting and signaling at the Golgi complex. Cell 101, 693–696 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    De Matteis, M. A. & Morrow, J. S. The role of ankyrin and spectrin in membrane transport and domain formation. Curr. Opin. Cell Biol. 10, 542–549 (1998).

    CAS  Google Scholar 

  77. 77

    Godi, A. et al. ARF mediates recruitment of PtdIns-4-OH kinase-β and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nature Cell Biol. 1, 280–287 (1999).

    CAS  PubMed  Google Scholar 

  78. 78

    Martinez, O. & Goud, B. Rab proteins. Biochim. Biophys. Acta 1404, 101–112 (1998).

    CAS  PubMed  Google Scholar 

  79. 79

    Denker, S. P., McCaffery, J. M., Palade, G. E., Insel, P. A. & Farquhar, M. G. Differential distribution of α subunits and βγ subunits of heterotrimeric G proteins on Golgi membranes of the exocrine pancreas. J. Cell Biol. 133, 1027–1040 (1996).

    CAS  PubMed  Google Scholar 

  80. 80

    Wu, W. J., Erickson, J. W., Lin, R. & Cerione, R. A. The γ-subunit of the coatomer complex binds Cdc42 to mediate transformation. Nature 405, 800–804 (2000).

    CAS  Google Scholar 

  81. 81

    Baron, C. L. & Malhotra, V. Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane. Science 295, 325–328 (2002).

    CAS  PubMed  Google Scholar 

  82. 82

    Chabin-Brion, K. et al. The Golgi complex is a microtubule-organizing organelle. Mol. Biol. Cell 12, 2047–2060 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Bohm, J. et al. Toward detecting and identifying macromolecules in a cellular context: template matching applied to electron tomograms. Proc. Natl Acad. Sci. USA 97, 14245–14250 (2000).

    CAS  PubMed  Google Scholar 

  84. 84

    Lipsky, N. G. & Pagano, R. E. A vital stain for the Golgi apparatus. Science 228, 745–747 (1985).

    CAS  PubMed  Google Scholar 

  85. 85

    Malhotra, V., Serafini, T., Orci, L., Shepherd, J. C. & Rothman, J. E. Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack. Cell 58, 329–336 (1989).

    CAS  PubMed  Google Scholar 

  86. 86

    Cole, N. B. et al. Diffusional mobility of Golgi proteins in membranes of living cells. Science 273, 797–801 (1996).

    CAS  PubMed  Google Scholar 

  87. 87

    Sciaky, N. et al. Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J. Cell Biol. 139, 1137–1155 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work in K.E.H.'s laboratory is supported by grants from the National Institutes of Health. B.J.M. was supported by a Juvenile Diabetes Research Foundation International Postdoctoral Fellowship award.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kathryn E. Howell.

Related links

Related links

DATABASES

Swiss-Prot

acid phosphatase

ARF1

brefeldin A

CDC42

ɛCOP

GFP

lectin

PKD

Rab 1

Rab2

Rab6

Rab9

Rab11

Rab17

FURTHER INFORMATION

Kathryn E. Howell's lab

The Boulder laboratory for 3D fine structure

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marsh, B., Howell, K. The mammalian Golgi — complex debates. Nat Rev Mol Cell Biol 3, 789–795 (2002). https://doi.org/10.1038/nrm933

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing