Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The spindle checkpoint: structural insights into dynamic signalling

Key Points

  • The spindle checkpoint monitors the interactions between chromosomes and microtubules.

  • The Mad and Bub proteins are core components of this cell-cycle control.

  • The checkpoint can monitor kinetochore–microtubule attachment and/or the tension exerted at kinetochores upon bipolar attachment.

  • Kinetochores are a key site for monitoring defects and signalling, and for effecting the cell-cycle delay. They can act as the catalytic site for the production of the checkpoint signal ('wait anaphase'), which must then be transmitted globally.

  • Microtubule motors (CENP-E and dynein) and protein kinases (Aurora B) have roles in kinetochore binding and bipolar attachment, and could be involved in sensing tension.

  • Mad2 and other checkpoint proteins have a very dynamic association with kinetochores (half-life of 20 s).

  • These dynamics might also be involved in checkpoint silencing. Several checkpoint components (Mad2, BubR1, CENP-E and Rod) are continuously removed from kinetochores by a dynein-dependent mechanism.

  • Two related interactions of Mad2 (with Mad1 and Cdc20) are central to the checkpoint, and crystal structures of a Mad1–Mad2 complex have revealed a 'safety-belt' bind-and-release mechanism.

  • Mad2 and/or BubR1 complexes might stoichiometrically inhibit Cdc20 and thereby the activity of the anaphase-promoting complex.

Abstract

Chromosome segregation is a complex and astonishingly accurate process whose inner working is beginning to be understood at the molecular level. The spindle checkpoint plays a key role in ensuring the fidelity of this process. It monitors the interactions between chromosomes and microtubules, and delays mitotic progression to allow extra time to correct defects. Here, we review and integrate findings on the dynamics of checkpoint proteins at kinetochores with structural information about signalling complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key steps in the regulation of mitotic progression.
Figure 2: Kinetochores and checkpoint signalling.
Figure 3: Structural insights into Mad2 function.

Similar content being viewed by others

References

  1. Li, R. & Murray, A. W. Feedback control of mitosis in budding yeast. Cell 66, 519–531 (1991).

    CAS  PubMed  Google Scholar 

  2. Hoyt, M. A., Totis, L. & Roberts, B. T. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66, 507–517 (1991).Refs 1 and 2 describe genetic screens that led to the first molecular identification of spindle-checkpoint components.

    CAS  PubMed  Google Scholar 

  3. Nasmyth, K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673–745 (2001).

    CAS  PubMed  Google Scholar 

  4. Rieder, C. L. & Salmon, E. D. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol. 8, 310–318 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pidoux, A. L. & Allshire, R. C. Centromeres: getting a grip of chromosomes. Curr. Opin. Cell Biol. 12, 308–319 (2000).

    CAS  PubMed  Google Scholar 

  6. Hwang, L. H. et al. Budding yeast Cdc20: a target of the spindle checkpoint. Science 279, 1041–1044 (1998).Refs 6 and 7 show that CDC20 mutants that are resistant to the checkpoint cannot bind Mad2, establishing Cdc20 as the target of the spindle checkpoint. Furthermore, ref. 6 describes a set of mutual binding dependencies between budding-yeast checkpoint proteins, including an absolute requirement for Mad1 for Mad2–Cdc20-complex formation.

    CAS  PubMed  Google Scholar 

  7. Kim, S. H. et al. Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint. Science 279, 1045–1047 (1998).

    CAS  PubMed  Google Scholar 

  8. Peters, J. M. The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell 9, 931–943 (2002).

    CAS  PubMed  Google Scholar 

  9. Hoyt, M. A. A new view of the spindle checkpoint. J. Cell Biol. 154, 909–911 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rieder, C. L., Cole, R. W., Khodjakov, A. & Sluder, G. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J. Cell Biol. 130, 941–948 (1995).This paper identifies the kinetochores of unattached chromosomes as the site of production of the checkpoint signal. PtK1 cells are followed by video microscopy before and after specific chromosomal regions are destroyed by laser irradiation. The checkpoint is relieved after the centromere is destroyed on the last mono-oriented chromosome. Thus, the checkpoint mechanism monitors an inhibitor of anaphase produced by unattached kinetochores.

    CAS  PubMed  Google Scholar 

  11. Li, X. & Nicklas, R. B. Mitotic forces control a cell-cycle checkpoint. Nature 373, 630–632 (1995).The classic demonstration that lack of tension at kinetochores can activate the spindle checkpoint. In 10% of praying-mantis spermatocytes, a free X chromosome delays anaphase by 5–6 h. Applying tension to this X chromosome with a micromanipulation needle is enough to relieve the checkpoint delay and to induce anaphase.

    CAS  PubMed  Google Scholar 

  12. Chen, R. H., Waters, J. C., Salmon, E. D. & Murray, A. W. Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274, 242–246 (1996).

    CAS  PubMed  Google Scholar 

  13. Li, Y. & Benezra, R. Identification of a human mitotic checkpoint gene: hsMAD2. Science 274, 246–248 (1996).Refs 12 and 13 provided the first demonstration of the kinetochore localization of a defined checkpoint protein.

    CAS  PubMed  Google Scholar 

  14. Maney, T., Ginkel, L. M., Hunter, A. W. & Wordeman, L. The kinetochore of higher eucaryotes: a molecular view. Int. Rev. Cytol. 194, 67–131 (2000).

    CAS  PubMed  Google Scholar 

  15. Brunet, S. & Vernos, I. Chromosome motors on the move. From motion to spindle checkpoint activity. EMBO Rep. 2, 669–673 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kapoor, T. M. & Compton, D. A. Searching for the middle ground. J. Cell Biol. 157, 551–556 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chan, G. K. T., Schaar, B. T. & Yen, T. J. Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBR1. J. Cell Biol. 143, 49–63 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chan, G. K. et al. Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome/APC. J. Cell Biol. 146, 941–954 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yao, X. et al. CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nature Cell Biol. 2, 484–491 (2000).

    CAS  PubMed  Google Scholar 

  20. Abrieu, A., Kahana, J. A., Wood, K. W. & Cleveland, D. W. CENP-E as an essential component of the mitotic checkpoint in vitro. Cell 102, 817–826 (2000).

    CAS  PubMed  Google Scholar 

  21. McEwen, B. F. et al. CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Mol. Biol. Cell 12, 2776–2789 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Banks, J. D. & Heald, R. Chromosome movement: dynein-out at the kinetochore. Curr. Biol. 11, R128–R131 (2001).

    CAS  PubMed  Google Scholar 

  23. Starr, D. A., Williams, B. C., Hays, T. S. & Goldberg, M. L. ZW10 helps recruit dynactin and dynein to the kinetochore. J. Cell Biol. 142, 763–774 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Savoian, M. S., Goldberg, M. L. & Rieder, C. L. The rate of poleward chromosome motion is attenuated in Drosophila zw10 and rod mutants. Nature Cell Biol. 2, 948–952 (2000).

    CAS  PubMed  Google Scholar 

  25. Sharp, D. J., Rogers, G. C. & Scholey, J. M. Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nature Cell Biol. 2, 922–930 (2000).

    CAS  PubMed  Google Scholar 

  26. Chan, G. K. et al. Human Zw10 and ROD are mitotic checkpoint proteins that bind to kinetochores. Nature Cell Biol. 2, 944–947 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Basto, R., Gomes, R. & Karess, R. E. Rough deal and Zw10 are required for the metaphase checkpoint in Drosophila. Nature Cell Biol. 2, 939–943 (2000).

    CAS  PubMed  Google Scholar 

  28. Yu, H. G., Muszynski, M. G. & Dawe, R. K. The maize homologue of the cell cycle checkpoint protein MAD2 reveals kinetochore substructure and contrasting mitotic and meiotic localization patterns. J. Cell Biol. 145, 425–435 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Waters, J. C., Chen, R. H., Murray, A. W. & Salmon, E. D. Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J. Cell Biol. 141, 1181–1191 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Skoufias, D. A. et al. Mammalian Mad2 and Bub1/BubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints. Proc. Natl Acad. Sci. USA 98, 4492–4497 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou, J. et al. Minor alteration of microtubule dynamics causes loss of tension across kinetochore pairs and activates the spindle checkpoint. J. Biol. Chem. 277, 17200–17208 (2002).

    CAS  PubMed  Google Scholar 

  32. Gorbsky, G. J. & Ricketts, W. A. Differential expression of a phosphoepitope at the kinetochores of moving chromosomes. J. Cell Biol. 122, 1311–1321 (1993).

    CAS  PubMed  Google Scholar 

  33. Taylor, S. S. et al. Kinetochore localisation and phosphorylation of the mitotic checkpoint components Bub1 and BubR1 are differentially regulated by spindle events in human cells. J. Cell Sci. 114, 4385–4395 (2001).

    CAS  PubMed  Google Scholar 

  34. Kapoor, T. M., Mayer, T. U., Coughlin, M. L. & Mitchison, T. J. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J. Cell Biol. 150, 975–988 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Shonn, M. A., McCarroll, R. & Murray, A. W. Requirement of the spindle checkpoint for proper chromosome segregation in budding yeast meiosis. Science 289, 300–303 (2000).

    CAS  PubMed  Google Scholar 

  36. Stern, B. M. & Murray, A. W. Lack of tension at kinetochores activates the spindle checkpoint in budding yeast. Curr. Biol. 11, 1462–1467 (2001).

    CAS  PubMed  Google Scholar 

  37. Hoffman, D. B. et al. Microtubule-dependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1 kinetochores. Mol. Biol. Cell 12, 1995–2009 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Taylor, S. S. & McKeon, F. Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell 89, 727–735 (1997).

    CAS  PubMed  Google Scholar 

  39. Taylor, S. S., Ha, E. & McKeon, F. The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J. Cell Biol. 142, 1–11 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jablonski, S. A. et al. The hBUB1 and hBUBR1 kinases sequentially assemble onto kinetochores during prophase with hBUBR1 concentrating at the kinetochore plates in mitosis. Chromosoma 107, 386–396 (1998).

    CAS  PubMed  Google Scholar 

  41. Basu, J. et al. Localization of the Drosophila checkpoint control protein Bub3 to the kinetochore requires Bub1 but not Zw10 or Rod. Chromosoma 107, 376–385 (1998).

    CAS  PubMed  Google Scholar 

  42. Martinez-Exposito, M. J., Kaplan, K. B., Copeland, J. & Sorger, P. K. Retention of the BUB3 checkpoint protein on lagging chromosomes. Proc. Natl Acad. Sci. USA 96, 8493–8498 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Adams, R. R., Carmena, M. & Earnshaw, W. E. Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol. 11, 49–54 (2001).

    CAS  PubMed  Google Scholar 

  44. Tanaka, T. U. et al. Evidence that the Ipl1–Sli15 (Aurora kinase–INCENP) complex promotes chromosome bi-orientation by altering kinetochore–spindle pole connections. Cell 108, 317–329 (2002).

    CAS  PubMed  Google Scholar 

  45. Shimoda, S. L. & Solomon, F. Integrating functions at the kinetochore. Cell 109, 9–12 (2002).

    CAS  PubMed  Google Scholar 

  46. Biggins, S. & Murray, A. W. The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev. 15, 3118–3129 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Piatti, S., Lengauer, C. & Nasmyth, K. Cdc6 is an unstable protein whose de novo synthesis in G1 is important for the onset of S phase and for preventing a 'reductional' anaphase in the budding yeast Saccharomyces cerevisiae. EMBO J. 14, 3788–3799 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kitagawa, K. & Hieter, P. Evolutionary conservation between budding yeast and human kinetochores. Nature Rev. Mol. Cell Biol. 2, 678–687 (2001).

    CAS  Google Scholar 

  49. Murata-Hori, M. & Wang, Y. The kinase activity of Aurora B is required for kinetochore–microtubule interactions in mitosis. Curr. Biol. 12, 894–899 (2002).

    CAS  PubMed  Google Scholar 

  50. Kallio, M. J., McCleland, M. L., Stukenberg, P. T. & Gorbsky, G. J. Inhibition of Aurora B kinase blocks chromosome segregation, overrides the spindle checkpoint, and perturbs microtubule dynamics in mitosis. Curr. Biol. 12, 900–905 (2002).

    CAS  PubMed  Google Scholar 

  51. Nicklas, R. B. & Ward, S. C. Elements of error correction in mitosis: microtubule capture, release, and tension. J. Cell Biol. 126, 1241–1253 (1994).

    CAS  PubMed  Google Scholar 

  52. Nicklas, R. B., Waters, J. C., Salmon, E. D. & Ward, S. C. Checkpoint signals in grasshopper meiosis are sensitive to microtubule attachment, but tension is still essential. J. Cell Sci. 114, 4173–4183 (2001).

    CAS  PubMed  Google Scholar 

  53. Chen, R. H., Shevchenko, A., Mann, M. & Murray, A. W. Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J. Cell Biol. 143, 283–295 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Millband, D. N. & Hardwick, K. G. Fission yeast Mad3p is required for Mad2p to inhibit the anaphase-promoting complex and localises to kinetochores in a Bub1p, Bub3p and Mph1p dependent manner. Mol. Cell. Biol. 22, 2728–2742 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sharp-Baker, H. & Chen, R. H. Spindle checkpoint protein Bub1 is required for kinetochore localization of Mad1, Mad2, Bub3, and CENP-E, independently of its kinase activity. J. Cell Biol. 153, 1239–1250 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Abrieu, A. et al. Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 106, 83–93 (2001).

    CAS  PubMed  Google Scholar 

  57. Chen, R. H. BubR1 is required for kinetochore localization of other spindle checkpoint proteins and its phosphorylation requires Mad1. J. Cell Biol. 158, 487–496 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Brady, D. M. & Hardwick, K. G. Complex formation between Mad1p, Bub1p and Bub3p is crucial for spindle checkpoint function. Curr. Biol. 10, 675–678 (2000).

    CAS  PubMed  Google Scholar 

  59. Chung, E. & Chen, R.-H. Spindle checkpoint requires Mad1-bound and Mad1-free Mad2. Mol. Biol. Cell 13, 1501–1511 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Howell, B. J. et al. Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J. Cell Biol. 150, 1233–1250 (2000).A dynamic cycle of interaction of Mad2 with kinetochores, spindle fibres and spindle poles is revealed using an elegant fluorescence-recovery after photobleaching approach. The transient nature of the interaction of Mad2 with kinetochores is consistent with the catalytic model of kinetochore function in generating the 'wait anaphase' signal.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Howell, B. J., Farrar, E., Fang, G. & Salmon, E. D. Visualization of Cdc20 and BubRI dynamics in living cells. Mol. Biol. Cell 12(S), 315a (2001).

    Google Scholar 

  62. Sudakin, V., Chan, G. K. & Yen, T. J. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J. Cell Biol. 154, 925–936 (2001).An APC/C inhibitory factor purified from HeLa cells was found to consist of BubR1, Bub3, Cdc20 and Mad2 checkpoint proteins in near equal stoichiometry. The APC inhibitory activity of this complex is 3,000 times than that of recombinant Mad2. This complex might not be generated from kinetochores because it is also present and active in interphase cells. Together with ref. 63 , this paper uncovers a direct role of BubR1 in Cdc20 binding and APC inhibition, but some of the conclusions do not coincide.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Tang, Z., Bharadwaj, R., Li, B. & Yu, H. Mad2-independent inhibition of APC–Cdc20 by the mitotic checkpoint protein BubR1. Dev. Cell 1, 227–237 (2001).A checkpoint complex containing BubR1 and Bub3 is purified from mitotic human cells and found to interact with Cdc20 in the absence of other proteins and to block the binding of Cdc20 to APC. Together with ref. 62 this paper establishes a direct role of BubR1 in Cdc20 binding and checkpoint activity.

    CAS  PubMed  Google Scholar 

  64. Fraschini, R. et al. Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require intact kinetochores. EMBO J. 20, 6648–6659 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wojcik, E. et al. Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein. Nature Cell Biol. 3, 1001–1007 (2001).Together with ref. 66 , this paper shows that dynein might contribute to shutting off the metaphase checkpoint, allowing anaphase to ensue. A complementary set of kinetochore proteins is monitored relative to those described in ref. 66 , revealing a general mechanism of checkpoint inactivation.

    CAS  PubMed  Google Scholar 

  66. Howell, B. J. et al. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J. Cell Biol. 155, 1159–1172 (2001).Inhibition of dynein and dynactin activity in PtK1 cells blocks the transport to the spindle poles of many proteins located in the kinetochore outer domain, including Mad2, BubR1 and CENP-E. Furthermore, it prevents Mad2 depletion from kinetochores and induces a mitotic block at metaphase without blocking chromosome congression or anaphase. Thus, dynein and dynactin participate in a kinetochore-disassembly pathway that inactivates the spindle checkpoint.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gorbsky, G. J., Chen, R. H. & Murray, A. W. Microinjection of antibody to Mad2 protein into mammalian cells in mitosis induces premature anaphase. J. Cell Biol. 141, 1193–1205 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Canman, J. C., Hoffman, D. B. & Salmon, E. D. The role of pre- and post-anaphase microtubules in the cytokinesis phase of the cell cycle. Curr. Biol. 10, 611–614 (2000).

    CAS  PubMed  Google Scholar 

  69. Basu, J. et al. Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J. Cell Biol. 146, 13–28 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ikui, A. E., Furuya, K., Yanagida, M. & Matsumoto, T. Control of localization of a spindle checkpoint protein, Mad2, in fission yeast. J. Cell Sci. 115, 1603–1610 (2002).

    CAS  PubMed  Google Scholar 

  71. Hardwick, K. G., Johnston, R. C., Smith, D. L. & Murray, A. W. MAD3 encodes a novel component of the spindle checkpoint which interacts with Bub3p, Cdc20p, and Mad2p. J. Cell Biol. 148, 871–882 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Luo, X., Tang, Z., Rizo, J. & Yu, H. The Mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either Mad1 or Cdc20. Mol. Cell 9, 59–71 (2002).The structure of Mad2 bound to a synthetic peptide. The Mad2 carboxy-terminal tail undergoes a striking conformational change relative to the unbound form of Mad2. Together with ref. 73 , the paper also identifies a common Mad2-binding motif in Mad1 and Cdc20, and proposes that the carboxy-terminal tail of Mad2 undergoes the same conformational change when bound to these ligands.

    PubMed  Google Scholar 

  73. Sironi, L. et al. Crystal structure of the tetrameric Mad1–Mad2 core complex: implications of a 'safety belt' binding mechanism for the spindle checkpoint. EMBO J. 21, 2496–2506 (2002).Reports the structure of the Mad1–Mad2 tetramer. An interaction mechanism defined as a 'safety belt' is identified and its implications for the interaction of Mad2 with Mad1 and Cdc20 are discussed. With refs 72 and 75 , this is the first report of structural work on checkpoint proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Jin, D. Y., Spencer, F. & Jeang, K. T. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 93, 81–91 (1998).

    CAS  PubMed  Google Scholar 

  75. Luo, X. et al. Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20. Nature Struct. Biol. 7, 224–229 (2000).

    CAS  PubMed  Google Scholar 

  76. Zhang, Y. & Lees, E. Identification of an overlapping binding domain on Cdc20 for Mad2 and anaphase-promoting complex: model for spindle checkpoint regulation. Mol. Cell. Biol. 21, 5190–5199 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen, R. H. et al. The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins. Mol. Biol. Cell 10, 2607–2618 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Sironi, L. et al. Mad2 binding to Mad1 and Cdc20, rather than oligomerization, is required for the spindle checkpoint. EMBO J. 20, 6371–6382 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Pines, J. Cell cycle trials in Salamanca: workshop on G2/M progression and associated checkpoints. EMBO Rep. 3, 17–21 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hardwick, K. G. et al. Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science 273, 953–956 (1996).

    CAS  PubMed  Google Scholar 

  81. Seeley, T. W., Wang, L. & Zhen, J. Y. Phosphorylation of human MAD1 by the BUB1 kinase in vitro. Biochem. Biophys. Res. Commun. 257, 589–595 (1999).

    CAS  PubMed  Google Scholar 

  82. Campbell, M. S., Chan, G. K. & Yen, T. J. Mitotic checkpoint proteins HsMAD1 and HsMAD2 are associated with nuclear pore complexes in interphase. J. Cell Sci. 114, 953–963 (2001).

    CAS  PubMed  Google Scholar 

  83. Fang, G., Yu, H. & Kirschner, M. W. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev. 12, 1871–1883 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Michel, L. S. et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409, 355–359 (2001).

    CAS  PubMed  Google Scholar 

  85. Geley, S. et al. Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J. Cell Biol. 153, 137–148 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rieder, C. L. et al. Mitosis in vertebrate somatic cells with two spindles: implications for the metaphase/anaphase transition checkpoint and cleavage. Proc. Natl Acad. Sci. USA 94, 5107–5112 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Fang, G. Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol. Biol. Cell 13, 755–766 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kallio, M. et al. Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphase-promoting complex, and is involved in regulating anaphase onset and late mitotic events. J. Cell Biol. 141, 1393–1406 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, Y. et al. MAD2 associates with the cyclosome/anaphase-promoting complex and inhibits its activity. Proc. Natl Acad. Sci. USA 94, 12431–12436 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wassmann, K. & Benezra, R. Mad2 transiently associates with an APC/p55Cdc complex during mitosis. Proc. Natl Acad. Sci. USA 95, 11193–11198 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu, H. et al. p55CDC/hCDC20 is associated with BUBR1 and may be a downstream target of the spindle checkpoint kinase. Oncogene 19, 4557–4562 (2000).

    CAS  PubMed  Google Scholar 

  92. Rudner, A. D. & Murray, A. W. Phosphorylation by Cdc28 activates the Cdc20-dependent activity of the anaphase-promoting complex. J. Cell Biol. 149, 1377–1390 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Huang, J.-Y. & Raff, J. W. The dynamic localisation of the Drosophila APC/C: evidence for the existence of multiple complexes that perform distinct functions and are differentially localised. J. Cell Sci. 115, 2847–2856 (2002).

    CAS  PubMed  Google Scholar 

  94. Uhlmann, F., Lottspeich, F. & Nasmyth, K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400, 37–42 (1999).

    CAS  PubMed  Google Scholar 

  95. Alexandru, G. et al. Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell 105, 459–472 (2001).

    CAS  PubMed  Google Scholar 

  96. Stemmann, O. et al. Dual inhibition of sister chromatid separation at metaphase. Cell 107, 715–726 (2001).

    CAS  PubMed  Google Scholar 

  97. Weinert, T. A. & Hartwell, L. H. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241, 317–322 (1988).

    CAS  PubMed  Google Scholar 

  98. Hartwell, L. H. & Weinert, T. A. Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629–634 (1989).

    CAS  PubMed  Google Scholar 

  99. Fraschini, R., Formenti, E., Lucchini, G. & Piatti, S. Budding yeast Bub2 is localized at spindle pole bodies and activates the mitotic checkpoint via a different pathway from Mad2. J. Cell Biol. 145, 979–991 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Fesquet, D. et al. A Bub2p-dependent spindle checkpoint pathway regulates the Dbf2p kinase in budding yeast. EMBO J. 18, 2424–2434 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Pereira, G. et al. The Bub2p spindle checkpoint links nuclear migration with mitotic exit. Mol. Cell 6, 1–10 (2000).

    CAS  PubMed  Google Scholar 

  102. Bloecher, A., Venturi, G. M. & Tatchell, K. Anaphase spindle position is monitored by the BUB2 checkpoint. Nature Cell Biol. 2, 556–558 (2000).

    CAS  PubMed  Google Scholar 

  103. Pereira, G., Tanaka, T. U., Nasmyth, K. & Schiebel, E. Modes of spindle pole body inheritance and segregation of the Bfa1p–Bub2p checkpoint protein complex. EMBO J. 20, 6359–6370 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bardin, A. J. & Amon, A. MEN and SIN: what's the difference? Nature Rev. Mol. Cell Biol. 2, 815–826 (2001).

    CAS  Google Scholar 

  105. Gachet, Y., Tournier, S., Millar, J. B. & Hyams, J. S. A MAP kinase-dependent actin checkpoint ensures proper spindle orientation in fission yeast. Nature 412, 352–355 (2001).

    CAS  PubMed  Google Scholar 

  106. Weiss, E. & Winey, M. The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J. Cell Biol. 132, 111–123 (1996).

    CAS  PubMed  Google Scholar 

  107. Roberts, B. T., Farr, K. A. & Hoyt, M. A. The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase. Mol. Cell. Biol. 14, 8282–8291 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Farr, K. A. & Hoyt, M. A. Bub1p kinase activates the Saccharomyces cerevisiae spindle assembly checkpoint. Mol. Cell. Biol. 18, 2738–2747 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Warren, C. D. et al. Distinct chromosome segregation roles for spindle checkpoint proteins. Mol. Biol. Cell (in the press).

  110. Stucke, V. M., Sillje, H. H. W., Arnaud, L. & Nigg, E. A. Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO J. 21, 1723–1732 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hardwick, K. G. & Murray, A. W. Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast. J. Cell Biol. 131, 709–720 (1995).

    CAS  PubMed  Google Scholar 

  112. Schonn, M. A., McCarroll, R. & Murray, A. W. M. Requirement of the spindle checkpoint for proper chromosome segregation in budding yeast meiosis. Science 289, 300–303 (2000).

    Google Scholar 

  113. Bernard, P., Maure, J. F. & Javerzat, J. P. Fission yeast Bub1 is essential in setting up the meiotic pattern of chromosome segregation. Nature Cell Biol. 3, 522–526 (2001).

    CAS  PubMed  Google Scholar 

  114. Dobles, M. et al. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 101, 635–645 (2000).

    CAS  PubMed  Google Scholar 

  115. Kalitsis, P., Earle, E., Fowler, K. J. & Choo, K. H. Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function during early embryogenesis. Genes Dev. 14, 2277–2282 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kitagawa, R. & Rose, A. M. Components of the spindle-assembly checkpoint are essential in Caenorhabditis elegans. Nature Cell Biol. 1, 514–521 (1999).

    CAS  PubMed  Google Scholar 

  117. Lee, H. et al. Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, Brca2. Mol. Cell 4, 1–10 (1999).

    CAS  PubMed  Google Scholar 

  118. Cahill, D. P. et al. Mutations of mitotic checkpoint genes in human cancers. Nature 392, 300–303 (1998).

    CAS  PubMed  Google Scholar 

  119. Tighe, A., Johnson, V. L., Albertella, M. & Taylor, S. S. Aneuploid colon cancer cells have a robust spindle checkpoint. EMBO Rep. 2, 609–614 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Fodde, R. et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nature Cell Biol. 3, 433–438 (2001).

    CAS  PubMed  Google Scholar 

  121. Kaplan, K. B. et al. A role for the adenomatous polyposis coli protein in chromosome segregation. Nature Cell Biol. 3, 429–432 (2001).

    CAS  PubMed  Google Scholar 

  122. Aravind, L. & Koonin, E. V. The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. Trends Biochem. Sci. 23, 284–286 (1998).

    CAS  PubMed  Google Scholar 

  123. Zecevic, M. et al. Active MAP kinase in mitosis: localization at kinetochores and association with the motor protein CENP-E. J. Cell Biol. 142, 1547–1558 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Schwab, M. S. et al. Bub1 is activated by the protein kinase p90Rsk during Xenopus oocyte maturation. Curr. Biol. 11, 141–150 (2001).

    CAS  PubMed  Google Scholar 

  125. Scaerou, F. et al. The ZW10 and Rough Deal checkpoint proteins function together in a large, evolutionarily conserved complex targeted to the kinetochore. J. Cell Sci. 114, 3103–3114 (2001).

    CAS  PubMed  Google Scholar 

  126. Daum, J. R. et al. The 3F3/2 anti-phosphoepitope antibody binds mitotically phosphorylated anaphase-promoting complex/cyclosome. Curr. Biol. 10, 850–852 (2000).

    Google Scholar 

  127. Shannon, K. B., Canman, J. C. & Salmon, E. D. . Mad2 and BubR1 function in a single checkpoint pathway that responds to a loss of tension. Mol. Biol. Cell, 2002 August 6 (DOI 10.1091/mbc.E02-03-0137).

  128. Martin-Lluesma, S., Stucke, V. M. & Nigg, E. A. . Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science (in the press).

Download references

Acknowledgements

We thank S. Piatti, A. Pidoux and V. Vanoosthuyse for critical reading of the manuscript. A.M. is an EMBO Young Investigator and a Scholar of the Italian Foundation for Cancer Research. K.G.H. is a Senior Research Fellow of the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

Aurora-B

BRCA2

INCENP

MCAK

Zw10

Saccharomyces genome database

Bub1

Bub2

Bub3

Cdc20

Ipl1

Mad1

Mad2

Mad3

Mph1

ndc10-1

rad9

Sli15

Flybase

Cdc16

Cdc27

Polo

Rod

Glossary

KINETOCHORE

Complex protein assembly that links chromosomes to the mitotic spindle. Kinetochores assemble around specialized chromosomal regions known as centromeres, whose sequence and overall structures vary considerably between different organisms.

APC

Anaphase-promoting complex. A multiprotein complex with ubiquitin-ligase activity that is responsible for the ubiquitylation of several key cell-cycle regulators. Also known as the cyclosome.

CDC20

Positive regulator of the APC and a target of the spindle checkpoint. Also known as p55Cdc20, Fizzy and Slp1.

CONGRESSION

The microtubule-dependent movement of paired sister chromatids, whereby they become aligned at the metaphase plate.

3F3/2 PHOSPHOANTIGENS

Unknown antigens that are phosphorylated in prometaphase, and become dephosphorylated when tension is exerted on sister chromatids. There are probably several distinct antigens, including APC subunits126.

ANEUPLOID

Cell in which one or more chromosomes are missing or present in more than their usual copy number.

HAPLOINSUFFICIENCY

Loss of a functional allele from a diploid cell results in haploinsufficiency if the product of the remaining allele is insufficient to perform its function correctly.

RNA INTERFERENCE

The process by which an introduced double-stranded RNA specifically silences the expression of genes through degradation of their cognate mRNAs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musacchio, A., Hardwick, K. The spindle checkpoint: structural insights into dynamic signalling. Nat Rev Mol Cell Biol 3, 731–741 (2002). https://doi.org/10.1038/nrm929

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm929

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing