Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

ERM proteins and merlin: integrators at the cell cortex

Key Points

  • The ERM (ezrin–radixin–moesin) proteins and merlin (the product of the neurofibromatosis II tumor-suppressor gene) contain a FERM (Four-point one, ezrin, radixin, moesin) at their amino terminus, and represent one class of the FERM domain superfamily. Phylogenetic analysis indicates that FERM domains evolved in response to multicellularity, rather than as cytoskeletal proteins.

  • Studies in Drosophila melanogaster and mice indicate that merlin provides an essential function, and that the single ERM protein Drosophila is also essential. However, in vertebrates, the presence of the three closely related ERM proteins complicates analysis. Nevertheless, transfection studies in cultured cells have implicated ERM proteins in microfilament–membrane attachment and Rho-signal-transduction pathways.

  • ERM proteins and merlin are negatively regulated by an intramolecular interaction between the amino- and carboxy-terminal domains. The interaction masks at least some of the binding sites in each domain, and can be relieved by carboxy-terminal phosphorylation in combination with acidic phospholipids, including phosphatidylinositol 4,5-bisphosphate.

  • The FERM domain of ERM proteins binds directly to the cytoplasmic region of several specific membrane proteins, as well as indirectly through the apical scaffolding proteins ERM-binding phosphoprotein 50 (EBP50)/sodium–hydrogen exchanger type 3 kinase A regulatory protein (E3KARP) to the tail of other membrane proteins. The FERM domain also binds to signalling molecules in the Rho pathway, including Rho guanine dinucleotide dissociation domain (Rho-GDI). An F-actin binding site is present in the carboxy-terminal domain of ERM proteins. So far, the F-actin binding site and sites for interaction with EBP50 and RhoGDI have been shown to be masked in the dormant, inactive monomer.

  • Merlin does not have a carboxy-terminal F-actin binding site, but its N-terminal domain binds many of the same proteins that interact with the ERM FERM domain, and also some distinct ones, such as the hepatocyte growth factor-regulated substrate (HRS).

  • The intramolecular regulatory interaction in merlin is also regulated by phosphorylation. This regulation might be crucial in transducing a high cell density signal from CD44, the receptor for hyaluronate, to dephosphorylate merlin and restrict proliferation. This regulation might be mediated through inhibition of the Rac pathway.

Abstract

A fundamental property of many plasma-membrane proteins is their association with the underlying cytoskeleton to determine cell shape, and to participate in adhesion, motility and other plasma-membrane processes, including endocytosis and exocytosis. The ezrin–radixin–moesin (ERM) proteins are crucial components that provide a regulated linkage between membrane proteins and the cortical cytoskeleton, and also participate in signal-transduction pathways. The closely related tumour suppressor merlin shares many properties with ERM proteins, yet also provides a distinct and essential function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ERM proteins contribute to the functional organization of specific plasma-membrane domains. Examples of three cell types are shown.
Figure 2: Localization of ERM proteins and merlin.
Figure 3: Domain relationships between erythrocyte band 4.1, the ERM family and merlin.
Figure 4: A model for the activation and function of the ERM proteins.

Similar content being viewed by others

References

  1. Sato, N. et al. A gene family consisting of ezrin, radixin and moesin. Its specific localization at actin filament/plasma membrane association sites. J. Cell Sci. 103, 131–143 (1992).

    CAS  PubMed  Google Scholar 

  2. Bretscher, A. Purification of an 80,000-dalton protein that is a component of the isolated microvillus cytoskeleton, and its localization in nonmuscle cells. J. Cell Biol. 97, 425–432 (1983).This paper reports on the original identification of ezrin as a component of microvillar cytoskeletons, its purification and localization to cell-surface microvilli of cultured cells.

    CAS  PubMed  Google Scholar 

  3. Pakkanen, R., Hedman, K., Turunen, O., Wahlstrom, T. & Vaheri, A. Microvillus-specific Mr 75,000 plasma membrane protein of human choriocarcinoma cells. J. Histochem. Cytochem. 35, 809–816 (1987).

    CAS  PubMed  Google Scholar 

  4. Gould, K. L., Cooper, J. A., Bretscher, A. & Hunter, T. The protein-tyrosine kinase substrate, p81, is homologous to a chicken microvillar core protein. J. Cell Biol. 102, 660–669 (1986).

    CAS  PubMed  Google Scholar 

  5. Berryman, M., Franck, Z. & Bretscher, A. Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J. Cell Sci. 105, 1025–1043 (1993).

    CAS  PubMed  Google Scholar 

  6. Tsukita, S., Hieda, Y. & Tsukita, S. A new 82-kD barbed end-capping protein (radixin) localized in the cell-to-cell adherens junction: purification and characterization. J. Cell Biol. 108, 2369–2382 (1989).The first description of radixin.

    CAS  PubMed  Google Scholar 

  7. Amieva, M. R., Wilgenbus, K. K. & Furthmayr, H. Radixin is a component of hepatocyte microvilli in situ. Exp. Cell Res. 210, 140–144 (1994).

    CAS  PubMed  Google Scholar 

  8. Lankes, W., Griesmacher, A., Grunwald, J., Schwartz-Albiez, R. & Keller, R. A heparin-binding protein involved in inhibition of smooth-muscle cell proliferation. Biochem. J. 251, 831–842 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gould, K. L., Bretscher, A., Esch, F. S. & Hunter, T. cDNA cloning and sequencing of the protein-tyrosine kinase substrate, ezrin, reveals homology to band 4.1. EMBO J. 8, 4133–4142 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lankes, W. T. & Furthmayr, H. Moesin: a member of the protein 4.1–talin–ezrin family of proteins. Proc. Natl Acad. Sci. USA 88, 8297–8301 (1991).This study showed that moesin is closely related to ezrin.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Funayama, N., Nagafuchi, A., Sato, N., Tsukita, S. & Tsukita, S. Radixin is a novel member of the band 4.1 family. J. Cell Biol. 115, 1039–1048 (1991).

    CAS  PubMed  Google Scholar 

  12. Trofatter, J. A. et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 75, 826 (1993).

    CAS  PubMed  Google Scholar 

  13. Rouleau, G. A. et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 363, 515–521 (1993).Together with reference 12 , this study showed that the complementary DNA that encodes the product of the Neurofibromatosis 2 tumour-suppressor gene is related to the ERM family.

    CAS  PubMed  Google Scholar 

  14. Gusella, J. F., Ramesh, V., MacCollin, M. & Jacoby, L. B. Merlin: the neurofibromatosis 2 tumor suppressor. Biochim. Biophys. Acta 1423, M29–M36 (1999).

    CAS  PubMed  Google Scholar 

  15. Bretscher, A., Chamber, C., Nguyen, R. & Reczek, D. ERM-merlin and EBP50 protein families in plasma membrane organization and function. Annu. Rev. Cell Dev. Biol. 16, 113–143 (2000).

    CAS  PubMed  Google Scholar 

  16. Mangeat, P., Roy, C. & Martin, M. ERM proteins in cell adhesion and membrane dynamics. Trends Cell Biol. 9, 187–192 (1999).

    CAS  PubMed  Google Scholar 

  17. Tsukita, S. & Yonemura, S. Cortical actin organization: lessons from ERM (ezrin/radixin/moesin) proteins. J. Biol. Chem. 274, 34507–34510 (1999).

    CAS  PubMed  Google Scholar 

  18. Doi, Y. et al. Normal development of mice and unimpaired cell adhesion/cell motility/actin-based cytoskeleton without compensatory up-regulation of ezrin or radixin in moesin gene knockout. J. Biol. Chem. 274, 2315–2321 (1999).

    CAS  PubMed  Google Scholar 

  19. Takeuchi, K. et al. Perturbation of cell adhesion and microvilli formation by antisense oligonucleotides to ERM family members. J. Cell Biol. 125, 1371–1384 (1994).Using antisense oligonucleotides to suppress the expression of ERM proteins, this study showed that ERM proteins are necessary for the presence of microvilli on cultured cells.

    CAS  PubMed  Google Scholar 

  20. Allenspach, E. J. et al. ERM-dependent movement of CD43 defines a novel protein complex distal to the immunological synapse. Immunity 15, 739–750 (2001).

    CAS  PubMed  Google Scholar 

  21. Kaul, S. C. et al. Identification of a 55-kDa ezrin-related protein that induces cytoskeletal changes and localizes to the nucleolus. Exp. Cell Res. 250, 51–61 (1999).

    CAS  PubMed  Google Scholar 

  22. Crepaldi, T., Gautreau, A., Comoglio, P. M., Louvard, D. & Arpin, M. Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J. Cell Biol. 138, 423–434 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. McClatchey, A. I., Saotome, I., Ramesh, V., Gusella, J. F. & Jacks, T. The Nf2 tumor suppressor gene product is essential for extraembryonic development immediately prior to gastrulation. Genes Dev. 11, 1253–1265 (1997).This paper reports the first mouse knockout of the Nf2 gene, which shows that merlin is essential for early development.

    CAS  PubMed  Google Scholar 

  24. Fehon, R. G., Oren, T., LaJeunesse, D. R., Melby, T. E. & McCartney, B. M. Isolation of mutations in the Drosophila homologues of the human Neurofibromatosis 2 and yeast CDC42 genes using a simple and efficient reverse-genetic method. Genetics 146, 245–252 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gusella, J. F., Ramesh, V., MacCollin, M. & Jacoby, L. B. Neurofibromatosis 2: loss of merlin's protective spell. Curr. Opin. Genet. Dev. 6, 87–92 (1996).

    CAS  PubMed  Google Scholar 

  26. Gary, R. & Bretscher, A. Heterotypic and homotypic associations between ezrin and moesin, two putative membrane-cytoskeletal linking proteins. Proc. Natl Acad. Sci. USA 90, 10846–10850 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gary, R. & Bretscher, A. Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Mol. Biol. Cell 6, 1061–1075 (1995).The intramolecular FERM–C-ERMAD interaction is described and mapped, and the idea that ERM proteins are subject to conformational regulation is proposed.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Berryman, M., Gary, R. & Bretscher, A. Ezrin oligomers are major cytoskeletal components of placental microvilli: a proposal for their involvement in cortical morphogenesis. J. Cell Biol. 131, 1231–1242 (1995).

    CAS  PubMed  Google Scholar 

  29. Bretscher, A., Gary, R. & Berryman, M. Soluble ezrin purified from placenta exists as stable monomers and elongated dimers with masked C-terminal ezrin–radixin–moesin association domains. Biochemistry 34, 16830–16837 (1995).

    CAS  PubMed  Google Scholar 

  30. Magendantz, M., Henry, M. D., Lander, A. & Solomon, F. Interdomain interactions of radixin in vitro. J. Biol. Chem. 270, 25324–25327 (1995).

    CAS  PubMed  Google Scholar 

  31. Martin, M. et al. Ezrin NH2-terminal domain inhibits the cell extension activity of the COOH-terminal domain. J. Cell. Biol. 128, 1081–1093 (1995).

    CAS  PubMed  Google Scholar 

  32. Henry, M. D., Gonzalez Agosti, C. & Solomon, F. Molecular dissection of radixin: distinct and interdependent functions of the amino- and carboxy-terminal domains. J. Cell Biol. 129, 1007–1022 (1995).

    CAS  PubMed  Google Scholar 

  33. Reczek, D. & Bretscher, A. The carboxyl-terminal region of EBP50 binds to a site in the amino-terminal domain of ezrin that is masked in the dormant molecule. J. Biol. Chem. 273, 18452–18458 (1998).This paper used biochemical studies to prove that the binding site of EBP50 on the FERM domain is masked by the FERM–C-ERMAD interaction in dormant ezrin, which validates the conformational-regulation hypothesis.

    CAS  PubMed  Google Scholar 

  34. Takahashi, K. et al. Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J. Biol. Chem. 272, 23371–23375 (1997).

    CAS  PubMed  Google Scholar 

  35. Ishikawa, H. et al. Structural conversion between open and closed forms of radixin: low-angle shadowing electron microscopy. J. Mol. Biol. 310, 973–978 (2001).

    CAS  PubMed  Google Scholar 

  36. Gautreau, A., Louvard, D. & Arpin, M. Morphogenic effects of ezrin require a phosphorylation-induced transition from oligomers to monomers at the plasma membrane. J. Cell Biol. 150, 193–203 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Nakamura, F., Amieva, M. R. & Furthmayr, H. Phosphorylation of threonine 558 in the carboxyl-terminal actin-binding domain of moesin by thrombin activation of human platelets. J. Biol. Chem. 270, 31377–31385 (1995).

    CAS  PubMed  Google Scholar 

  38. Matsui, T. et al. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J. Cell Biol. 140, 647–657 (1998).The in vitro demonstration that Rho-kinase can phosphorylate a specific threonine in the carboxy-terminal region of ERM proteins, which reduces the FERM–C-ERMAD interaction, but has no effect on the F-actin-binding site.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oshiro, N., Fukata, Y. & Kaibuchi, K. Phosphorylation of moesin by Rho-associated kinase (Rho-kinase) plays a crucial role in the formation of microvilli-like structures. J. Biol. Chem. 273, 34663–34666 (1998).

    CAS  PubMed  Google Scholar 

  40. Hayashi, K., Yonemura, S., Matsui, T., Tsukita, S. & Tsukita, S. Immunofluorescence detection of ezrin/radixin/moesin (ERM) proteins with their carboxyl-terminal threonine phosphorylated in cultured cells and tissues. J. Cell Sci. 112, 1149–1158 (1999).

    CAS  PubMed  Google Scholar 

  41. Tran Quang, C., Gautreau, A., Arpin, M. & Treisman, R. Ezrin function is required for ROCK-mediated fibroblast transformation by the net and dbl oncogenes. EMBO J. 19, 4565–4576 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ng, T. et al. Ezrin is a downstream effector of trafficking PKC–integrin complexes involved in the control of cell motility. EMBO J. 20, 2723–2741 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Pietromonaco, S. F., Simons, P. C., Altman, A. & Elias, L. Protein kinase C-θ phosphorylation of moesin in the actin-binding sequence. J. Biol. Chem. 273, 7594–7603 (1998).

    CAS  PubMed  Google Scholar 

  44. Simons, P. C., Pietromonaco, S. F., Reczek, D., Bretscher, A. & Elias, L. C-terminal threonine phosphorylation activates ERM proteins to link the cell's cortical lipid bilayer to the cytoskeleton. Biochem. Biophys. Res. Commun. 253, 561–565 (1998).

    CAS  PubMed  Google Scholar 

  45. Yonemura, S., Matsui, T. & Tsukita, S. Rho-dependent and-independent activation mechanisms of ezrin/radixin/moesin proteins: an essential role for polyphosphoinositides in vivo. J. Cell Sci. 115, 2569–2580 (2002).

    CAS  PubMed  Google Scholar 

  46. Hirao, M. et al. Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J. Cell Biol. 135, 37–51 (1996).This study proposed roles for PtdIns(4,5)P 2 and Rho-signalling pathways in ERM protein regulation.

    CAS  PubMed  Google Scholar 

  47. Yonemura, S. et al. Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J. Cell Biol. 140, 885–895 (1998).Together with reference 68 , this report provided the first identification of ERM-binding regions in the cytoplasmic tails of membrane proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nakamura, F., Huang, L., Pestonjamasp, K., Luna, E. J. & Furthmayr, H. Regulation of F-actin binding to platelet moesin in vitro by both phosphorylation of threonine 558 and polyphosphatidylinositides. Mol. Biol. Cell 10, 2669–2685 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Niggli, V., Andreoli, C., Roy, C. & Mangeat, P. Identification of a phosphatidylinositol-4,5-bisphosphate-binding domain in the N-terminal region of ezrin. FEBS Lett. 376, 172–176 (1995).

    CAS  PubMed  Google Scholar 

  50. Barret, C., Roy, C., Montcourrier, P., Mangeat, P. & Niggli, V. Mutagenesis of the phosphatidylinositol 4,5-bisphosphate (PIP2) binding site in the NH2-terminal domain of ezrin correlates with its altered cellular distribution. J. Cell Biol. 151, 1067–1080 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pearson, M., Reczek, D., Bretscher, A. & Karplus, P. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101, 259–270 (2000).This study reported the first structure of a FERM domain, as well as the FERM–C-ERMAD complex.

    CAS  PubMed  Google Scholar 

  52. Hamada, K., Shimizu, T., Matsui, T., Tsukita, S. & Hakoshima, T. Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J. 19, 4449–4462 (2000).This study reported the first structure of the free (and presumably active) FERM domain and, by comparison with the structure of Pearson et al . (reference 51 ), described the structural changes that are induced after C-ERMAD release.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Edwards, S. D. & Keep, N. H. The 2.7 Å crystal structure of the activated FERM domain of moesin: an analysis of structural changes on activation. Biochemistry 40, 7061–7068 (2001).

    CAS  PubMed  Google Scholar 

  54. Zhou, Y. J. et al. Unexpected effects of FERM domain mutations on catalytic activity of Jak3: structural implication for Janus kinases. Mol. Cell 8, 959–969 (2001).

    CAS  PubMed  Google Scholar 

  55. Gu, M. & Majerus, P. W. The properties of the protein tyrosine phosphatase PTPMEG. J. Biol. Chem. 271, 27751–27759 (1996).

    CAS  PubMed  Google Scholar 

  56. Johnson, R. P. & Craig, S. W. F-actin binding site masked by the intramolecular association of vinculin head and tail domains. Nature 373, 261–264 (1995).

    CAS  PubMed  Google Scholar 

  57. Johnson, R. P. & Craig, S. W. Actin activates a cryptic dimerization potential of the vinculin tail domain. J. Biol. Chem. 275, 95–105 (2000).

    CAS  PubMed  Google Scholar 

  58. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    CAS  PubMed  Google Scholar 

  59. Alberts, A. S. Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J. Biol. Chem. 276, 2824–2830 (2001).

    CAS  PubMed  Google Scholar 

  60. Bretscher, A. Rapid phosphorylation and reorganization of ezrin and spectrin accompany morphological changes induced in A-431 cells by epidermal growth factor. J. Cell Biol. 108, 921–930 (1989).

    CAS  PubMed  Google Scholar 

  61. Turunen, O., Wahlstrom, T. & Vaheri, A. Ezrin has a COOH-terminal actin-binding site that is conserved in the ezrin protein family. J. Cell Biol. 126, 1445–1453 (1994).This study identified the F-actin-binding site in the tail of ezrin.

    CAS  PubMed  Google Scholar 

  62. Pestonjamasp, K. et al. Moesin, ezrin, and p205 are actin-binding proteins associated with neutrophil plasma membranes. Mol. Biol. Cell 6, 247–259 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Berryman, M. & Bretscher, A. Identification of a novel member of the chloride intracellular channel gene family (CLIC5) that associates with the actin cytoskeleton of placental microvilli. Mol. Biol. Cell 11, 1509–1521 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Roy, C., Martin, M. & Mangeat, P. A dual involvement of the amino-terminal domain of ezrin in F- and G-actin binding. J. Biol. Chem. 272, 20088–20095 (1997).

    CAS  PubMed  Google Scholar 

  65. Martin, M., Roy, C., Montcourrier, P., Sahuquet, A. & Mangeat, P. Three determinants in ezrin are responsible for cell extension activity. Mol. Biol. Cell 8, 1543–1557 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Marchesi, V. T. Stabilizing infrastructure of cell membranes. Annu. Rev. Cell Biol. 1, 531–561 (1985).

    CAS  PubMed  Google Scholar 

  67. Tsukita, S. et al. ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J. Cell. Biol. 126, 391–401 (1994).

    CAS  PubMed  Google Scholar 

  68. Legg, J. W. & Isacke, C. M. Identification and functional analysis of the ezrin-binding site in the hyaluronan receptor, CD44. Curr. Biol. 8, 705–708 (1998).

    CAS  PubMed  Google Scholar 

  69. Legg, J. W., Lewis, C. A., Parsons, M., Ng, T. & Isacke, C. M. A novel PKC-regulated mechanism controls CD44 ezrin association and directional cell motility. Nature Cell Biol. 4, 399–407 (2002).

    CAS  PubMed  Google Scholar 

  70. Heiska, L. et al. Association of ezrin with intercellular adhesion molecule-1 and-2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 273, 21893–21900 (1998).

    CAS  PubMed  Google Scholar 

  71. Helander, T. S. et al. ICAM-2 redistributed by ezrin as a target for killer cells. Nature 382, 265–268 (1996).The first evidence for a biological function of ezrin.

    CAS  PubMed  Google Scholar 

  72. Shaw, A. S. FERMing up the synapse. Immunity 15, 683–686 (2001).

    CAS  PubMed  Google Scholar 

  73. Delon, J., Kaibuchi, K. & Germain, R. N. Exclusion of CD43 from the immunological synapse is mediated by phosphorylation-regulated relocation of the cytoskeletal adaptor moesin. Immunity 15, 691–701 (2001).

    CAS  PubMed  Google Scholar 

  74. Roumier, A. et al. The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation. Immunity 15, 715–728 (2001).

    CAS  PubMed  Google Scholar 

  75. Denker, S. P., Huang, D. C., Orlowski, J., Furthmayr, H. & Barber, D. L. Direct binding of the Na–H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H+ translocation. Mol. Cell 6, 1425–1436 (2000).

    CAS  PubMed  Google Scholar 

  76. Yun, C. H., Lamprecht, G., Forster, D. V. & Sidor, A. NHE3 kinase A regulatory protein E3KARP binds the epithelial brush border Na+/H+ exchanger NHE3 and the cytoskeletal protein ezrin. J. Biol. Chem. 273, 25856–25863 (1998).

    CAS  PubMed  Google Scholar 

  77. Reczek, D. & Bretscher, A. Identification of EPI64, a TBC/RabGAP domain-containing microvillar protein that binds to the first PDZ domain of EBP50 and E3KARP. J. Cell Biol. 153, 191–206 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Weinman, E. J., Minkoff, C. & Shenolikar, S. Signal complex regulation of renal transport proteins: NHERF and regulation of NHE3 by PKA. Am. J. Physiol. Renal Physiol. 279, F393–F399 (2000).

    CAS  PubMed  Google Scholar 

  79. Weinman, E. J. New functions for the NHERF family of proteins. J. Clin. Invest. 108, 185–186 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Weinman, E. J. & Shenolikar, S. The Na–H exchanger regulatory factor. Exp. Nephrol. 5, 449–452 (1997).

    CAS  PubMed  Google Scholar 

  81. Weinman, E. J., Steplock, D., Wade, J. B. & Shenolikar, S. Ezrin binding domain-deficient NHERF attenuates cAMP-mediated inhibition of Na+/H+ exchange in OK cells. Am. J. Physiol. Renal Physiol. 281, F374–F380 (2001).

    CAS  PubMed  Google Scholar 

  82. Dransfield, D. T. et al. Ezrin is a cyclic AMP-dependent protein kinase anchoring protein. EMBO J. 16, 35–43 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, S., Raab, R. W., Schatz, P. J., Guggino, W. B. & Li, M. Peptide binding consensus of the NHE-RF–PDZ1 domain matches the C-terminal sequence of cystic fibrosis transmembrane conductance regulator (CFTR). FEBS Lett. 427, 103–108 (1998).

    CAS  PubMed  Google Scholar 

  84. Short, D. B. et al. An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J. Biol. Chem. 273, 19797–19801 (1998).

    CAS  PubMed  Google Scholar 

  85. Hall, R. A. et al. A C-terminal motif found in the β2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proc. Natl Acad. Sci. USA 95, 8496–8501 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hall, R. A. et al. The β2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature 392, 626–630 (1998).

    CAS  PubMed  Google Scholar 

  87. Cao, T. T., Deacon, H. W., Reczek, D., Bretscher, A. & von Zastrow, M. A kinase-regulated PDZ-domain interaction controls endocytic sorting of the β2-adrenergic receptor. Nature 401, 286–290 (1999).

    CAS  PubMed  Google Scholar 

  88. Yun, C. H. et al. cAMP-mediated inhibition of the epithelial brush border Na+/H+ exchanger, NHE3, requires an associated regulatory protein. Proc. Natl Acad. Sci. USA 94, 3010–3015 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Maudsley, S. et al. Platelet-derived growth factor receptor association with Na+/H+ exchanger regulatory factor potentiates receptor activity. Mol. Cell. Biol. 20, 8352–8363 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Takeda, T., McQuistan, T., Orlando, R. A. & Farquhar, M. G. Loss of glomerular foot processes is associated with uncoupling of podocalyxin from the actin cytoskeleton. J. Clin. Invest. 108, 289–301 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Matsui, T., Yonemura, S., Tsukita, S. & Tsukita, S. Activation of ERM proteins in vivo by rho involves phosphatidylinositol 4-phosphate 5-kinase and not ROCK kinases. Curr. Biol. 9, 1259–1262 (1999).

    CAS  PubMed  Google Scholar 

  92. Fukata, Y. et al. Association of the myosin-binding subunit of myosin phosphatase and moesin: dual regulation of moesin phosphorylation by Rho-associated kinase and myosin phosphatase. J. Cell Biol. 141, 409–418 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Shaw, R. J., Henry, M., Solomon, F. & Jacks, T. RhoA-dependent phosphorylation and relocalization of ERM proteins into apical membrane/actin protrusions in fibroblasts. Mol. Biol. Cell 9, 403–419 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kotani, H., Takaishi, K., Sasaki, T. & Takai, Y. Rho regulates association of both the ERM family and vinculin with the plasma membrane in MDCK cells. Oncogene 14, 1705–1713 (1997).

    CAS  PubMed  Google Scholar 

  95. Mackay, D. J., Esch, F., Furthmayr, H. & Hall, A. Rho- and Rac-dependent assembly of focal adhesion complexes and actin filaments in permeabilized fibroblasts: an essential role for ezrin/radixin/moesin proteins. J. Cell Biol. 138, 927–938 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lamb, R. F. et al. The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nature Cell Biol. 2, 281–287 (2000).

    CAS  PubMed  Google Scholar 

  97. Shimizu, T. et al. Structural basis for Neurofibromatosis type 2. Crystal structure of the merlin FERM domain. J. Biol. Chem. 277, 10332–10336 (2002).

    CAS  PubMed  Google Scholar 

  98. Kang, B. S., Cooper, D. R., Devedjiev, Y., Derewenda, U. & Derewenda, Z. S. The structure of the FERM domain of merlin, the neurofibromatosis type 2 gene product. Acta Crystallogr. D Biol. Crystallogr. 58, 381–391 (2002).

    PubMed  Google Scholar 

  99. McCartney, B. M. & Fehon, R. G. Distinct cellular and subcellular patterns of expression imply distinct functions for the Drosophila homologues of moesin and the neurofibromatosis 2 tumor suppressor, merlin. J. Cell Biol. 133, 843–852 (1996).

    CAS  PubMed  Google Scholar 

  100. Xu, H. M. & Gutmann, D. H. Merlin differentially associates with the microtubule and actin cytoskeleton. J. Neurosci. Res. 51, 403–415 (1998).

    CAS  PubMed  Google Scholar 

  101. James, M. F., Manchanda, N., Gonzalez-Agosti, C., Hartwig, J. H. & Ramesh, V. The neurofibromatosis 2 protein product merlin selectively binds F-actin but not G-actin, and stabilizes the filaments through a lateral association. Biochem. J. 356, 377–386 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Brault, E. et al. Normal membrane localization and actin association of the NF2 tumor suppressor protein are dependent on folding of its N-terminal domain. J. Cell Sci. 114, 1901–1912 (2001).

    CAS  PubMed  Google Scholar 

  103. Scherer, S. S., Xu, T., Crino, P., Arroyo, E. J. & Gutmann, D. H. Ezrin, radixin, and moesin are components of Schwann cell microvilli. J. Neurosci. Res. 65, 150–164 (2001).

    CAS  PubMed  Google Scholar 

  104. LaJeunesse, D. R., McCartney, B. M. & Fehon, R. G. Structural analysis of Drosophila merlin reveals functional domains important for growth control and subcellular localization. J. Cell Biol. 141, 1589–1599 (1998).This study showed that merlin regulates cell proliferation in Drosophila , and the FERM domain provides all the essential functions of Drosophila merlin.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Stokowski, R. P. & Cox, D. R. Functional analysis of the neurofibromatosis type 2 protein by means of disease-causing point mutations. Am. J. Hum. Genet. 66, 873–891 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Meng, J. J. et al. Interaction between two isoforms of the NF2 tumor suppressor protein, merlin, and between merlin and ezrin, suggests modulation of ERM proteins by merlin. J. Neurosci. Res. 62, 491–502 (2000).

    CAS  PubMed  Google Scholar 

  107. Gronholm, M. et al. Homotypic and heterotypic interaction of the neurofibromatosis 2 tumor suppressor protein merlin and the ERM protein ezrin. J. Cell Sci. 112, 895–904 (1999).

    CAS  PubMed  Google Scholar 

  108. Gonzalez-Agosti, C., Wiederhold, T., Herndon, M. E., Gusella, J. & Ramesh, V. Interdomain interaction of merlin isoforms and its influence on intermolecular binding to NHE-RF. J. Biol. Chem. 274, 34438–34442 (1999).

    CAS  PubMed  Google Scholar 

  109. Sherman, L. et al. Interdomain binding mediates tumor growth suppression by the NF2 gene product. Oncogene 15, 2505–2509 (1997).

    CAS  PubMed  Google Scholar 

  110. Nguyen, R., Reczek, D. & Bretscher, A. Hierarchy of merlin and ezrin N- and C-terminal domain interactions in homo- and heterotypic associations and their relationship to binding of scaffolding proteins EBP50 and E3KARP. J. Biol. Chem. 276, 7621–7629 (2001).

    CAS  PubMed  Google Scholar 

  111. Gutmann, D. H. et al. The NF2 interactor, hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), associates with merlin in the 'open' conformation and suppresses cell growth and motility. Hum. Mol. Genet. 10, 825–834 (2001).

    CAS  PubMed  Google Scholar 

  112. Maeda, M., Matsui, T., Imamura, M., Tsukita, S. & Tsukita, S. Expression level, subcellular distribution and Rho-GDI binding affinity of merlin in comparison with ezrin/radixin/moesin proteins. Oncogene 18, 4788–4797 (1999).

    CAS  PubMed  Google Scholar 

  113. Scoles, D. R. et al. Neurofibromatosis 2 tumour suppressor schwannomin interacts with βII-spectrin. Nature Genet. 18, 354–359 (1998).

    CAS  PubMed  Google Scholar 

  114. Xiao, G. H., Beeser, A., Chernoff, J. & Testa, J. R. p21-activated kinase links Rac/Cdc42 signaling to Merlin. J. Biol. Chem. 21, 21 (2001).

    CAS  Google Scholar 

  115. Kissil, J. L., Johnson, K. C., Eckman, M. S. & Jacks, T. Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J. Biol. Chem. 277, 10394–10399 (2002).

    CAS  PubMed  Google Scholar 

  116. Shaw, R. J., McClatchey, A. I. & Jacks, T. Regulation of the neurofibromatosis type 2 tumor suppressor protein, merlin, by adhesion and growth arrest stimuli. J. Biol. Chem. 273, 7757–7764 (1998).

    CAS  PubMed  Google Scholar 

  117. Shaw, R. J. et al. The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev. Cell 1, 63–72 (2001).This study showed that merlin functions downstream of Rac in a signalling pathway.

    CAS  PubMed  Google Scholar 

  118. Morrison, H. et al. The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev. 15, 968–980 (2001).Merlin is reported to confer its tumour-suppressing function through interaction with the cytoplasmic tail of CD44 in response to elevated levels of hyaluronate, the ligand for CD44.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. LaJeunesse, D. R., McCartney, B. M. & Fehon, R. G. A systematic screen for dominant second-site modifiers of Merlin/NF2 phenotypes reveals an interaction with blistered/DSRF and scribbler. Genetics 158, 667–679 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Chishti, A. H. et al. The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem. Sci. 23, 281–282 (1998).

    CAS  PubMed  Google Scholar 

  121. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Girault, J. A., Labesse, G., Mornon, J. P. & Callebaut, I. Janus kinases and focal adhesion kinases play in the 4.1 band: a superfamily of band 4.1 domains important for cell structure and signal transduction. Mol. Med. 4, 751–769 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Edwards, K., Davis, T., Marcey, D., Kurihara, J. & Yamamoto, D. Comparative analysis of the Band 4.1/ezrin-related protein tyrosine phosphatase Pez from two Drosophila species: implications for structure and function. Gene 275, 195–205 (2001).

    CAS  PubMed  Google Scholar 

  124. Andersen, J. N. et al. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol. Cell. Biol. 21, 7117–7136 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. McClatchey, A. I. et al. Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev. 12, 1121–1133 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Giovannini, M. et al. Schwann cell hyperplasia and tumors in transgenic mice expressing a naturally occurring mutant NF2 protein. Genes Dev. 13, 978–986 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Kalamarides, M. et al. Nf2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes Dev. 16, 1060–1065 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. McCartney, B. M., Kulikauskas, R. M., LaJeunesse, D. R. & Fehon, R. G. The neurofibromatosis-2 homologue, merlin, and the tumor suppressor expanded function together in Drosophila to regulate cell proliferation and differentiation. Development 127, 1315–1324 (2000).

    CAS  PubMed  Google Scholar 

  129. Serrador, J. M. et al. CD43 interacts with moesin and ezrin and regulates its redistribution to the uropods of T lymphocytes at the cell–cell contacts. Blood 91, 4632–4644 (1998).

    CAS  PubMed  Google Scholar 

  130. Serrador, J. M. et al. Moesin interacts with the cytoplasmic region of intercellular adhesion molecule-3 and is redistributed to the uropod of T lymphocytes during cell polarization. J. Cell Biol. 138, 1409–1423 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Ivetic, A., Deka, J., Ridley, A. & Ager, A. The cytoplasmic tail of L-selectin interacts with members of the ezrin–radixin–moesin (ERM) family of proteins: activation dependent binding of moesin but not ezrin. J. Biol. Chem. 8, 8 (2001).

    Google Scholar 

  132. Reczek, D., Berryman, M. & Bretscher, A. Identification of EBP50: a PDZ-containing phosphoprotein that associates with members of the ezrin–radixin–moesin family. J. Cell Biol. 139, 169–179 (1997).The description of the first PDZ-containing apical scaffolding protein that binds the ERM family.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Bonilha, V. L. & Rodriguez-Boulan, E. Polarity and developmental regulation of two PDZ proteins in the retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 42, 3274–3282 (2001).

    CAS  PubMed  Google Scholar 

  134. Granes, F., Urena, J. M., Rocamora, N. & Vilaro, S. Ezrin links syndecan-2 to the cytoskeleton. J. Cell Sci. 113, 1267–1276 (2000).

    CAS  PubMed  Google Scholar 

  135. Takahashi, K. et al. Interaction of radixin with Rho small G protein GDP/GTP exchange protein Dbl. Oncogene 16, 3279–3284 (1998).

    PubMed  Google Scholar 

  136. Poullet, P. et al. Ezrin interacts with focal adhesion kinase and induces its activation independently of cell-matrix adhesion. J. Biol. Chem. 276, 37686–37691 (2001).

    CAS  PubMed  Google Scholar 

  137. Gautreau, A., Poullet, P., Louvard, D. & Arpin, M. Ezrin, a plasma membrane-microfilament linker, signals cell survival through the phosphatidylinositol 3-kinase/Akt pathway. Proc. Natl Acad. Sci. USA 96, 7300–7305 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Parlato, S. et al. CD95 (APO-1/Fas) linkage to the actin cytoskeleton through ezrin in human T lymphocytes: a novel regulatory mechanism of the CD95 apoptotic pathway. EMBO J. 19, 5123–5134 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Mykkanen, O. M. et al. Characterization of human palladin, a microfilament-associated protein. Mol. Biol. Cell 12, 3060–3073 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Chambers for Figure 2a, and B. McCartney for Figure 2b–f. Work in the authors' laboratories was supported by grants from the NIH (A.B. and R.G.F.) and the US Army Neurofibromatosis Research Program (R.G.F.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anthony Bretscher, Kevin Edwards or Richard G. Fehon.

Related links

Related links

DATABASES

FlyBase

expanded

Interpro

ankyrin repeat region

myosin motor domain

PH

protein tyrosine phosphatase domain

RING finger

WW domain

OMIM

Neurofibromatosis type 2

Swiss-Prot

β-adrenergic receptor

cystic fibrosis transmembrane conductance regulator

CD44

E3KARP

ezrin

hamartin

ICAM-2

Jak3

moesin

Nf2

NHE-1

NHE-3

radixin

RhoGDI

vinculin

FURTHER READING

The Biology Workbench (for CLUSTALW and DRAWTREE)

Glossary

APICAL DOMAIN

The area of an epithelial cell that faces the lumen.

BASOLATERAL DOMAIN

The area of an epithelial cell that adjoins underlying tissue.

MICROVILLI

Small, finger-like projections (1–2 μm long and 100 nm wide) that occur on the exposed surfaces of epithelial cells to maximize the surface area.

MEMBRANE RUFFLES

Processes that are formed by the movement of lamellipodia that are in the dynamic process of folding back onto the cell body from which they previously extended.

ADHERENS JUNCTION

A cell–cell and cell–extracellular-matrix adhesion complex that is composed of integrins and cadherins that are attached to cytoplasmic actin filaments.

BILE CANALICULUS

A groove on the surface of the liver cell that acts as a collecting system for bile that is made by the cell.

GLYCOSAMINOGLYCANS

Heteropolysaccharides that contain an N-acetylated hexosamine in a characteristic repeating disaccharide unit. The repeating structure of each disaccharide involves alternate 1,4- and 1,3-linkages that consist of either N-acetylglucosamine or N-acetylgalactosamine.

F-ACTIN

(Filamentous actin). A flexible, helical polymer of G-actin (globular actin) monomers that is 5–9 nm in diameter.

CYTOKINESIS

The process of cytoplasmic division.

PHAGOCYTOSIS

An actin-dependent process, by which cells engulf external particulate material by extension and fusion of pseudopods.

PHYLOGENETIC ANALYSIS

The study of evolutionary relationships among organisms.

PHOSPHOROTHIOATE ANTISENSE OLIGONUCLEOTIDES

Short, non-degradable antisense oligonucleotides that bind to specific messenger RNAs and suppress their translation, which inhibits synthesis of specific proteins.

DOMINANT-NEGATIVE

The effect of a defective protein that retains interaction capabilities and so distorts or competes with normal proteins.

PARALOGUES

Homologous genes that originated by gene duplication (for example, human α-globin and human β-globin).

SCHWANN CELLS

Cells that produce myelin and ensheath axons in the peripheral nervous system.

BLOT OVERLAY

A method used to detect specific protein–protein interactions; protein mixtures are separated by gel electrophoresis, transferred to a membrane and then probed with a labelled test protein. The test protein binds its specific partner on the membrane and can then be detected by its label.

PLATELET

The smallest blood cell, which is important in haemostasis and blood coagulation.

NEOMYCIN

An antibiotic complex that binds polyphosphoinositides.

PLECKSTRIN HOMOLOGY (PH) DOMAIN

A sequence of 100 amino acids that is present in many signalling molecules and binds to lipid products of phosphatidyl-inositol 3-kinase. Pleckstrin is a protein of unknown function that was originally identified in platelets. It is a principal substrate of protein kinase C.

SCAFFOLDING PROTEIN

A protein that has specific binding sites and is therefore important in the assembly, structure and function of larger molecular complexes.

PDZ DOMAIN

Protein interaction domain that often occurs in scaffolding proteins and is named after the founding members of this protein family (Psd-95, discs-large and ZO-1).

NATURAL KILLER CELLS

A class of lymphocytes that are crucial in the innate immune response. They exert a cytotoxic activity on target cells (for example, virus-infected cells) that is enhanced by cytokines such as interferons.

IMMUNOLOGICAL SYNAPSE

A tight junction between T lymphocytes and target cells.

ANTIGEN-PRESENTING CELL

A cell, most often a macrophage or dendritic cell, that presents an antigen to activate a T cell.

GREEN-FLUORESCENT PROTEIN

An autofluorescent protein that was originally identified in the jellyfish Aequorea victoria.

FOCAL CONTACT

A small cellular structure that is associated with lamellipodia and pseudopods, in which the extracellular matrix on the outside of the cell is linked to the actin cytoskeleton on the inside of the cell.

PODOCYTE

A fenestrated cell that forms the visceral layer of the Bowman's capsule in the kidneys.

GTPγS

A non-hydrolysable analogue of GTP.

STRESS FIBRES

Axial bundles of F-actin that underlie the cell bodies.

YEAST TWO-HYBRID

A technique used to test if two proteins physically interact with each other. One protein is fused to the GAL4 activation domain and the other to the GAL4 DNA-binding domain, and both fusion proteins are introduced into yeast. Expression of a GAL4-regulated reporter gene indicates that the two proteins physically interact.

LYSOPHOSPHATIDIC ACID

(LPA). Any phosphatidic acid that is deacylated at positions 1 or 2. It binds to a G-protein-coupled receptor, which results in the activation of the small GTP-binding protein Rho and the induction of stress fibres.

COILED-COIL DOMAINS

A protein domain that forms a bundle of two or three α-helices. Whereas short coiled-coil domains are involved in protein interactions, long coiled-coil domains that form long rods occur in structural or motor proteins.

CRE/LOXP

A site-specific recombination system that is derived from the Escherichia coli bacteriophage P1. Two short DNA sequences (loxP sites) are engineered to flank the target DNA. Activation of the Cre recombinase enzyme catalyses recombination between the loxP sites, which leads to the excision of the intervening sequence.

HYPERPLASIA

An increase in the number of cells in a tissue or organ without gross morphological changes.

FLP/FLT

Flp encodes a recombinase that catalyses site-specific recombination between sites called Flp recognition targets (FRT). The Flp/FRT system has been successfully applied as a site-specific recombination system.

Rho FAMILY GTPases

Ras-related GTPases that are involved in controlling the organization of actin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bretscher, A., Edwards, K. & Fehon, R. ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3, 586–599 (2002). https://doi.org/10.1038/nrm882

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm882

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing